進階搜尋


下載電子全文  
系統識別號 U0026-0408201419475700
論文名稱(中文) 探討表面素和鼠李醣脂於移除砂表面之吸附金屬離子的連續淋洗操作中的可能應用
論文名稱(英文) Exploring potential applications of surfactin and rhamnolipid on adsorbed metal ion removal from sand surfaces with continuous flushing operations
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 柏得
研究生(英文) Bode Haryanto
電子信箱 haryanto_bode@yahoo.com
學號 N38947018
學位類別 博士
語文別 英文
論文頁數 178頁
口試委員 指導教授-張鑑祥
共同指導教授-張嘉修
召集委員-楊毓民
口試委員-陳炳宏
口試委員-楊宏達
口試委員-周宗翰
口試委員-蔡平賜
中文關鍵字 生物界面活性劑  泡沫強化溶液淋洗  土壤復育  溶液淋洗  表面素  鼠李醣脂 
英文關鍵字 biosurfactant  foam-enhanced solution flushing  soil remediation  solution flushing  surfactin  rhamnolipid 
學科別分類
中文摘要 本研究使用連續淋洗技術探討帶負電生物界面活性劑-表面素和鼠李醣脂-移除砂表面之吸附金屬離子的能力,純度90%的表面素和62.75%的鼠李醣脂被用來移除砂表面的吸附金屬離子,並在淋洗的實驗中與常見的陰離子型界面活性劑-十二烷基硫酸鈉(SDS)-進行比較。首先,確認表面素和鼠李醣脂的表面特性,然後在不同的乾燥操作下透過吸附的程序製備受汙染的砂。第一種砂使用氮氣乾燥以生成inner-sphere作用的吸附,第二種砂則使用烘箱乾燥。這兩種砂的銅離子吸附密度分別為13.45 mg/kg and 26.78 mg/kg。
這兩種砂在表面素溶液的淋洗下,銅離子的移除效率只有2~15%,因為表面素和銅離子的接觸僅發生在砂粒間的孔隙,增加表面素的濃度能增加動態起泡能力使得移除效率增加至40%。這結果顯示在低劑量下,泡沫強化溶液淋洗法能有效改善移除效率。針對鼠李醣脂,當使用沒有泡沫的淋洗法時,提高濃度能改善金屬離子的移除效率,在24-PV流量下,1倍、 2.5倍 和 5倍臨界微胞濃度的鼠李醣脂溶液累積移除效率分別為5%、6%和12%。殘留型砂的吸附離子移除效率則可達19%、21%和23%。使用泡沫強化溶液淋洗法,inner-sphere型和殘留型砂之吸附離子的移除效率可進一步增加到25%和49%。
鼠李醣脂有很好的潛力以移除金屬離子汙染物,甚至是以inner-sphere作用吸附的離子。鼠李醣脂的物理特性使得它可用來當作界面活性劑,然而表面素移除金屬離子的能力較低。相較於表面素,SDS擁有與鼠李醣脂相似的特性。泡沫強化溶液淋洗法改善了界面活性劑的移動性,同時在較高的壓力下傳送更多的氮氣以增加生物界面活性劑分子分散和滲透入孔洞的能力,使得泡沫強化溶液淋洗法能明顯改善砂表面之吸附金屬離子的移除效率。
英文摘要 This study demonstrates the abilities of negatively charged biosurfactants, surfactin and rhamnolipid, to remove adsorbed copper ions from sand surfaces with a continuous solution flushing technique. The surfactin with purity about 90% and rhamnolipid with purity of 62.75% were applied to remove adsorbed copper ions from sand surfaces. A popular anionic surfactant, sodium dodecylsulfate (SDS), was used in the flushing experiments for the comparison purpose. The interfacial properties of surfactin and rhamnolipid were identified first. Contamination of sand was performed through adsorption processes with different drying operations. Type I sand was dried in a drying column by N2 gas, which mainly resulted in adsorption with the inner-sphere interaction. Type II sand was dried in an oven. The adsorption densities of Cu ion contaminant were 13.45 mg/kg and 26.78 mg/kg for type I and II sands, respectively.
The surfactin solution flushing approach for both types of sands, low removal efficiency of 2-15% for copper ions was detected due to the contact of surfactin with copper ions mainly occurring in the inter-particle pore regions. Increasing the surfactin concentration could increase the dynamic foaming capacity and lead to improved removal efficiency up to 40%. The results demonstrated that the foam-enhanced solution flushing approach was efficient with a low usage of surfactin. For rhamnolipid solution, when using a flushing technique without foam, the removal efficiency could be improved by increasing the concentration. The cumulative removal efficiencies were gradually increased to 5%, 6%, and 12% with 24-PV effluent of rhamnolipid solutions with concentrations of 1x, 2.5x, and 5x cmc, correspondingly. For the residual type sand, higher removal efficiencies were found with 19%, 21%, and 23 %, correspondingly. By using a foam-enhanced flushing technique with rhamnolipid, the removal efficiency for the inner-sphere type and residual type sand could be further increased to ~25% and ~49%, respectively, under the corresponding conditions.
Rhamnolipid has excellent potential to remove metal ion contaminants, even those adsorbed with the inner-sphere interaction type. The physical properties of rhamnolipid made it a good candidate for applications as a surfactant. However, surfactin has a lower ability to remove adsorbed metal ions. Compared to surfactin, SDS possesses properties similar to rhamnolipid. The foam-enhanced solution flushing technique improved the migration of surfactant molecules and delivered more N2 gas with higher pressure as it increased the ability of biosurfactant monomers to spread and penetrate into the pores. The foam-enhanced solution flushing technique thus significantly improved the removal efficiency of adsorbed metal ions on sand surfaces.
論文目次 Table of Contents

ABSTRACT I
摘 要 IV
ACKNOWLEDGMENT VI
Table of Contents VIII
List of Tables XII
List of Figures XIII

CHAPTER I Introduction 1
1.1 Background 1
1.2 Motivation and purpose 3

CHAPTER II Literature review 6
2.1 Soil contamination 6
2.2 Soil and contaminants interaction 6
2.3 Metal adsorption 9
2.4 Adsorption of heavy metal ion approach 14
2.5 Soil remediation treatment 17
2.6 Surfactants 25
2.7 Interfacial properties of surfactant 33
2.7.1 Surface tension lowering ability 34
2.7.2 Zeta potential 35
2.7.3 Foaming properties: ability, stability, capacity and density 36
2.7.4 Surfactant properties: wetting 41
2.7.5 Surfactant properties: entering and spreading coefficient 43
2.7.6 Emulsion stability and solubilization 44
2.8 Applications of biosurfactants into soil remediation 46

CHAPTER III Experimental: Materials, Equipment and Methodology 54
3.1 Surfactin production 54
3.2 Sand purification 57
3.3 Contaminated sand and drying operation 59
3.4 Sand remediation 64
3.4.1 Evaluation of soil remediation efficiency 64
3.4.2 Flushing technique and removal efficiency 66
3.5 Evaluation of physical properties 69
3.5.1 Surface tension 69
3.5.2 Dynamic foam capacity 72
3.5.3 Zeta potential 75
3.6 Analysis of the concentration of metal ion 76


CHAPTER IV
Contaminated sand, surfactin production and material analysis 81
4.1 Sand cleansing 81
4.2 Sand contaminating 86
4.3 Fermentation process 94
4.4 Summary 100

CHAPTER V
Biosurfactant surfactin: physical properties and remediation abilities 101
5.1 Physical properties of surfactin 101
5.2 Soil remediation by surfactin 107
5.2.1 Batch washing 107
5.2.2 Surfactin solution flushing approach 109
5.2.3 Foam-enhanced solution flushing approach 113
5.3 Summary 121

CHAPTER VI
Biosurfactant rhamnolipid: physical properties and remediation abilities 122
6.1 Interfacial properties of rhamnolipid 122
6.2 Soil remediation by rhamnolipid 125
6.2.1 Batch washing 125
6.2.2 Rhamnolipid solution flushing approach 127
6.2.3 Solution flushing with foam 130
6.3 Summary 135

CHAPTER VII Comparative performance of biosurfactants and a popular anionic surfactant 136
7.1 Sands with adsorbed copper ions in comparison with cadmium ion 136
7.2 Physical properties of surfactant solutions 138
7.3 Removal efficiency for metal ions 142
7.3.1 Solution flushing without foam 142
7.3.2 Solution flushing with foam 146
7.4 Summary 155

CHAPTER VIII Conclusion 156
REFERENCES 161
CURRICULUM VITAE 176
參考文獻 References

Abu-Ruwaida, A. S., I. M. Banat, D. Haditirto and A. Khamis (1991). "Nutritional requirements and growth characteristics of a biosurfactant-producing Rhodococcus bacterium." World Journal of Microbiology & Biotechnology 7: 53-61.

Abumaizar, R. J. and E. H. Smith (1999). "Heavy metal contaminants removal by soil washing." Journal of Hazardous Materials B 70: 71-86.

Alloway, B. J. (1995). Heavy Metals in Soils. Glasgow, Blackie and Son Ltd.

Apak, R. (2002). Encyclopedia of Surface and Colloid Science. New York, Dekker.

Appelo, C. A. J. and D. Postma (2005). Geochemistry, Groundwater and Pollution. Leiden, A. A. Balkema, Taylor and Francis Group.

Argun, M. E., S. Dursun, C. Ozdemir and M. Karatas (2007). "Heavy metal adsorption by modified oak sawdust: Thermodynamics and kinetics." Journal of Hazardous Materials 141: 77-85.

Ariel, L. P. (2008). Solution and interfacial characterization of rhamnolipid biosurfactant from Pseudomonas aeruginosa ATCC 9027. PhD Dissertation, the University of Arizona.

Arima, K., A. Kakinuma and G. Tamura (1968). "Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: isolation, characterization and its inhibition of fibrin clot formation." Biochem. Biophys. Res. Commun. 31: 488-494.

ASTM-Standard, (2007). Standard Test Method for Foam in Aqueous Media (Blender Test). US, American Society for Testing and Materials. D-3519-88.

ASTM-Standard (1985). Zeta potential of colloids in water and waste water. US, American Society for Testing and Materials. D 4187-82.

Atlas, R. M. (1981). "Microbial degradation of petroleum hydrocarbons: an environmental perspective." Microbiological Reviews 45: 180-209.

Awan, M. A., I. A. Qazi and I. Khalid (2003). "Removal of heavy metals through adsorption using sand." Journal of Environmental Sciences 15.(3): 413-416.

Banat, I. M. (1995). "Biosurfactants production and possible use in microbial enhance oil recovery and oil pollution remediation: a review." Bioresource Technology 51: 1-12.

Benavente, M., L. Moreno and J. Martinez (2011). "Sorption of heavy metals from gold mining wastewater using chitosan." Journal of the Taiwan Institute of Chemical Engineers 42:m976-988.

Benguella, B. and H. Benaissa (2002). "Cadmium removal from aqueous solutions by chitin: kinetic and equilibrium studies." Water Research 36: 2463-2474.

Bergeron, V., A. I. Jimenez-Laguna and C. J. Radke (1992). "Hole Formation and Sheeting in the Drainage of Thin Liquid Films." Langmuir 8: 3027-3032.

Bilke-Krause, C., T. Schörck and T. Winkler (2010). Foam behavior and foam stability of aqueous surfactant solutions. K. Application. Hamburg • Germany 23: 1-9.

Bradl, H. B. (2004). "Adsorption of heavy metal ions on soils and soils constituents." Journal of Colloid and Interface Science 277: 1-18.

Casas, C. D. L., K. G. Bishop, L.M.Bercik, M. Johnson, M. Potzler, W. P. Ela, A. E. Saez, S. G. Huling and R. G. Arnold (2006). In-Place Regeneration of Granular Activated Carbon Using Fenton’s Reagents. American Chemical Society (ACS) Symposium series 940.

Charles, W, F. (1994). Applied hydrogeology. New York. Maxwell Macmillan International.

Chen, H.-L., Y.-S. Lee, Y.-H. Wei and R.-S. Juang (2008). "Purification of surfactin in pretreated fermentation broths by adsorptive removal of impurities." Biochemical Engineering Journal 40: 452-459.

Chen, H., J. Wang, Z. Rahman, J. G. Worden, X. Liu, Q. Dai and Q. Huo (2007). "Beach sand from Cancun Mexico: a natural macro- and mesoporous material." J. Mater. Sci. 42: 6018-6026.

Chowdiah, P., B. R. Misra, J. J. Kilbane and T. D. Hayes (1998). "Foam propagation through soils for enhanced in-situ remediation." Journal of Hazardous Materials 62: 265-280.

Cooper, D. G. and B. G. Goldenberg (1987). "Surface-Active Agents from Two Bacillus Species." Applied Environmental Microbiology 53(2): 224-229.

Cooper, D. G., C. R. Macdonald, S. J. B. Duff and N. Kosaric (1981). "Enhanced Production of Surfactin from Bacillus subtilis by Continuous Product Removal and Metal Cation Additions." Applied and Environmental Microbiology 42(3): 408-412.

Dahrazma, B. and C. N. Mulligan (2007). "Investigation of the removal of heavy metals from sediments using rhamnolipid in a continuous flow configuration." Chemosphere 69: 705-711.

Dermont, G., M. Bergeron, G. Mercier and M. Richer-Lafl`eche (2008). "Soil washing for metal removal: A review of physical/chemical technologies and field applications." Journal of Hazardous Materials 152: 1-31.

Desai, J. D. and I. M. Banat (1997). "Microbial Production of Surfactants and Their Commercial Potential." Microbiology and Molecular Biology Reviews 61(1): 47-64.

Diallo, M. S., L. M. Abriola and W. J. J. Weber (1994). "Solubilization of Nonaqueous Phase Liquid Hydrocarbons in Micellar Solutions of Dodecyl Alcohol Ethoxylates." Environ. Sci. Technol. 28(11): 1829-1837.

Drever, J. I. (1997). The Geochemistry of Natural Waters: Surface and Groundwater Environments. Upper Saddle River, NJ, Prentice-Hall.

Durand, M. (2010). “Statistical mechanics of two-dimensional foams.” Europhys. Lett, 76(4): 683

Dzombak, D. A. and F. M. M. Morel (1990). Surface Complexation Modeling: Hydrous Ferric Oxide. New York, Wiley.

Edwards, D. A., R. G. Luthy and Z. Liu (1991). "Solubilization of Polycyclic Aromatic Hydrocarbons in Micellar Nonionic Surfactant Solutions." Environ. Sci. Technol. 25: 127-133.

Ehsan, S., S. O. Prasher and W. D. Marshall (2006). "A washing procedure to mobilize mixed contaminants from soil. II. Heavy metals." Journal of Environmental Quality 35: 2084-2091.

Farzad, E. (2000). Foam-Surfactant Technology in Soi1 Remediation. Degree of Master of Applied Science, Concordia University.

Fonseca, B., H. Figueiredo, J. Rodrigues, A. Queiroz and T. Tavares (2011). "Mobility of Cr, Pb, Cd, Cu and Zn in a loamy sand soil: A comparative study." Geoderma 164: 232-237.

Gannon, O. K., P. Bibring, K. Raney, J. A. Ward and D. J. Wilson (1989). "Soil clean up by in-situ surfactant flushing. III. Laboratory results." Separation Science and Technology 24: 1073-1904.

Georgiou, G., S. Lin and M. M. Sharma (1992). "Surface active compounds from microorganisms." Biotechnology Letters 10: 60-65.

Goldberg, S. and C. T. Johnston (2001). "Mechanisms of Arsenic Adsorption on Amorphous Oxides Evaluated Using Macroscopic Measurements, Vibrational Spectroscopy, and Surface Complexation Modeling." Journal of Colloid and Interface Science 234: 204-216.

Gosselin, A., D. Blackburn and M. Bergeron (1999). Assessment Protocol of the Applicability of Ore-Processing Technology to Treat Contaminated Soils, Sediments and Sludges, prepared for Eco-Technology Innovation Section Technology Development and Demonstration Program. Canada, Environment Canada.

Guerra-Santos, L., O. Kappeli and A. Fietcher (1984). "Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source." Applied and Environmental Microbiology 48: 301-305.

Guillerme, C., W. Loisel, D. Bertrand and Y. Popineau (1993). "Study of Foam Stability by Video Image Analysis: Relationship with the Quantity of Liquid in the Foams." J. Texture Stud. 24: 287-302.

Haferburg, D., R. Hommel, R. Claus and H. Kleber (1986). "Extracellular microbial lipids as biosurfactants." Advances in Biochemical Engineering/Biotechnology 33: 53-93.

Halling, P. J. (1981). "Protein-stabilized foams and emulsions." Critical Reviews in Food Science and Nutrition 15: 155.

Han, R., W. Zou, Z. Zhang, J. Shi and J. Yang (2006). "Removal of copper (II) and lead (II) from aqueous solution by manganese oxide coated sand I. Characterization and kinetic study." Journal of Hazardous Materials B 137: 384-395.

Harkins, W. D. (1941). "A general thermodynamic theory of the spreading of liquids to form duplex films and of liquids or solids to form multilayers." The Journal of Physical Chemistry 9: 552.

Haryanto, B., J.-S. Chang and C.-H. Chang (2011). An investigation of the removal efficiency of porous sand metal-ion contaminant by biosurfactant with flushing packed-column technique. Annual Indonesian Scholars Conference in Taiwan, Asia University, Taichung, Taiwan R.O.C, AISC.

Heerklotz, H. and J. Seelig (2001). "Detergent-Like Action of the Antibiotic Peptide Surfactin on Lipid Membranes." Biophysical Journal 81: 1547-1554.

Herman, D. C., J. F. Artiola and R. M. Miller (1995). "Removal of Cadmium, Lead, and Zinc from Soil by a Rhamnolipid Biosurfactant" Environ. Sci. Technol. 29: 2280-2285.

Huang, C.-W. and C.-H. Chang (2000). "A laboratory study on foam-enhanced surfactant solution flooding in removing n-pentadecane from contaminated columns." Colloids and Surfaces A: Physicochemical and Engineering Aspects 173: 171-179.

Hutzler, S., D. Lösch, E. Carey, D. Weaire, M. Hloucha and C. Stubenrauch (2011). "Evaluation of a steady-state test of foam stability." Philosophical Magazine 91(4): 537-552.

Ishigami, Y., M. Osman, H. Nakahara, Y. Sano, R. Ishiguro and M. Matsumoto (1995). "Significance of r-sheet formation for micellization and surface adsorption of surfactin." Colloids and Surfaces B: Biointerfaces 4: 341-348.

Ivankovic, T., J. Hrenovic and I. Gudelj (2009). "Toxicity of Commercial Surfactants to Phosphate-Accumulating Bacterium." Acta. Chim. Slov. 56: 1003-1009.

Jeong, S.-W., M. Y. Corapcioglu and S. E. Roosevelt (2000). "Micromodel Study of Surfactant Foam Remediation of Residual Trichloroethylene." Environ. Sci. Technol. 34(16): 3456-3461.

Kaneko, K. (1994). "Review: Determination of pore size and pore size distribution 1. Adsorbents and catalysts." Journal of Membrane Science 96: 59-89.

Kim, J.-A., G. Dodbiba, Y. Tanimura, K. Mitsuhashi, N. Fukuda, K. Okaya, S. Matsuo and T. Fujita (2011). "Leaching of Rare-Earth Elements and Their Adsorption by Using Blue-Green Algae." Materials Transactions 52(9): 1799-1806.

Kile, D. E. and C. T. Chiou (1989). "Water Solubility Enhancements of DDT and Trichlorobenzene by Some Surfactants Below and Above the Critical Micelle Concentration." Environ. Sci. Technol. 23: 832-838.

Koretsky, C. (2000). "Review: The significance of surface complexation reactions in hydrologic systems: a geochemist’s perspective." Journal of Hydrology 230: 127-171.

Kralchevsky, P. A., A. D. Nikolov, D. T. Wasan and I. B. Ivanov (1990). "Formation and expansion of dark spots in stratifying foam films." Langmuir 6: 1180-1189.

Kurniawan, T. A., G. Y. S. Chan, W.-H. Lo and S. Babel (2006). "Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals." Science of the Total Environment 366: 409-426.

Lai, C. H., S. L. Lo and H. L. Chian (2000). "Adsorption/desorption properties of copper ions on the surface of iron-coated sand using BET and EDAX analyses." Chemosphere 41: 1249-1255.

Lang, S. and F. Wagner (1987). Structure and properties of biosurfactants. Biosurfactants and biotechnology. C. W. Kosaric N, Gray NCC. New York, Marcel Dekker. 25: 21-47

Lorenceau, E., Y. Y. C. Sang, R. Höhler and S. Cohen-Addad (2006). "A high rate flow-focusing foam generator." Phys. Fluids 18: 097-103.

Ma, L., R. Xu and J. Jiang (2010). "Adsorption and desorption of Cu (II) and Pb (II) in paddy soils cultivated for various years in the subtropical China." Journal of Environmental Sciences 22(5): 689-695.

Maget-Dana, R and M Ptak (1992). "Interfacial Properties of Surfactin." Journal of Colloid and Interface Science 153(1): 285-291.

Majone, M., M. P. Papini and E. Rolle (1996). "Modeling lead adsorption on clays by models with and without electrostatic terms." Journal of Colloid and Interface Science 179(2): 412-425.

Malhotra, A. and J. N. Coupland (2004). "The effect of surfactants on the solubility, zeta potential, and viscosity of soy protein isolates." Food Hydrocolloids 18: 101-108.

Malvern (2009). Zetasizer Nano user manual. MANO317. M. I. Ltd. Worcestershire. UK, Malvern Instruments Ltd. MAKO499-02.

McCutcheon, J. W. (1950). Synthetic Detergents. New York, MacNair-Dorland Co.

Menger, F. and C. Littau (1991a). "Gemini-surfactants: synthesis properties." Journal of the American Chemical Society 113: 1451-1452.

Menger, F. and C. Littau (1991b). "Gemini surfactants: a new class of self-assembling molecules." Journal of the American Chemical Society 115: 10083-10090.

Mercier, G., J. Duchesne and D. Blackburn (2001). "Prediction of the efficiency of physical methods to remove metals from contaminated soils." Journal of Environmental Engineering 127(4): 348-358.

Mirsal, I. A. (2004). Soil Pollution. Berlin Heidelberg, Springer-Verlag

Morikawa, M., Y. Hirata and T. Imanaka (2000). "A study on the structure function relationship of lipopeptide biosurfactants." Biochimica et Biophysica Acta 1488: 211-218.

Mulligan, C. N. (2005). "Environmental applications for biosurfactants." Environmental Pollution 133: 183-198.

Mulligan, C. N. (2009). "Recent advances in the environmental applications of biosurfactants." Current Opinion in Colloid & Interface Science 14: 372-378.

Mulligan, C. N. and F. Eftekhari (2003). "Remediation with surfactant foam of PCP-contaminated soil." Engineering Geology 70: 269-279.

Mulligan, C. N. and B. F. Gibbs (2004). Types, production and applications of biosurfactants. Proceedings-Indian National Science Academy

Mulligan, C. N. and S. Wang (2006). "Remediation of a heavy metal-contaminated soil by a rhamnolipid foam." Engineering Geology 85: 75–81.

Mulligan, C. N., R. N. Yong and B. F. Gibbs (1999a). "On the use of biosurfactants for the removal of heavy metals from oil-contaminated soil." Process Safety Progress 18(1): 50-54.

Mulligan, C. N., R. N. Yong and B. F. Gibbs (1999b). "Removal of Heavy Metals from Contaminated Soil and Sediments Using the Biosurfactant Surfactin." Journal of Soil Contamination 8(2): 231-254.

Mulligan, C. N., R. N. Yong, B. F. Gibbs, S. James and H. P. J. Bennett (1999c). "Metal Removal from Contaminated Soil and Sediments by the Biosurfactant Surfactin." Environ. Sci. Technol. 33: 3812-3820.

Mulligan, C. N., R. N. Yong and B. F. Gibbs (2001a). "Surfactant-enhanced remediation of contaminated soil: a review." Engineering Geology 60 371-380.

Mulligan, C. N., R. N. Yong and B. F. Gibbs (2001b). "Heavy metal removal from sediments by biosurfactants." Journal of Hazardous Materials 85: 111-125.

Mureseanua, M., N. Cioatera, I. Trandafir, I. Georgescu, F. Fajula and A. Galarneau (2011). "Selective Cu2+ adsorption and recovery from contaminated water using mesoporous hybrid silica bio-adsorbents." Microporous and Mesoporous Materials 146: 141-150.

Murray, B. M. (1994). Environmental Chemistry of Soils. New York USA, Oxford University Press.

National-VET-Content. (2013). "Atomic Absorption Spectrometry - Principles and Analysis." Flame Atomiser, from https://nationalvetcontent.edu.au/alfresco/d/d/workspace/SpacesStore/1bdfdbc3-2875-4457-b872-40aa14d6b193/508/PMLTEST506/42step01.htm.

Navarro, A. and F. Martínez (2010). "The use of soil-flushing to remediate metal contamination in a smelting slag dumping area: Column and pilot-scale experiments." Engineering Geology 115: 16-27.

Okazaki, M., N. E. Polyakov and K. Toriyama (1995). "Dynamic Properties of SDS Micelle Detected with "Radical-Pair-Probe" Using the Pulse-Mode Product-Yield-Detected ESR Technique." J. Phys. Chem. 99: 6452-6456.

Olkowska, E., Z. Polkowska and J. Namiesnik (2011). "Analytics of Surfactants in the Environment: Problems and Challenges." Chemical Reviews 111: 5667-5700.

Pandey, S., R. P. Bagwe and D. O. Shah (2003). "Effect of counterions on surface and foaming properties of dodecyl sulfate." Journal of Colloid and Interface Science 267: 160-166.

Panuccio, M. R., A. Sorgona, A. Sorgona, M. Rizzo and G. Cacco (2009). "Cadmium adsorption on vermiculite, zeolite and pumice: Batch experimental studies." Journal of Environmental Management 90: 364-374.

Papini, M. P. and M. Majone (2000). Encyclopedia of Surface and Colloid Science. New York, Dekker.

Paria, S. (2008). "Surfactant-enhanced remediation of organic contaminated soil and water." Advances in Colloid and Interface Science 138: 24-58.

Parra, J., J. Guinea, M. R. Manresa, M. E. Mercade, F. Comelles and M. P. Bosch (1989). "Chemical characterization and physico chemical behaviour of biosurfactants." J Am Oil Chem. Soc. 66: 141-145

Pehlivan, E. and G. Arslan (2007). "Removal of metal ions using lignite in aqueous solution low cost biosorbents." Fuel Processing Technology 88: 99-106.

Pennell, K. D., L. M. Abrlola and W. J. J. Weber (1993). "Surfactant-Enhanced Solubilization of Residual Dodecane in Soil Columns. 1. Experimental Investigation." Environ. Sci. Technol. 27: 2332-2340.

Perkinelmer (1996). Analytical Methods for Atomic Absorption Spectroscopy. T. P. Inc. United States of America.

Peypoux, F., J. M. Bonmatin and J. Wallach (1999). "Recent trends in the biochemistry of surfactin." Appl. Microbiol. Biotechnol. 51: 553-563.

Pugh, R. J. (1996). "Foaming, foam films, antifoaming and defoaming." Advances in Colloid and Interface Science 64: 67-142.

Ramkrishna, S and Swaminathan, T (2005). "Characterization of concentration and purification parameters and operating conditions for the small-scale recovery of surfactin." Process Biochem. 40: 2953-2958.

Raymundo, A., J. Empis and I. Sousa (1998). "Method to Evaluate Foaming Performance." Journal of Food Engineering 36: 445-452

Razafindralambo, H., M. Paquot, A. Baniel, Y. Popineau, C. Hbid, P. Jacques and P. Thonart (1996). "Foaming Properties of Surfactin, a Lipopeptide Biosurfactant from Bacillus subtilis." JAOCS 73(1): 149-151.

Razafindralambo, H., Y. Popineau, M. Deleu, C. Hbid, P. Jacques, P. Thonart and M. Paquot (1998). "Foaming Properties of Lipopeptides Produced by Bacillus subtilis: Effect of Lipid and Peptide Structural Attributes." Journal of Agricultural and Food Chemistry 46: 911-916.

Robinson J.V. and W. W. Woods (1948). "A method of selecting foam inhibitors." Journal of the Society of Chemical Industry 67: 361.

Rosen, M. J. (2004). Surfactants and interfacial phenomena. New Jersey, John Wiley & Sons, Inc.

Rosen, M. J. and J. T. Kunjappu. (2012). Surfactants and Interfacial Phenomena. New York, John Wiley and Sons, Inc.

Rosenberg, E. and E. Z. Ron. (1999). "High- and low-molecular-mass microbial surfactants." Appl. Microbiol. Biotechnol. 52: 154-162.

Ross, J. and G. D. Miles (1941). "An apparatus for comparison of foaming properties of soaps and detergents." Oil and Soap 18: 99-102.

Rothmel, R. K., R. W. Peters, E. S. Martin and M. F. Deflaun (1998). "Surfactant Foam/Bioaugmentation Technology for In Situ Treatment of TCE-DNAPLs." Environ. Sci. Technol. 32: 1667-1675.

Schramm, L. L. and J. J. Novosad (1990). "Micro-visualization of foam interactions with a crude oil." Colloids and Surfaces A: Physicochem. Eng. Aspects 46: 21-43.

Siegel, F. R. (2002). Environmental geochemistry of potentially toxic metals. Heidelberg Berlin, Springer-Verlag.

Sparks, D. L. (2003). Environmental Soil Chemistry. San Diego, Academic Press.

Sposito, G. (1984). The Surface Chemistry of Soils. New York, Oxford Univ. Press.

Stokes, R. J. and D. F. Evans (1997). Fundamentals of interfacial engineering. New York, Wiley-VCH. Inc.

Stumm, W. and J. J. Morgan (1996). Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. New York, Wiley.

Strawn, D. G. and D. L. Sparks (1999). "The Use of XAFS to Distinguish between Inner- and Outer-Sphere Lead Adsorption Complexes on Montmorillonite." Journal of Colloid and Interface Science 216(2): 257-269.

Taqvi, S. I. H., S. M. Hasany and M. I. Bhanger (2007). "Sorption profile of Cd(II) ions onto beach sand from aqueous solutions." Journal of Hazardous Materials 141: 37-44.

Thimon, L., F. Peypoux and G. Michel (1992). "Interactions of surfactin, a biosurfactant from Bacillus subtilis, with inorganic cations." Biotechnology letters 14(8): 713-718.

Thomas, J. K. (1977). "Effect of Structure and Charge on Radiation-Induced Reactions in Micellar Systems." Accounts of Chemical Research 10: 133-138.

Townsend, W. (1973). An introduction to the scientific study of the soil. New York, St. Martin's Press.

Ucun, H., O. Aksakal and E. Yildiz (2009). "Copper (II) and zinc (II) biosorption on Pinus sylvestris L." Journal of Hazardous Materials 161 1040-1045.

Ucun, H., Y. K. Bayhan, Y. Kaya, A. Cakici and O. F. Algur (2002). "Biosorption of chromium (VI) from aqueous solution by cone biomass of Pinus sylvestris." Bioresource Technology 85: 155-158.

Urum, K. and T. Pekdemir (2004). "Evaluation of biosurfactants for crude oil contaminated soil washing." Chemosphere 57: 1139-1150.

USEPA ( 2003). Treatment technologies for site cleanup. Washington. March.

Vikingstad, A. K., M. G. Aarra and A. Skauge (2006). "Effect of surfactant structure on foam–oil interactions Comparing fluorinated surfactant and alpha olefin sulfonate in static foam tests." Colloids and Surfaces A: Physicochem. Eng. Aspects 279: 105-112.

Wahba, M. M. and A. M. Zaghloul (2007). "Adsorption Characteristics of Some Heavy Metals by Some Soil Minerals." Journal of Applied Sciences Research 3(6): 421-426.

Wang, S. and C. N. Mulligan (2004a). "An evaluation of surfactant foam technology in remediation of contaminated soil." Chemosphere 57: 1079-1089.

Wang, S. and C. N. Mulligan (2004b). "Rhamnolipid foam-enhanced remediation of cadmium and nickel contaminated soil." Water, Air, and Soil Pollution 157: 315-330.

Wei, Y.-H., C.-L. Chou and J.-S. Chang (2005). "Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater." Biochemical Engineering Journal 27: 146-154.

Wei, Y. H. and I. M. Chu (1998). "Enhancement of surfactin production in iron-enriched media by Bacillus subtilis ATCC 21332." Enzyme and Microbial Technology 22: 724-728.

Wei, Y. H. and I. M. Chu (2002). "Mn2+ improves surfactin production by Bacillus subtilis." Biotechnology Letters 24: 479-482.

Wei, Y. H., L. F. Wang and J. S. Chang (2004). "Optimizing iron supplement strategies for enhanced surfactin production with Bacillus subtilis." Biotechnology Progress 20: 979-983.

Whang, L.-M., P.-W. G. Liu, C.-C. Ma and S.-S. Cheng (2008). "Application of biosurfactants, rhamnolipid, and surfactin, for enhanced biodegradation of diesel-contaminated water and soil." Journal of Hazardous Materials 151: 155-163.

Wicaksono, G. A. (2009). Potential of applying surfactin in foam-enhanced solution flushing technique for soil remediation. Master Thesis, NCKU.

Yan, Y. and H. Jacob (1993). "Masliyah solids-stabilized oil-in-water emulsions: scavenging of emulsion droplets by fresh oil addition." Colloids and Surfaces A: Physicochemical and Engineering Aspects, 75: 123-132.

Yeh, K.-L. (2007). Fermentative production of a glycolipid biosurfactant - rhamnolipid. Master Thesis, NCKU.

Yong, R., A. Mohamed and B. Warkentin (1992). Principles of contaminant transport in soils. Amsterdam, The Netherlands, Elsevier.

Zhang, Z. F., V. L. Freedman and L. Zhong (2009). Foam Transport in Porous Media –A Review. Richland, Washington 99352, Pacific Northwest National Laboratory: 1-76.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2014-08-11起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2014-08-11起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw