進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0408201609401700
論文名稱(中文) 以射頻磁控濺鍍法製作LaGdO3薄膜及其於透明微電子電路之應用
論文名稱(英文) Fabrications of LaGdO3 Thin Film by Using RF Sputtering for Transparent Microelectronic Applications
校院名稱 成功大學
系所名稱(中) 電機工程學系
系所名稱(英) Department of Electrical Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 許閔翔
研究生(英文) Min-Shiang Hsu
學號 N26034029
學位類別 碩士
語文別 中文
論文頁數 118頁
口試委員 指導教授-黃正亮
口試委員-許正興
口試委員-曾靜芳
口試委員-尤正祺
口試委員-陳逸謙
中文關鍵字 射頻磁控濺鍍法  介電薄膜  透明電子電路  電阻式記憶體 
英文關鍵字 Sputter  dielectric material  transparent thin film  RRAM 
學科別分類
中文摘要 本研究利用射頻磁控濺鍍法(RF sputtering)在ITO玻璃基板上製作LaGdO3薄膜,並利用電子束蒸鍍法製作Al金屬作為上電極,使元件結構成為MIM(Metal - Insulator - Metal)電容。整個實驗分為兩主軸方向,分別是介電材料之應用以及電阻式記憶體之研究。在介電薄膜之研究方面分為三大部分,第一個部分為探討LaGdO3介電薄膜在不同基板溫度下製作之物性與電性分析。根據實驗結果發現,LaGdO3薄膜在基板溫度400℃時有最佳的膜厚均勻性,以及較佳的介電特性,接著我們比較電極退火與否對於電特性之影響,由TEM微結構分析中發現,在電極退火200℃時,在電極與介電薄膜間出現明顯的氧化鋁層,而此氧化鋁層的出現會使得元件整體電容值下降,因此,我們選擇了電極未退火處理來做為後續研究之參數。
在第二部分的實驗中,我們探討了不同退火溫度對於LaGdO3薄膜之物性及電性影響。根據實驗結果,在不同的退火溫度下,LaGdO3薄膜皆呈現結晶態,而在退火500℃時得到較平滑之表面(Rrms:3.87nm)、在可見光波段之光學穿透率約為80%、在頻率1 MHz時的電容密度約為0.42 μF/cm2 (k~23.9)、介電損耗則是0.85、漏電流密度約在10-8 A/cm2(外加偏壓15 V時)。在漏電流機制分析中發現,在中段電場時符合普爾-法蘭克發射機制,較高電場時則符合蕭特基發射機制,不同退火溫度的光學能隙皆約為5.85 eV。此外,我們亦建立了等效電路模型來描述我們所製作的MIM電容器。
在第三個部份的實驗中,我們探討了不同退火氣氛對於LaGdO3薄膜之物性及電特性影響。於實驗結果中發現,在氮氫氣氛下(95% N2+5% H2)退火,有較為平滑表面(Rrms:3.83),在可見光波段穿透率約為80%,除此之外,擁有較佳的介電特性,在頻率1 MHz下,電容密度為0.51 μF/cm2、介電損耗值為0.24,亦可以利用Goswami-Goswami等效電路模型來描述。在漏電流分析的部分,因為較多氧空缺之影響,於外加偏壓10 V時約為10-4 A/cm2。
在另一個主軸,電阻式記憶體的研究部分,我們以Al/LaGdO3/ITO/glass此結構,製作電阻式記憶體,發現在限制電流0.01 A時,具有單極性之電阻轉換特性,有四個數量級以上的開關比(on/off ratio),在漏電流機制分析方面,此單極性轉換之電阻式記憶體在低阻態時是歐姆傳導機制、高阻態則是空間電荷傳導機制。
英文摘要 In this research we choose the rare earth ternary oxide as the gate dielectric material for the transparent microelectronic application. We deposit the LaGdO3 thin film on the ITO/glass substrate by RF sputtering and select the Al metal as the top electrode. The first part of this research is the dielectric properties about Al/LGO/ITO/glass structure, and the second part is the resistive switching property. According to physical and electrical analysis, the thin film with substrate temperature 400℃ and electrode unanneled exists the better electrical characteristics and uniform morphology. In the effect of annealing temperature analysis, we found that 500℃ is the better annealing temperature with smooth morphology、higher permittivity (K~23.9@1MHz)、less dissipation factor (0.85@1MHz)、lower leakage current density(10-8 A/cm2 @15 V)and 80% transmittance in the visible spectral region. There are some trade-off problems in the different annealing atmosphere. For instance, the sample annealed in N2-H2 atmosphere shows the higher dielectric properties than samples annealed in air or pure oxygen but existing worst leakage current density which is attributed to more oxygen vacancy in the film. On the other hand, the on/off ratio of unipolar RRAM can reach above 4 orders that’s enough for memory application. In the end, we consider that LaGdO3 thin film applies on ITO/glass transparent substrate will be the potential material for the transparent electronic circuit.
論文目次 摘要 I
Summary III
致謝 XII
表目錄 XVII
圖目錄 XVIII

第一章 緒論1
1.1 前言1
1.2 研究動機及材料選擇3
1.3 實驗設計7

第二章 文獻回顧8
2.1介電材料之介電特性8
2.1.1介電材料(dielectric material)8
2.1.2介電常數(dielectric constant)、介電損耗(dielelctric loss)8
2.1.3介電材料之極化機制(dielectric polarization)8
2.2 薄膜成長機制11
2.3 透明元件及其特性16
2.3.1介電透明薄膜之Metal-Insulator-Metal(MIM)結構量測16
2.3.2透明薄膜電晶體(transparent thin film transistor)18
2.3.3電阻式記憶體(Resistance Random Access Memory,RRAM)20
2.3.4電阻式記憶體轉換機制(switching mechanism)24
2.4 漏電流傳導機制28
2.4.1電極限制傳導機制(Electrode-Limited Conduction Mechanism)28
2.4.1-1 蕭特基發射(Schottky emission)28
2.4.1-2 穿隧(Tunneling)29
2.4.1-3 熱離子發射(Thermionic-Field emission)29
2.4.2本體限制傳導機制(Bulk-Limited Conduction Mechanism)30
2.4.2-1 普爾-法蘭克發射(Poole-Frank emission)30
2.4.2-2 跳躍式傳導(Hopping conduction)30
2.4.2-3 歐姆傳導(Ohmic conduction)31
2.4.2-4 空間電荷限制傳導(Space-charge limited current conduction)31
2.5 稀土族金屬氧化物文獻回顧37
2.5.1稀土族金屬氧化物37
2.5.2 LaGdO3之介紹37
2.5.3 LaxY1-xOz三元金屬氧化物41

第三章 實驗步驟及方法43
3.1 實驗材料43
3.2 實驗設備43
3.2.1 射頻磁控濺鍍系統43
3.2.2 電子束蒸鍍機44
3.2.3 管式高溫爐44
3.3 實驗流程44
3.4 分析儀器45
3.4.1多功能X光薄膜繞射儀(GIA-XRD)46
3.4.2場發射掃描式電子顯微鏡(FE-SEM)46
3.4.3半導體參數分析儀(Semiconductor Device Analyzer Mainframe)46
3.4.4紫外線/可見光分光光譜儀(UV-VIS spectrometer)47
3.4.5表面粗度儀(Alpha-Step Profilometer)47
3.4.6原子力顯微鏡(AFM)47
3.4.7化學分析電子光譜儀(ESCA)48
3.4.8穿隧式電子顯微鏡(Transmission Electron Microscope,TEM)48
3.4.9能量分散光譜儀(Energy Dispersion Spectroscopy,EDS)48
3.4.10四點探針薄膜電阻量測儀(Four Point Sheet Resistance Meter)49

第四章 實驗結果與討論51
4.1 LaGdO3薄膜於不同基板溫度成長之物性與電性分析51
4.1.1 XRD分析51
4.1.1-1 LGO靶材之XRD51
4.1.1-2不同基板溫度之XRD51
4.1.2 Alpha-step膜厚分析51
4.1.3 Al/LGO/ITO/glass結構之電性分析54
4.1.3-1介電常數-電壓及介電損耗-電壓曲線(C-V and DF-V curve)54
4.1.3-2電容-頻率及介電損耗-頻率曲線(C-F and DF-F curve)54
4.1.4 TEM微結構分析及EDS成分分析58
4.1.5綜合討論(Brief summary)65
4.2 LaGdO3薄膜於不同退火溫度之物性與電性分析66
4.2.1 XRD分析66
4.2.2 SEM與AFM表面形貌分析67
4.2.3光學性質分析70
4.2.3-1 LGO/ITO/glass結構之UV-Visble量測70
4.2.3-2能隙計算(energy band gap)71
4.2.4 Al/LGO/ITO/glass結構之電性分析75
4.2.4-1電容-電壓及介電損耗-電壓曲線(C-V and DF-V curve)75
4.2.4-2電容-頻率及介電損耗-頻率曲線(C-F and DF-F curve)75
4.2.4-3漏電流分析(I-V curve)83
4.2.4-4漏電流機制分析84
4.2.5綜合討論(Brief summary)88
4.3 LaGdO3薄膜於不同退火氣氛之物性與電性分析89
4.3.1 XRD分析89
4.3.2 SEM與AFM表面形貌分析90
4.3.3 XPS表面鍵結化學分析93
4.3.4光學性質分析95
4.3.5 Al/LGO/ITO/glass結構之電性分析97
4.3.5-1電容-電壓及介電損耗-電壓曲線(C-V and DF-V curve)97
4.3.5-2電容-頻率及介電損耗-頻率曲線(C-F and DF-F curve)97
4.3.5-3漏電流分析(I-V curve)98
4.3.6綜合討論(Brief summary)105
4.4 Al/LGO/ITO/glass結構之電阻轉換現象106
4.4.1綜合討論(Brief summary)109

第五章 結論110

參考文獻111

參考文獻 [1] Displaybank, "Transparent Display Technology &Market Prospect", Displaybank special report, vol. iHS,Technical report, 2012.

[2] Y. Kuo, "Thin Film Transistor Technology--Past Present and Future", Electrochemical Society Interface, vol. 22,p.p. 55-61, 2013.

[3] E. Fortunato, P. Barquinha, R. Martins, "Oxide Semiconductor Thin-Film Transistors: A Review of Recent Advances", Adv. Mater., vol. 24,p.p. 2945-2986, 2012.

[4] R.A. Street, "Thin‐Film Transistors", Adv. Mater., vol. 21,p.p. 2007-2022, 2009.

[5] S.H.K. Park, C.S. Hwang, M. Ryu, S. Yang, C. Byun, J. Shin, J.I. Lee, K. Lee, M.S. Oh, S. Im, "Transparent and Photo‐stable ZnO Thin‐film Transistors to Drive an Active Matrix Organic‐Light‐Emitting‐Diode Display Panel", Adv. Mater., vol. 21,p.p. 678-682, 2009.

[6] Y.S. Chun, S. Chang, S.Y. Lee, "Effects of gate insulators on the performance of a-IGZO TFT fabricated at room-temperature", Microelectron. Eng., vol. 88,p.p. 1590-1593, 2011.

[7] C.Y. Tsay, C.H. Cheng, Y.W. Wang, "Properties of transparent yttrium oxide dielectric films prepared by sol-gel process", Ceram. Int., vol. 38,p.p. 1677-1682, 2012.

[8] G.D. Wilk, R.M. Wallace, J.M. Anthony, "High-kappa gate dielectrics: Current status and materials properties considerations", J. Appl. Phys., vol. 89,p.p. 5243-5275, 2001.

[9] T. Prodromakis, C. Papavassiliou, "Engineering the Maxwell-Wagner polarization effect", Appl. Surf. Sci., vol. 255,p.p. 6989-6994, 2009.

[10] A. Dakhel, "Characterisation of Nd2O3 thick gate dielectric for silicon", PHYSICA STATUS SOLIDI A APPLIED RESEARCH, vol. 201,p.p. 745-755, 2004.

[11] H. Hu, C.X. Zhu, Y.F. Lu, Y.H. Wu, T. Liew, M.F. Li, B.J. Cho, W.K. Choi, N. Yakovlev, "Physical and electrical characterization of HfO2 metal-insulator-metal capacitors for Si analog circuit applications", J. Appl. Phys., vol. 94,p.p. 551-557, 2003.

[12] S. Ohmi, M. Takeda, H. Ishiwara, H. Iwai, "Electrical characteristics for Lu2O3 thin films fabricated by E-beam deposition method", J. Electrochem. Soc., vol. 151,p.p. G279-G283, 2004.

[13] J. Robertson, K. Xiong, "Electronic structure and band offsets of lanthanide oxides, Rare Earth Oxide Thin Films:Growth , Characterization , and Applications", Springer-Verlag Berlin, Berlin, pp. 313-329, 2007.

[14] S. Choi, B.Y. Park, S. Jeong, J.Y. Lee, B.H. Ryu, H.K. Jung, "Low voltage operated, sol-gel derived oxide thin film transistor based on high-k Gd2O3 gate dielectric", Mater. Chem. Phys., vol. 138,p.p. 1-4, 2013.

[15] V. Mikhelashvili, G. Eisenstein, F. Edelman, R. Brener, N. Zakharov, P. Werner, "Structural and electrical properties of electron beam gun evaporated Er2O3 insulator thin films", J. Appl. Phys., vol. 95,p.p. 613-620, 2004.

[16] T.M. Pan, F.J. Tsai, C.I. Hsieh, T.W. Wu, "Structural properties and electrical characteristics of praseodymium oxide gate dielectrics", Electrochem. Solid State Lett., vol. 10,p.p. G21-G24, 2007.

[17] J.H. Jun, C.H. Wang, D.J. Won, D.J. Choi, "Structural and electrical properties of a La2O3 thin film as a gate dielectric", J. Korean Phys. Soc., vol. 41,p.p. 998-1002, 2002.

[18] S.P. Pavunny, J.F. Scott, R.S. Katiyar, "Lanthanum gadolinium oxide: A new electronic device material for CMOS logic and memory devices", Materials, vol. 7,p.p. 2669-2696, 2014.

[19] H. Shimizu, S. Konagai, M. Ikeda, T. Nishide, "Characterization of Sol-Gel Derived and Crystallized ZrO2 Thin Films", Jpn. J. Appl. Phys., vol. 48,p.p. 6, 2009.

[20] M. Esro, R. Mazzocco, G. Vourlias, O. Kolosov, A. Krier, W.I. Milne, G. Adamopoulos, "Solution processed lanthanum aluminate gate dielectrics for use in metal oxide-based thin film transistors", Appl. Phys. Lett., vol. 106,p.p. 5, 2015.

[21] M.J. Alam, D.C. Cameron, "Preparation and characterization of TiO2 thin films by sol-gel method", J. Sol-Gel Sci. Technol., vol. 25,p.p. 137-145, 2002.

[22] E. Perez, T. Blanquart, K. Kukli, M. Ritala, "Influence of growth and annealing temperatures on the electrical properties of Nb2O5-based MIM capacitors", Semiconductor Science and Technology, vol. 28,p.p. 055005, 2013.

[23] H. Yurtseven, A. Kiraci, "Temperature dependence of the polarization and the dielectric constant near the paraelectric-ferroelectric transitions in BaTiO3", J. Mol. Model., vol. 19,p.p. 3925-3930, 2013.

[24] R. Raihan, K. Reifsnider, D. Cacuci, Q.L. Liu, "Dielectric signatures and interpretive analysis for changes of state in composite materials", ZAMM-Z. Angew. Math. Mech., vol. 95,p.p. 1037-1045, 2015.

[25] J. Singh, D.E. Wolfe, "Nano and macro-structured component fabrication by electron beam-physical vapor deposition (EB-PVD)", J. Mater. Sci., vol. 40,p.p. 1-26, 2005.

[26] J.A. Venables, G.D.T. Spiller, M. Hanbucken, "NUCLEATION AND GROWTH OF THIN-FILMS", Rep. Prog. Phys., vol. 47,p.p. 399-459, 1984.

[27] J.A. Thornton, "INFLUENCE OF APPARATUS GEOMETRY AND DEPOSITION CONDITIONS ON STRUCTURE AND TOPOGRAPHY OF THICK SPUTTERED COATINGS", Journal of Vacuum Science & Technology, vol. 11,p.p. 666-670, 1974.

[28] J.A. Thornton, "HIGH-RATE THICK-FILM GROWTH", Annu. Rev. Mater. Sci., vol. 7,p.p. 239-260, 1977.

[29] Y.D. Ho, K.R. Chen, C.L. Huang, "Sol-Gel-Derived Amorphous-MgNb2O6 Thin Films for Transparent Microelectronics", J. Am. Ceram. Soc., vol. 96,p.p. 3375-3378, 2013.

[30] H. Hosono, "Recent progress in transparent oxide semiconductors: Materials and device application", Thin Solid Films, vol. 515,p.p. 6000-6014, 2007.

[31] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, H. Hosono, "P-type electrical conduction in transparent thin films of CuAlO2", Nature, vol. 389,p.p. 939-942, 1997.

[32] R.L. Hoffman, B.J. Norris, J.F. Wager, "ZnO-based transparent thin-film transistors", Appl. Phys. Lett., vol. 82,p.p. 733-735, 2003.

[33] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors", Nature, vol. 432,p.p. 488-492, 2004.

[34] F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, "Recent progress in resistive random access memories:Materials, switching mechanisms, and performance", Mater. Sci. Eng. R-Rep., vol. 83,p.p. 1-59, 2014.

[35] C. Chen, F. Pan, Z.S. Wang, J. Yang, F. Zeng, "Bipolar resistive switching with self-rectifying effects in Al/ZnO/Si structure", J. Appl. Phys., vol. 111,p.p. 6, 2012.

[36] J.J. Huang, G.L. Lin, C.W. Kuo, W.C. Chang, T.H. Hou, "Room-temperature TiOx oxide diode for 1D1R resistance-switching memory", Semiconductor Device Research Symposium, 2009. ISDRS '09. International, vol. p.p. 1-2, 2009.

[37] R. Waser, M. Aono, "Nanoionics-based resistive switching memories", Nat. Mater., vol. 6,p.p. 833-840, 2007.

[38] T. Zhang, X. Ou, W.F. Zhang, J. Yin, Y.D. Xia, Z.G. Liu, "High-k-rare-earth-oxide Eu2O3 films for transparent resistive random access memory (RRAM) devices", J. Phys. D-Appl. Phys., vol. 47,p.p. 6, 2014.

[39] M. Lanza, "A Review on Resistive Switching in High-k Dielectrics:A Nanoscale Point of View Using Conductive Atomic Force Microscope", Materials, vol. 7,p.p. 2155-2182, 2014.

[40] F.C. Chiu, "A Review on Conduction Mechanisms in Dielectric Films", Adv. Mater. Sci. Eng., vol. p.p. 18, 2014.

[41] S.M. Yu, X.M. Guan, H.S.P. Wong, "Conduction mechanism of TiN/HfOx/Pt resistive switching memory: A trap-assisted-tunneling model", Appl. Phys. Lett., vol. 99,p.p. 3, 2011.

[42] F.C. Chiu, W.C. Shih, J.J. Feng, "Conduction mechanism of resistive switching films in MgO memory devices", J. Appl. Phys., vol. 111,p.p. 5, 2012.

[43] C.D. Child, "Discharge from hot CaO", Phys. Rev., vol. 32,p.p. 0492-0511, 1911.

[44] W.-Y. Chang, J.-H. Liao, Y.-S. Lo, T.-B. Wu, "Resistive switching characteristics in Pr0.7Ca0.3MnO3 thin films on LaNiO3-electrodized Si substrate", Appl. Phys. Lett., vol. 94,p.p., 2009.

[45] 李雅明,"固態電子學",全華科技圖書有限公司,1995.

[46] H. Ohta, A. Nagashima, M. Ito, M. Hori, T. Goto, "Formation of silicon nitride gate dielectric films at 300 degrees C employing radical chemical vapor deposition", J. Vac. Sci. Technol. B, vol. 18,p.p. 2486-2490, 2000.

[47] J.M.J. Lopes, E.D. Ozben, M. Roeckerath, U. Littmark, R. Luptak, S. Lenk, M. Luysberg, A. Besmehn, U. Breuer, J. Schubert, S. Mantl, "Amorphous ternary rare-earth gate oxides for future integration in MOSFETs", Microelectron. Eng., vol. 86,p.p. 1646-1649, 2009.

[48] L.F. Edge, D.G. Schlom, S. Rivillon, Y.J. Chabal, M.P. Agustin, S. Stemmer, T. Lee, M.J. Kim, H.S. Craft, J.P. Maria, M.E. Hawley, B. Hollander, J. Schubert, K. Eisenbeiser, "Thermal stability of amorphous LaScO3 films on silicon", Appl. Phys. Lett., vol. 89,p.p. 3, 2006.

[49] S.P. Pavunny, A. Kumar, P. Misra, J.F. Scott, R.S. Katiyar, "Properties of the new electronic device material LaGdO3", Physica Status Solidi B-Basic Solid State Physics, vol. 251,p.p. 131-139, 2014.

[50] S.P. Pavunny, R. Thomas, A. Kumar, E. Fachini, R.S. Katiyar, "Optical properties of amorphous high-k LaGdO3 films and its band alignment with Si", J. Appl. Phys., vol. 111,p.p. 9, 2012.

[51] Y. Zhao, K. Kita, K. Kyuno, A. Toriumi, "Dielectric and electrical properties of amorphous La1-xTaxOy films as higher-k gate insulators", J. Appl. Phys., vol. 105,p.p. 5, 2009.

[52] 汪建民,"材料分析",中國材料科學學會,1998.

[53] S.-W. Nam, J.-H. Yoo, S. Nam, D.-H. Ko, J.-H. Ku, C.-W. Yang, "Physical and electrical degradation of ZrO2 thin films with aluminum electrodes", Materials Science and Engineering:B, vol. 102,p.p. 108-112, 2003.

[54] J. George, V.U. Nayar, E. Joy, M. Radhakrishnan, "The effect of the annealing of electrode films on the electrical resistivity of thin aluminium films", Thin Solid Films, vol. 47,p.p. 121-126, 1977.

[55] X.F. Song, R.L. Fu, H. He, "Frequency effects on the dielectric properties of AlN film deposited by radio frequency reactive magnetron sputtering", Microelectron. Eng., vol. 86,p.p. 2217-2221, 2009.

[56] A. Paskaleva, M. Lemberger, A.J. Bauer, W. Weinreich, J. Heitmann, E. Erben, U. Schroder, L.Oberbeck, "Influence of the amorphous/crystalline phase of Zr1-xAlxO2 high-k layers on the capacitance performance of metal insulator metal stacks", J. Appl. Phys., vol. 106,p.p. 6, 2009.

[57] L. Goux, H. Vander Meeren, D.J. Wouters, "Metallorganic chemical vapor deposition of Sr-Ta-O and Bi-Ta-O films for backend integration of high-k capacitors", J. Electrochem. Soc., vol. 153,p.p. F132-F136, 2006.

[58] H.T. Lue, C.Y. Liu, T.Y. Tseng, "An improved two-frequency method of capacitance measurement for SrTiO3 as high-k gate dielectric", IEEE Electron Device Lett., vol. 23,p.p. 553-555, 2002.

[59] A. Goswami, A.P. Goswami, "Dielectric and optical properties of ZnS films", Thin Solid Films, vol. 16,p.p. 175-185, 1973.

[60] F. Zhang, G. Liu, A. Liu, B. Shin, F. Shan, "Solution-processed hafnium oxide dielectric thin films for thin-film transistors applications", Ceram. Int., vol. 41,p.p. 13218-13223, 2015.

[61] M.S. Tsai, S.C. Sun, T.Y. Tseng, "Effect of bottom electrode materials on the electrical and reliability characteristics of (Ba, Sr)TiO3 capacitors", IEEE Trans. Electron Devices, vol. 46,p.p. 1829-1838, 1999.

[62] F.J. Geng, C.H. Yang, P.P. Lv, C. Wei, J. Qian, C. Feng, Q. Yao, X.M. Jiang, P. Song, "Microstructure, leakage current and dielectric tunability of Na0.5Bi0.5(Ti0.99Zn0.01)O3 thin films:An annealing atmosphere-dependent study", Ceram. Int., vol. 42,p.p. 8744-8749, 2016.

[63] P. Misra, S.P. Pavunny, R.S. Katiyar, "On the Resistive Switching and Current Conduction Mechanisms of Amorphous LaGdO3 Films Grown by Pulsed Laser Deposition", ECS Transactions, vol. 53,p.p. 229-235.

[64] J. Lee, D.G. Lim, W. Song, J. Yi, "Influence of annealing temperature and atmosphere on the properties of ITO films deposited using a powdery target", J. Korean Phys. Soc., vol. 51,p.p. 1143-1146, 2007.

[65] J.S. An, S.C. Kim, S.H. Hahn, S.K. Ko, E.J. Kim, "Influence of annealing on the optical and the electrical properties of ITO thin films prepared by using a sol-gel spin method", J. Korean Phys. Soc., vol. 45,p.p. 1629-1634, 2004.

[66] J. Liang, P. Li, D. Wang, X. Fang, J. Ding, J. Wu, C. Tang, "Fabrication of Crack-Free Barium Titanate Thin Film with High Dielectric Constant Using Sub-Micrometric Scale Layer-by-Layer E-Jet Deposition", Materials, vol. 9,p.p. 61, 2016.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw