進階搜尋


下載電子全文  
系統識別號 U0026-0408201418092400
論文名稱(中文) 脈衝雷射蒸鍍Cu2ZnSnSe4之薄膜及其性能研究
論文名稱(英文) Growth of Cu2ZnSnSe4 thin films by pulsed laser deposition and characterization of the obtained films
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 魏鴻企
研究生(英文) Hung-Chi Wei
學號 N56011386
學位類別 碩士
語文別 中文
論文頁數 100頁
口試委員 指導教授-齊孝定
口試委員-陳貞夙
口試委員-陳引幹
口試委員-黃榮俊
中文關鍵字 銅鋅錫硒  脈衝雷射沉積 
英文關鍵字 PLD  CZTSe 
學科別分類
中文摘要 本研究利用固相燒結法製作Cu2ZnSnSe4之粉體,並壓製成靶材(CZTSe),利用脈衝雷射沉積法(plused laser deposition, PLD)製備CZTSe薄膜,製備過程分為室溫成長和升溫成長兩種,室溫成長CZTSe薄膜並進行退火處理,使用低掠角X光繞射(GIXRD)、掃描電子顯微鏡(SEM) 、X光能量譜(EDS)等分析方法,探討工作距離、赫茲數、能量密度和退火後對薄膜成分、結構及其光電性質的影響,並將部份參數延用於升溫成長CZTSe薄膜。升溫成長CZTSe薄膜,再使用Hall效應以及吸收光譜等分析方法,探討溫度變化、真空度變化對薄膜成分、結構及其光電性質的影響。由分析結果得知,利用純元素粉以300度進行固相燒結,可得CZTSe純相自製靶材。工作距離變化影響薄膜成相和厚度,而赫茲數變化僅改變膜厚。雷射能量密度及真空度變化影響Cu之含量,基板溫度變化則影響結晶性且可薄膜因應力而剝離。藉由多種成長參數變化,以及調整靶材成份比例,可以找出最適合成長CZTSe薄膜的條件,即在工作距離6 cm、真空10-3 torr 、5 Hz 、能量密度1.1 J/cm2 和基板溫度300度下,CZTSe擁有純相且(112)優選取向,薄膜能隙值則為1.34 eV,載子濃度為1.21x1020 cm-3,屬P型半導體。
英文摘要 Cu2ZnSnSe4 (CZTSe) targets were synthesized from pure elements by the solid-state reaction method. The targets were used for the deposition of CZTSe thin films using pulsed laser deposition (PLD) technique. Two growth processes were attempted. One was to deposit the films at room temperature (RT), which were then subjected to a post-deposition annealing at high temperatures. The other process was to grow the films of the desired phase directly on heated substrates (HS). During the RT deposition the target-to-substrate distance (TTSD), pulse frequency and laser fluence were varied. The grown films were characterized by a range of techniques, including grazing incident X-ray diffraction (GIXRD), energy dispersive X-ray spectroscopy, and scanning electron microscopy. The influences of above growth parameters as well as the annealing temperature on the composition, phase and microstructure of the films were studied. Some of the optimized parameters were then adopted in the HS growth. In addition to the compositional and structural analyses, the electrical and optical properties of the HS films were also studied by the Hall-effect and optical absorption measurements. The effects of substrate temperature and chamber vacuum on the HS film properties were discussed. The results showed that CZTSe targets of a pure phase could be obtained by sintering at 300 oC for 12 hr. In terms of the film growth, it was found that TTSD affected both the phase and thickness of the films, while laser frequency only changed film thickness. Varying laser fluence or chamber vacuum had the effect to change Cu content in the deposited films. Substrate temperature determined the crystallinity of the films. A suitable temperature could also prevent the films from the strain-induced peeling off. The optimal growth parameters were summarized as follows: TTSD 6 cm, vacuum 10-3 Torr, pulse frequency 5 Hz, laser fluence 1.1 J/cm2, and substrate temperature 300 oC. Under such a condition, films of a pure phase were obtained, which showed sharp GIXRD peaks with a preferred (112) orientation. They had a bandgap of 1.34 eV and P-type carrier concentration of 1.21x1020 cm-3.
論文目次 摘要 I
Extended Abstract II
誌謝 VIII
目錄 IX
表目錄 XI
圖目錄 XIII
第一章 緒論 1
1-1前言 1
1-2研究動機與目的 4
第二章 文獻回顧 7
2-1薄膜太陽能電池簡介 7
2-2薄膜太陽能電池元件 11
2-3脈衝雷射沉積法簡介 13
第三章 實驗方法與分析儀器 22
3-1 實驗方法與步驟 22
3-2使用藥品 25
3-3使用儀器與分析設備 26
3-4使用儀器基本原理 28
第四章 實驗結果與討論 36
4-1 CZTSe靶材製作 36
4-2 室溫PLD鍍CZTSe薄膜研究 41
4-3 升溫PLD鍍CZTSe薄膜研究 70
第五章 結論 93
參考文獻 95
參考文獻 [1] M.A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D.L. Young, B. Egaas, R. Noufi, SHORT COMMUNICATION: ACCELERATED PUBLICATION: Diode characteristics in state-of-the-art ZnO/CdS/Cu (In1-xGax)Se2 solar cells, Progress in Photovoltaics: Research and Applications, 13 (2005) 209-216.
[2] W.N. Shafarman, R. Klenk, B.E. McCandless, Device and material characterization of Cu(InGa)Se2 solar cells with increasing band gap, Journal of Applied Physics, 79 (1996) 7324-7328.
[3] U. Rau, M. Schmidt, A. Jasenek, G. Hanna, H.W. Schock, Electrical characterization of Cu(In,Ga)Se2 thin-film solar cells and the role of defects for the device performance, Solar Energy Materials and Solar Cells, 67 (2001) 137-143.
[4] P.R. Willmott, J.R. Huber, Pulsed laser vaporization and deposition, Reviews of Modern Physics, 72 (2000) 315-328.
[5] B.M. Kayes, H.A. Atwater, N.S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells, Journal of Applied Physics, 97 (2005) -.
[6] I. Repins, M.A. Contreras, B. Egaas, C. DeHart, J. Scharf, C.L. Perkins, B. To, R. Noufi, 19•9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81•2% fill factor, Progress in Photovoltaics: Research and Applications, 16 (2008) 235-239.
[7] P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, M. Powalla, New world record efficiency for Cu(In,Ga)Se2 thin-film solar cells beyond 20%, Progress in Photovoltaics: Research and Applications, 19 (2011) 894-897.
[8] H. Matsushita, T. Ochiai, A. Katsui, Preparation and characterization of CuZnGeSe thin films by selenization method using the Cu–Zn–Ge evaporated layer precursors, Journal of Crystal Growth, 275 (2005) e995-e999.
[9] I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, B. To, J. Mann, W.-C. Hsu, A. Goodrich, R. Noufi, Co-evaporated Cu2ZnSnSe4 films and devices, Solar Energy Materials and Solar Cells, 101 (2012) 154-159.
[10] T. Tanaka, D. Kawasaki, M. Nishio, Q. Guo, H. Ogawa, Fabrication of Cu2ZnSnS4 thin films by co-evaporation, physica status solidi (c), 3 (2006) 2844-2847.
[11] S. Jung, S. Ahn, J.H. Yun, J. Gwak, D. Kim, K. Yoon, Effects of Ga contents on properties of CIGS thin films and solar cells fabricated by co-evaporation technique, Current Applied Physics, 10 (2010) 990-996.
[12] J.H. Shi, Z.Q. Li, D.W. Zhang, Q.Q. Liu, Z. Sun, S.M. Huang, Fabrication of Cu(In, Ga)Se2 thin films by sputtering from a single quaternary chalcogenide target, Progress in Photovoltaics: Research and Applications, 19 (2011) 160-164.
[13] S. Hong, C. Kim, S.-C. Park, I. Rhee, D.-H. Kim, J.-K. Kang, Characteristics of Cu2ZnSnSe4 Film Formed by Using Co-sputtered Precursors and Selenization, Molecular Crystals and Liquid Crystals, 565 (2012) 147-152.
[14] J.-S. Seol, S.-Y. Lee, J.-C. Lee, H.-D. Nam, K.-H. Kim, Electrical and optical properties of Cu2ZnSnS4 thin films prepared by rf magnetron sputtering process, Solar Energy Materials and Solar Cells, 75 (2003) 155-162.
[15] J. Lazewski, K. Parlinski, B. Hennion, R. Fouret, First-principles calculations of the lattice dynamics of CuInSe2, Journal of Physics: Condensed Matter, 11 (1999) 9665.
[16] T. Dullweber, G. Hanna, W. Shams-Kolahi, A. Schwartzlander, M. Contreras, R. Noufi, H. Schock, Study of the effect of gallium grading in Cu (In, Ga) Se< sub> 2, Thin Solid Films, 361 (2000) 478-481.
[17] C. Persson, Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4, Journal of Applied Physics, 107 (2010) -.
[18] I.D. Olekseyuk, L.D. Gulay, I.V. Dydchak, L.V. Piskach, O.V. Parasyuk, O.V. Marchuk, Single crystal preparation and crystal structure of the Cu2Zn/Cd,Hg/SnSe4 compounds, Journal of Alloys and Compounds, 340 (2002) 141-145.
[19] K. Ito, T. Ito, Nakazawa, Electrical and Optical Properties of Stannite-Type Quaternary Semiconductor Thin Films, Japanese journal of applied physics, 27 (1988) 2094-2097.
[20] R. Kimura, T. Nakada, P. Fons, A. Yamada, S. Niki, T. Matsuzawa, K. Takahashi, A. Kunioka, Photoluminescence properties of sodium incorporation in CuInSe< sub> 2 and CuIn< sub> 3 Se< sub> 5 thin films, Solar energy materials and solar cells, 67 (2001) 289-295.
[21] T.J. Vink, M.A.J. Somers, J.L.C. Daams, A.G. Dirks, Stress, strain, and microstructure of sputter‐deposited Mo thin films, Journal of Applied Physics, 70 (1991) 4301-4308.
[22] X. He, H. Shen, First-principles calculation of some mechanical and thermo-physical properties of kesterite-type Cu2ZnSnSe4, Physica Scripta, 85 (2012) 035302.
[23] U. Rau, H.-W. Schock, Electronic properties of Cu (In, Ga) Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges, Applied Physics A, 69 (1999) 131-147.
[24] R. Schaffler, H. Schock, High mobility ZnO: Al thin films grown by reactive DC magnetron sputtering, in: Photovoltaic Specialists Conference, 1993., Conference Record of the Twenty Third IEEE, IEEE, 1993, pp. 1026-1030.
[25] G. Radhakrishnan, P.M. Adams, D.M. Speckman, Low temperature pulsed laser deposition of titanium carbide on bearing steels, Thin Solid Films, 358 (2000) 131-138.
[26] R.D. Vispute, H. Wu, J. Narayan, High quality epitaxial aluminum nitride layers on sapphire by pulsed laser deposition, Applied Physics Letters, 67 (1995) 1549-1551.
[27] Y. Suda, H. Kawasaki, T. Ueda, T. Ohshima, Preparation of nitrogen-doped titanium oxide thin film using a PLD method as parameters of target material and nitrogen concentration ratio in nitrogen/oxygen gas mixture, Thin Solid Films, 475 (2005) 337-341.
[28] Y. Kwi Young, R. Dan, K. Takeshi, N. Minoru, O. Masanori, Giant Ferroelectric Polarization Beyond 150 µC/cm2 in BiFeO3 Thin Film, Japanese Journal of Applied Physics, 43 (2004) L647.
[29] M. Womack, M. Vendan, P. Molian, Femtosecond pulsed laser ablation and deposition of thin films of polytetrafluoroethylene, Applied Surface Science, 221 (2004) 99-109.
[30] Y.A. Jee, M. Li, B. Ma, V.A. Maroni, B.L. Fisher, U. Balachandran, Comparison of texture development and superconducting properties of YBCO thin films prepared by TFA and PLD processes, Physica C: Superconductivity, 356 (2001) 297-303.
[31] J. Li, T. Ma, M. Wei, W. Liu, G. Jiang, C. Zhu, The Cu2ZnSnSe4 thin films solar cells synthesized by electrodeposition route, Applied Surface Science, 258 (2012) 6261-6265.
[32] R.A. Wibowo, W.S. Kim, E.S. Lee, B. Munir, K.H. Kim, Single step preparation of quaternary thin films by RF magnetron sputtering from binary chalcogenide targets, Journal of Physics and Chemistry of Solids, 68 (2007) 1908-1913.
[33] S. Jung, J. Gwak, J.H. Yun, S. Ahn, D. Nam, H. Cheong, S. Ahn, A. Cho, K. Shin, K. Yoon, Cu2ZnSnSe4 thin film solar cells based on a single-step co-evaporation process, Thin Solid Films, 535 (2013) 52-56.
[34] G.M. Ilari, C.M. Fella, C. Ziegler, A.R. Uhl, Y.E. Romanyuk, A.N. Tiwari, solar cell absorbers spin-coated from amine-containing ether solutions, Solar Energy Materials and Solar Cells, 104 (2012) 125-130.
[35] R. Adhi Wibowo, E. Soo Lee, B. Munir, K. Ho Kim, Pulsed laser deposition of quaternary Cu2ZnSnSe4 thin films, physica status solidi (a), 204 (2007) 3373-3379.
[36] D. Geohegan, D. Chrisey, G. Hubler, Pulsed laser deposition of thin films, eds DB Chrisey, GK Hubler, John Wiley & Sons, Inc, (1994) 148.
[37] L.-C. Xu, R.-Z. Wang, L.-M. Liu, Y.-P. Chen, X.-L. Wei, H. Yan, W.-M. Lau, Wurtzite-type CuInSe2 for high-performance solar cell absorber: ab initio exploration of the new phase structure, Journal of Materials Chemistry, 22 (2012) 21662-21666.
[38] M. Jiang, X. Yan, Cu2ZnSnS4 Thin Film Solar Cells: Present Status and Future Prospects, Solar Cells-Research and Application Perspectives Prof. Arturo Morales-Acevedo (ed) ISBN, (2013) 978-953.
[39] S. Nakamura, T. Maeda, T. Wada, Electronic structure of stannite-type Cu2ZnSnSe4 by first principles calculations, physica status solidi (c), 6 (2009) 1261-1265.
[40] S. Schorr, Structural aspects of adamantine like multinary chalcogenides, Thin Solid Films, 515 (2007) 5985-5991.
[41] A.A. Voevodin, M.S. Donley, Preparation of amorphous diamond-like carbon by pulsed laser deposition: a critical review, Surface and Coatings Technology, 82 (1996) 199-213.
[42] N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials, OUP Oxford, 2012.
[43] 陳力俊, 材料電子顯微鏡學, 行政院國家科學委員會精密儀器發展中心發行, 2003.
[44] L.D. Hanke, Handbook of analytical methods for materials, Plymoth: Materials evaluation and engineering Inc, (2001).
[45] R. Teghil, L. D'Alessio, A. De Bonis, A. Galasso, P. Villani, A. Santagata, Femtosecond pulsed laser ablation and deposition of titanium carbide, Thin Solid Films, 515 (2006) 1411-1418.
[46] M. Sanz, M. Walczak, R. de Nalda, M. Oujja, J.F. Marco, J. Rodriguez, J.G. Izquierdo, L. Bañares, M. Castillejo, Femtosecond pulsed laser deposition of nanostructured TiO2 films, Applied Surface Science, 255 (2009) 5206-5210.
[47] H. Katagiri, K. Jimbo, W.S. Maw, K. Oishi, M. Yamazaki, H. Araki, A. Takeuchi, Development of CZTS-based thin film solar cells, Thin Solid Films, 517 (2009) 2455-2460.
[48] M. Edoff, S. Schleussner, E. Wallin, O. Lundberg, Technological and economical aspects on the influence of reduced Cu(In,Ga)Se2 thickness and Ga grading for co-evaporated Cu(In,Ga)Se2 modules, Thin Solid Films, 519 (2011) 7530-7533.
[49] D.-H. Kuo, M. Tsega, The investigation of CuxZnSnSe4 bulks with x = 1.4–2.2 for debating the Cu excess and Cu deficiency used in thin-film solar cells, Materials Research Bulletin, 49 (2014) 608-613.
[50] L. Sun, J. He, H. Kong, F. Yue, P. Yang, J. Chu, Structure, composition and optical properties of Cu2ZnSnS4 thin films deposited by Pulsed Laser Deposition method, Solar Energy Materials and Solar Cells, 95 (2011) 2907-2913.
[51] A. Tverjanovich, E.N. Borisov, E.S. Vasilieva, O.V. Tolochko, I.E. Vahhi, S. Bereznev, Y.S. Tveryanovich, CuInSe2 thin films deposited by UV laser ablation, Solar Energy Materials and Solar Cells, 90 (2006) 3624-3632.
[52] L. Guan-Tai, C. Delphic, K. Jui-Chao, EBSD characterization of twinned copper using pulsed electrodeposition, Journal of Physics D: Applied Physics, 42 (2009) 215410.
[53] H. Kong, J. He, L. Huang, L. Zhu, L. Sun, P. Yang, J. Chu, Effect of working pressure on growth of Cu(In,Ga)Se2 thin film deposited by sputtering from a single quaternary target, Materials Letters, 116 (2014) 75-78.
[54] M. Tsega, D.-H. Kuo, Characterization and electrical property of the Cu-deficient Cu2ZnSn(S,Se)4 bulks at different sulfur contents, Journal of Alloys and Compounds, 557 (2013) 142-146.
[55] D.H. Kuo, H.P. Wu, Preparation and Analysis of Sputtered Cu2ZnSnSe4 Thin Films, Advanced Materials Research, 463-464 (2012) 602-606.
[56] I.L. Repins, M.J. Romero, J.V. Li, S.-H. Wei, D. Kuciauskas, C.-S. Jiang, C. Beall, C. DeHart, J. Mann, W.-C. Hsu, G. Teeter, A. Goodrich, R. Noufi, Kesterite successes, ongoing work, and challenges: A perspective from vacuum deposition, in: Photovoltaic Specialists Conference (PVSC), Volume 2, 2012 IEEE 38th, 2012, pp. 1-7.
[57] G. Suresh Babu, Y.B. Kishore Kumar, P. Uday Bhaskar, S. Raja Vanjari, Effect of Cu/(Zn+Sn) ratio on the properties of co-evaporated Cu2ZnSnSe4 thin films, Solar Energy Materials and Solar Cells, 94 (2010) 221-226.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-20起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-20起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw