進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0408201516151400
論文名稱(中文) 發展啾聲編碼激發之超音波彈性成像系統以評估軟組織生物力學特性
論文名稱(英文) Development of Ultrasound Elasticity Imaging System with Chirp-Coded Excitation for Assessing Biomechanical Properties of Soft Tissue
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 103
學期 2
出版年 104
研究生(中文) 江幸容
研究生(英文) Hsing-Jung Chiang
學號 P86024093
學位類別 碩士
語文別 英文
論文頁數 63頁
口試委員 指導教授-陳天送
口試委員-陳培展
口試委員-杜翌群
口試委員-林家宏
口試委員-黃執中
中文關鍵字 超音波彈性成像  啾聲編碼脈衝  互相關  絕對值差 
英文關鍵字 Elastogrpahy  Chirp-coded pulse  Cross-Correlation  Absolute difference 
學科別分類
中文摘要 軟組織於生物力學上的軟硬性質之改變通常與其病理上之變化有關,而超音波彈性影像可用非侵入的方式量測軟組織局部的生物力學特性,因此可於臨床上評估軟組織的病變。然而,軟組織對超音波能量之衰減會降低超音波訊號之訊雜比,因而影響超音波彈性影像之品質。為提升影像的品質,可藉由編碼脈衝激發訊號增加超音波的平均功率以提升訊雜比與穿透深度,同時可配合適當之濾波器以維持一定水準之超音波軸向解析度。本研究發展啾聲編碼脈衝激發之超音波彈性成像系統,探討高斯(Gaussian)及塔基(Tukey)窗函數的啾聲編碼訊號與短脈衝對彈性影像品質之影響。本系統採用7.5 MHz單陣元探頭結合壓縮板的方式量測軟組織之彈性,並使用荷重元量測壓縮板下壓力量。軟組織的應變估計分別採用傳統的互相關(cross-correalstion)演算法與絕對值差(absolution difference)演算法。此兩種演算法用於啾聲編碼脈衝激發之超音波彈性成像系統,所需的最佳參數是由量測均質假體之彈性影像的訊雜比進行評估,分別以互相關演算法與絕對值差演算法之最佳參數,用來估計啾聲編碼脈衝與短脈衝所量測對比彈性假體(背景13.27kPa,中心26.86kPa)之彈性影像品質,以楊氏係數之準確度與彈性影像對比度為評估指標。實驗結果顯示,短脈衝量測均質假體時,彈性影像的訊雜比值為11dB,而以20個週期之塔基窗函數的啾聲編碼脈衝量測均質假體時,彈性影像有較佳的訊雜比(互相關演算法為15dB;絕對值差演算法為13dB)。以啾聲編碼脈衝量測假體的彈性影像對比度較短脈衝量測的結果高4.1dB。另外,互相關演算法與絕對值差演算法評估以啾聲編碼脈衝量測中心26.86kPa之對比假體的楊氏係數,其結果分別為25.52 kPa與22.72 kPa。由實驗結果可知塔基窗函數的啾聲編碼脈衝結合互相關演算法,可得到品質較好且準確的彈性影像。
英文摘要 Changes in the biomechanical properties of soft tissues generally correlates with the pathological phenomenon. Ultrasound elasticity imaging, which is a non-invasive method, can be used to measure the local biomechanical properties of soft tissue that can be used to assess the pathological changes of soft tissue in clinical diagnosis. However, the echo signal to noise ratio (eSNR) was diminished due to the attenuation of ultrasonic energy by soft tissues that reduces the quality of elastography. To improve the quality of elastography, the eSNR and penetrating depth of ultrasound can be increased by the average power of ultrasound which is generated using chirp-coded excitation. Moreover, the low axial resolution of ultrasound generated by chirp-coded pulse can be increased using a proper compression filter. Therefore, the main goal of this study is to develop ultrasound elasticity imaging system with chirp-coded excitation for assessing biomechanical properties of soft tissue. Furthermore, the effects of chirp-coded excitation modulated by a Gaussian window and a Tukey window, respectively, and short pulse excitation upon the qualities of elastography were discussed. The ultrasound elasticity imaging system equipped with a 7.5 MHz single element transducer and polymethylpentene compression plate to measure the strain of soft tissue, and the compression force on soft tissue was measured by load cell. The strain information of soft tissue was analyzed using cross-correlation (CC) algorithm and absolution difference (AD) algorithm. The optimal parameters of CC and AD algorithms used for the ultrasound elasticity imaging system with chirp-coded excitation were analyzed by measuring the signal-to-noise ratio on the elastogram (SNRe) of homogeneous phantom. Moreover, the ultrasound elasticity imaging system with chirp-coded excitation and short pulse excitation were used to measure the elastically phantom (Young’s modulus of background materials and cylindrical inclusion were 13.27 and 26.86kPa, respectively). Qualities of elastography for the elastically phantom were assessed by the accuracy of Young’s modulus and elastographic contrast-to-noise ratio (CNRe). The experimental results shows that the SNRe of elastography measured by short pulsed ultrasound was 11dB. As the homogenous phantom was measured by 20 cycles chirp-coded ultrasound modulated by a Tukey window, the SNRe of elastography (CC algorithm: 15dB, AD algorithm: 13dB) is better than that measured by short pulsed ultrasound. The CNRe in elastography, which was imaged using chirp-coded pulse, can be improved 4.1dB compared with that imaged using short pulse. In addition, the Young’s modulus of cylindrical inclusion analyzed using CC algorithm was 25.52 kPa, and that analyzed using AD algorithm was 22.72 kPa. These results demonstrated that the ultrasound elasticity imaging system with chirp-coded excitation modulated by a Tukey window could acquire the high quality and high accuracy elastography.
論文目次 摘要 III
Abstract IV
誌謝 VI
Contents VII
List of Figures X
List of Tables XIV
Chapter 1. Introduction 1
1.1 Ultrasound Elastography 1
1.1.1 Compression Ultrasound Elastography 1
1.1.2 Acoustic Radiation Force Impulse (ARFI) Technique 3
1.1.3 Shear Wave Elastography 4
1.2 Coded Pulse Excitation for Ultrasound Elastography 6
1.2.1 Chirp-coded Pulse Excitation 9
1.3 Literature Review 11
1.4 Motivation and Aim 16
Chapter 2. Materials and Methods 17
2.1 System Architecture 17
2.1.1 Transducer 19
2.1.2 Chirp Pulse 20
2.1.3 Load Cell 24
2.1.4 Compression Plate 27
2.1.5 Tissue-mimicking Phantom 30
2.2 Experiment Procedures 31
2.2.1 Measurement Methods 31
2.2.2 Signal Processor 32
2.2.3 Quality Metrics 39
Chapter 3. Results and Discussion 41
3.1 Strain-Stress Curve 41
3.2 Optimal Parameters of Algorithm in Elastography 43
3.2.1 Effect in Terms of Pulse Length 43
3.2.2 Effect in Terms of Applied Strain 44
3.2.3 Effect in Terms of Correlation Window Length 45
3.2.4 CNRe 46
3.2.5 Correlation Window Length 47
3.2.6 Differential Strain 50
3.2.7 Lateral Resolution 52
3.3 Young’s Modulus 53
3.4 Discussion 54
Chapter 4. Conclusion 58
References 59
參考文獻 [1] J. Ophir, S. K. Alam, B. S. Garra, F. Kallel, E. E. Konofagou, T. Krouskop, et al., "Elastography: imaging the elastic properties of soft tissues with ultrasound," J. Med. Ultrason., vol. 29, pp. 155-171, 2002.
[2] J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, "Elastography: a quantitative method for imaging the elasticity of biological tissues," Ultrason. Imaging, vol. 13, pp. 111-134, 1991.
[3] L. Zhai, J. Madden, W.-C. Foo, M. L. Palmeri, V. Mouraviev, T. J. Polascik, et al., "Acoustic radiation force impulse imaging of human prostates ex vivo," Ultrasound Med. Biol., vol. 36, pp. 576-588, 2010.
[4] A. Gallotti, M. D’onofrio, L. Romanini, V. Cantisani, and R. P. Mucelli, "Acoustic Radiation Force Impulse (ARFI) ultrasound imaging of solid focal liver lesions," Eur. J. Radiol., vol. 81, pp. 451-455, 2012.
[5] C. Balleyguier, S. Canale, W. B. Hassen, P. Vielh, E. Bayou, M. Mathieu, et al., "Breast elasticity: principles, technique, results: an update and overview of commercially available software," Eur. J. Radiol., vol. 82, pp. 427-434, 2013.
[6] S. Destounis and J. L. Gruttadauria, "Elasticity imaging 101," J. Radiol. Nurs., vol. 32, pp. 124-130, 2013.
[7] J.-L. Gennisson, T. Deffieux, M. Fink, and M. Tanter, "Ultrasound elastography: principles and techniques," Diagn. Interv. Radiol., vol. 94, pp. 487-495, 2013.
[8] T. Varghese, "Quasi-static ultrasound elastography," Ultrasound Clin., vol. 4, pp. 323-338, 2009.
[9] L. Gao, K. Parker, R. Lerner, and S. Levinson, "Imaging of the elastic properties of tissue—A review," Ultrasound Med. Biol., vol. 22, pp. 959-977, 1996.
[10] J. Benson and L. Fan, "Tissue Strain Analytics-A Complete Ultrasound Solution for Elastography," 2012.
[11] K. R. Nightingale, M. L. Palmeri, R. W. Nightingale, and G. E. Trahey, "On the feasibility of remote palpation using acoustic radiation force," J. Acoust. Soc. Am., vol. 110, pp. 625-634, 2001.
[12] K. Nightingale, "Acoustic radiation force impulse (ARFI) imaging: a review," Curr. Med. Imaging Rev., vol. 7, pp. 328-339, 2011.
[13] A. P. Sarvazyan, O. V. Rudenko, S. D. Swanson, J. B. Fowlkes, and S. Y. Emelianov, "Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics," Ultrasound Med. Biol., vol. 24, pp. 1419-1435, 1998.
[14] K. Nightingale, S. McAleavey, and G. Trahey, "Shear-wave generation using acoustic radiation force: in vivo and ex vivo results," Ultrasound Med. Biol., vol. 29, pp. 1715-1723, 2003.
[15] R. Muthupillai, D. Lomas, P. Rossman, J. Greenleaf, A. Manduca, and R. Ehman, "Magnetic resonance elastography by direct visualization of propagating acoustic strain waves," Science, vol. 269, pp. 1854-1857, 1995.
[16] R. Sinkus, J. Lorenzen, D. Schrader, M. Lorenzen, M. Dargatz, and D. Holz, "High-resolution tensor MR elastography for breast tumour detection," Phys. Med. Biol., vol. 45, p. 1649, 2000.
[17] T. E. Oliphant, A. Manduca, R. L. Ehman, and J. F. Greenleaf, "Complex‐valued stiffness reconstruction for magnetic resonance elastography by algebraic inversion of the differential equation," Magn. Reson. Med., vol. 45, pp. 299-310, 2001.
[18] J. Bercoff, M. Tanter, S. Chaffai, and M. Fink, "Ultrafast imaging of beamformed shear waves induced by the acoustic radiation force. Application to transient elastography," in IEEE Ultrasonics Symposium, 2002, pp. 1899-1902.
[19] L. Sandrin, M. Tanter, S. Catheline, and M. Fink, "Shear modulus imaging with 2-D transient elastography," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 49, pp. 426-435, 2002.
[20] H. Peng and D. C. Liu, "Chirp-coded pulse excitation for ultrasound elasticity imaging," in International Conference on Bioinformatics and Biomedical Engineering, 2010, pp. 1-4.
[21] J. Liu and M. F. Insana, "Coded pulse excitation for ultrasonic strain imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 52, pp. 231-240, 2005.
[22] P. Chaturvedi, M. F. Insana, and T. J. Hall, "2-D companding for noise reduction in strain imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 45, pp. 179-191, 1998.
[23] 何祚明, "高頻超音波影像系統," 國立台灣大學電機工程學研究所碩士論文, 2001.
[24] M. O'Donnell, "Coded excitation system for improving the penetration of real-time phased-array imaging systems," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 39, pp. 341-351, 1992.
[25] B. Haider, P. A. Lewin, and K. E. Thomenius, "Pulse elongation and deconvolution filtering for medical ultrasonic imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 45, pp. 98-113, 1998.
[26] R. Y. Chiao and X. Hao, "Coded excitation for diagnostic ultrasound: a system developer's perspective," in IEEE Ultrasonics Symposium, 2003, pp. 437-448.
[27] 林冠宏, "建構一套啾聲編碼激發超音波系統搭配對比劑於小動物影像," 國立成功大學生物醫學工程研究所碩士論文, 2014.
[28] H. Peng and D. C. Liu, "Enhanced ultrasound strain imaging using chirp-coded pulse excitation," Biomed. Signal Process. Control, vol. 8, pp. 130-141, 2013.
[29] W. Qiu, Y. Yu, F. K. Tsang, H. Zheng, and L. Sun, "A novel modulated excitation imaging system for microultrasound," IEEE Trans. Biomed. Eng., vol. 60, pp. 1884-1890, 2013.
[30] 鄭雲謙, "編碼波形於脈衝反相基頻影像之應用," 國立台灣大學電機工程學研究所學位論文, 2006.
[31] T. Misaridis and J. A. Jensen, "Use of modulated excitation signals in medical ultrasound. Part II: design and performance for medical imaging applications," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 52, pp. 192-207, 2005.
[32] I. Cespedes, J. Ophir, H. Ponnekanti, and N. Maklad, "Elastography: elasticity imaging using ultrasound with application to muscle and breast in vivo," Ultrason. Imaging, vol. 15, pp. 73-88, 1993.
[33] A. Skovoroda, S. Emelianov, and M. o'Donnell, "Tissue elasticity reconstruction based on ultrasonic displacement and strain images," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 42, pp. 747-765, 1995.
[34] S. Bin Hakim and K. K. Islam, "A comparative analysis of processing periods for strain images generated using 1D spline based approach and 2D thin plate smoothing spline method," in International Conference on Electronics and Vision, 2013, pp. 1-6.
[35] R. Zahiri-Azar and S. E. Salcudean, "Motion estimation in ultrasound images using time domain cross correlation with prior estimates," IEEE Trans. Biomed. Eng., vol. 53, pp. 1990-2000, 2006.
[36] I. Céspedes, Y. Huang, J. Ophir, and S. Spratt, "Methods for estimation of subsample time delays of digitized echo signals," Ultrason. Imaging, vol. 17, pp. 142-171, 1995.
[37] H. Chen, H. Shi, and T. Varghese, "Improvement of elastographic displacement estimation using a two-step cross-correlation method," Ultrasound Med. Biol., vol. 33, pp. 48-56, 2007.
[38] R. Righetti, J. Ophir, and P. Ktonas, "Axial resolution in elastography," Ultrasound Med. Biol., vol. 28, pp. 101-113, 2002.
[39] T. Varghese, M. Bilgen, and J. Ophir, "Multiresolution imaging in elastography," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 45, pp. 65-75, 1998.
[40] C. Pellot-Barakat, F. Frouin, M. F. Insana, and A. Herment, "Ultrasound elastography based on multiscale estimations of regularized displacement fields," IEEE Trans. Med. Imaging, vol. 23, pp. 153-163, 2004.
[41] W. F. Walker and G. E. Trahey, "A fundamental limit on delay estimation using partially correlated speckle signals," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 42, pp. 301-308, 1995.
[42] P. Chaturvedi, M. F. Insana, and T. J. Hall, "Testing the limitations of 2-D companding for strain imaging using phantoms," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 45, pp. 1022-1031, 1998.
[43] C. Zhang, D. Guo, H. Yin, D. C. Liu, and X. Zhou, "Ultrasound lateral displacement and lateral strain estimation using a two-step strategy," J. Chem. Pharm. Res., vol. 5, pp. 332-337, 2013.
[44] H. Rivaz, E. Boctor, P. Foroughi, R. Zellars, G. Fichtinger, and G. Hager, "Ultrasound elastography: a dynamic programming approach," IEEE Trans. Med. Imaging, vol. 27, pp. 1373-1377, 2008.
[45] G. Turin, "An introduction to matched filters," IEEE Trans. Inf. Theory, vol. 6, pp. 311-329, 1960.
[46] R. Souchon, L. Soualmi, M. Bertrand, J.-Y. Chapelon, F. Kallel, and J. Ophir, "Ultrasonic elastography using sector scan imaging and a radial compression," Ultrasonics, vol. 40, pp. 867-871, 2002.
[47] J. Luo, K. Ying, and J. Bai, "Elasticity reconstruction for ultrasound elastography using a radial compression: An inverse approach," Ultrasonics, vol. 44, pp. e195-e198, 2006.
[48] K. K. Shung, Diagnostic ultrasound: Imaging and blood flow measurements. Boca Raton, FL: CRC press, 2006.
[49] P. E. Bloomfield, W.-J. Lo, and P. A. Lewin, "Experimental study of the acoustical properties of polymers utilized to construct PVDF ultrasonic transducers and the acousto-electric properties of PVDF and P (VDF/TrFE) films," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 47, pp. 1397-1405, 2000.
[50] R. Zahiri-Azar and S. E. Salcudean, "Motion estimation in ultrasound images using time domain cross correlation with prior estimates," IEEE Trans. Biomed. Eng., vol. 53, pp. 1990-2000, 2006.
[51] T. Varghese and J. Ophir, "Enhancement of echo-signal correlation in elastography using temporal stretching," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 44, pp. 173-180, 1997.
[52] Y. Fung, Biomechanics: mechanical properties of living tissues. New York, NY: Springer, 1993.
[53] J. Liu, C. K. Abbey, and M. F. Insana, "Linear approach to axial resolution in elasticity imaging," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 51, pp. 716-725, 2004.
[54] J. Price, P. Patitucci, and Y. Fung, "Biomechanics. Mechanical Properties of Living Tissues," ed: Springer Verlag, New York, 1981.
[55] M. Yamakawa and T. Shiina, "Tissue elasticity reconstruction based on 3-dimensional finite-element model," Jpn. J. Appl. Phys., vol. 38, p. 3393, 1999.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-24起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw