進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0408201411052300
論文名稱(中文) 抗菌型磷酸鈣顆粒狀骨取代物性質之探討(I)
論文名稱(英文) An investigation of properties of antibacterial calcium phosphate granular bone graft(I)
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 周佳叡
研究生(英文) Chia-Jui Chou
學號 N56011556
學位類別 碩士
語文別 中文
論文頁數 138頁
口試委員 指導教授-陳瑾惠
指導教授-朱建平
口試委員-李經維
中文關鍵字 磷酸鈣  抗菌  孔隙度  抗壓強度  表面形貌 
英文關鍵字 calcium phosphate  antibacterial  compressive strength  porosity  surface morphology 
學科別分類
中文摘要 為了降低骨頭修復手術後發生細菌感染的風險,因此本實驗欲做出能夠幫助骨頭修復,同時能抑制細菌生長的骨取代物材料,顆粒狀的磷酸鈣作為骨取代物具有優良的生物相容性,且因其植入後具有許多的孔洞,能誘導骨細胞的成長和有利於體內體液流動,所以本實驗使用P做為基底材料,另外加入N作為造孔劑,以及O作為抗菌劑,經加壓成形後,敲碎過篩並將試片進行水洗,利用水洗將試片中的N溶入水中以形成孔洞,使植入材能形成一多孔性的結構,此結構有助於骨頭的修復。
本實驗探討基底材料加入兩種不同含量抗菌劑在經過三種不同水洗時間的水洗後,浸泡模擬人工體液長時間後的性質變化,水洗可以將造孔劑水洗掉並形成孔洞,且水洗時間的不同代表試片內的抗菌劑含量也不同。實驗結果顯示,顆粒狀的骨取代物有不錯的孔隙率且具抗菌性,在骨頭修復時能抑制細菌的生長。
英文摘要 The aim of this research was to develop an antibacterial bone substitute in order to reduce the risk of postoperative infection. It was well known that calcium phosphate has excellent biocompatibility for being bone substitutes, and porosity is a important property of calcium phosphate bone graft. Increasing the porosity of bone graft allowed transport of body fluid within the bone graft scaffolds, enhanced their degradation and also accelerated the growth of new bone. P was the base material, by adding the N as a porogen, and O as an antibacterial agent to form a antibacterial bone substitute in this study. After compression molding, we used salt leaching method to dissolve the N and made it become a porous structure which could let the materials absorb more rapidly in vivo, and accelerated the growth of new bone. This study investigated the changes in long-term properties of two different contents antibacterial agent material of the three pre-washed bone grafts with different washing time after soaking in the simulated artificial body fluid. The different washing time would affect the quantity of antibacterial agent in the material. The experimental results showed that the materials could inhibit bacteria growth effectively.
論文目次 中文摘要I
英文延伸摘要II
誌謝V
總目錄VI
表目錄X
圖目錄XI
第一章 總序論1
1-1前言1
1-2生醫材料的定義1
1-3生醫材料的發展2
1-4生醫材料的分類7
1-4-1依材料化學組成分類7
1-4-2依活性分類12
1-5生醫陶瓷種類 14
1-6理想生醫材料的要求17
1-7人體骨骼的簡介18
1-7-1骨骼功能與結構形態18
1-7-2硬骨組織相關細胞21
1-7-3骨骼的創傷癒合過程24
1-8骨取代物的簡介28
1-8-1生物學上骨取代物的要求28
1-8-2骨取代物的來源與種類28
1-9骨髓炎30
1-10金黃色葡萄球菌32
1-11抗菌劑與抗菌機制34
1-12抗菌型骨科植入材35
1-12-1抗菌型陶瓷植入材35
1-12-2抗菌型金屬植入材36
第二章 理論基礎與文獻回顧37
2-1鈣磷系骨水泥的發展與簡介37
2-1-1前言37
2-1-2磷酸鈣鹽類的發展與分類38
2-1-3磷酸鈣鹽類的性質與相關反應機制41
2-1-4磷酸鈣骨取代物的優點與缺點48
2-2生物支架的簡介50
2-2-1生物支架的基本性質50
2-2-2生物支架在骨組織工程上的要求50
2-2-3生物支架的材料53
2-2-4生物支架的製作方法54
2-3骨科植入材的感染風險59
2-4骨科植入材抗菌對策文獻回顧61
2-5近期抗菌相關之研究63
2-6研究目的66
第三章 實驗原理及步驟67
3-1實驗使用之材料及相關藥品67
3-1-1TSB液態細菌培養基(Tryptic Soy Broth medium)67
3-1-2TSB固態細菌培養基(Tryptic Soy Broth agar plate)67
3-2實驗步驟68
3-3實驗分析原理74
3-3-1重量損失量測(Weight loss)74
3-3-2孔隙度量測 74
3-3-3抗壓強度測試76
3-3-4Scanning Electron Microscopy(SEM)表面形貌觀察77
3-3-5X-Ray diffraction(XRD)分析79
3-3-6pH值的量測 81
3-3-7抗菌測試83
第四章 結果與討論86
4-1抗菌型磷酸鈣顆粒狀骨取代物製作86
4-2重量損失88
4-3孔隙率量測91
4-4抗壓強度92
4-5抗菌型磷酸鈣顆粒狀骨取代物XRD之分析93
4-6抗菌型磷酸鈣顆粒狀骨取代物SEM表面形貌觀察94
4-7pH值量測121
4-8抗菌測試124
第五章 結論127
參考文獻128
參考文獻 A.Dion, M.Langman, G.Hall, M.Filiaggi, Vancomycin release behavior from amorphous calcium polyphosphate matrices intended for osteomyelitis treatment, 2005.
Akif Ince, MD, Norbert Schütze, PhD, Christian Hendrich, MD, Roger Thull, PhD, Jochen Eulert, MD, and Jochen F. Löhr, MD (FRCSC). In Vitro Investigation of Orthopedic Titanium-Coated and Brushite-Coated Surfaces Using Human Osteoblasts in the Presence of Gentamycin, 2008.
Amathieu L. and Boistelle R., Crystallization Kinetics of Gypsum from Dense Suspension of Hemihydrate in Water, Journal of Crystal Growth,1988;88: 184.
Ambard AJ, Mueninghoff L. Calcium phosphate cement: review of mechanical and biological properties. J Prosthodont. 15: 321-328, 2006
Block M.S, Kent T.N, Guerra. Implants in dentistry. W.B. Saunders Company,1997.
Bogdan S. Necula, Lidy E. Fratila-Apachitei, Sebastian A.J. Zaat, Iulian Apachitei, Jurek Duszczyk, In vitro antibacterial activity of porous TiO2–Ag composite layers against methicillin-resistant Staphylococcus aureus, 2009.
Bohner M., Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury Int J Care Injured 2001;31:S-D37-47.
Bohner M. and Baumgart M., Theoretical Model to Determine the Effects of Geometrical Factors on the Resorption of Calcium Phosphate Bone Substitutes, Biomaterials, 2004;25[17] 3569–3582.
Bohner M., Gbureck U., Barralet J.E. Technological issues for the development of more efficient calcium phosphate bone cements: A critical assessment Biomaterials, 2005; 26 6423–6429
Bohner M., New hydraulic cements based on α-tricalcium phosphate – calcium sulfate dihydrate mixtures; Biomaterials 2004;25 741–749.
Breed AL., Experimental production of vascular hypotension, and bone marrow and fat embolism with methylmethacrylate cement. Traumatic hypertension of bone. Clin Orthop, 1974; 102: 227-44.
Chow LC., Calcium phosphate materials: reactor response ; Adv Dent Res 2(1):181-184, August, 1988
Chow LC, Takagi S., Calcium phosphate hydroxyapatite precursor and methosd for making and using the same. US Patent 1996, No.5542973.
Chow LC. Development of self-setting calcium phosphate cement. The Centennial Memorial Issue 1991;99(10):954-964.
Chow L C, J. Ceram. Soc. Japan Int. Edn. 99 (1992) 927.
Clemson Advisory Board for Biomaterials “Definition of the word biomaterial”, The 6th annal international biomaterial symposium. April 1974:20-24.
Costantino PD, Friedman CD: Synthetic bone graft substitutes. Otolaryngol Clin North Am 1994;27:1037-1074.
C. P.Klein, A. A. Driessen, K. de Groot, and A. van den Hooff, ‘‘Biodegradation Behavior of Various Calcium Phosphate Materials in Bone Tissue,’’ J. Biomed. Mater. Res., 17 [5] 769–784,1983.
Driskell TD, Heller AL, Koenigs J. Dental treatments. US Patent 1975, No. 3913229.
De Groot K. Medical applications of calcium phosphate bioceramics. The centennial memorial issue of the ceramic society of Japan 1991;99:943-953.
Eisei Hayashi, Takayuki Mokudai, Yasutomo Yamada, Keisuke Nakamura, Taro Kanno, Keiichi Sasaki, and Yoshimi Niwano, In vitro and in vivo anti-Staphylococcus aureus activities of a new disinfection system utilizing photolysis of hydrogen peroxide, Journal of Bioscience and Bioengineering VOL. 114 No. 2, 193-197, 2012.
Fernaâ ndez* E, Gil FJ, Ginebra MP, Driessens FCM, Planell JA. Calcium phosphate bone cements for clinical applications, Journal of Materials Science: Materials in Medicine 10 (1999) 169±183.
Fukase Y, EANES' E.D, TAKAGI3 S., CHOW L.C, and BROWN W.E.; Setting Reactions and Compressive Strengths of Calcium Phosphate Cements;J Dent Res 69(12):1852-1856, December, 1990.
Helen Vester, Britt Wildemann, Gerhard Schmidmaier, Ulrich Stockle, Martin Lucke, Gentamycin delivered from a PDLLA coating of metallic implants In vivo and in vitro characterisation for local prophylaxis of implant-related osteomyelitis, 2010.
Hench LL, Bioceramics: from concept to clinic. J Am Ceram Soc 1991;74:1487-1510.
Huiliang Cao, Xuanyong Liu, Fanhao Meng, Paul K. Chu, Biological actions of silver nanoparticles embedded in titanium controlled by micro-galvanic effects, Biomaterials, 2010.
Hulbert SF, Hench LL, Forbers D, Bowman LS. History of bioceramics. Ceram Internat. 1982;8:131-140.
I. Allan*, H. Newman, M. Wilson, Antibacterial activity of particulate Bioglass_ against supra- and subgingival bacteria,2001
Jarcho M. CaP ceramics as hard tissue prosthetics. Clin Orthop 1981;157:259-78.
Jarcho M. Hydroxyapatite synthesis and characterization in dense polycrystalline forms. J Mater Sci 1976;11:2027-35.
Jarcho M, Kay J, Gumaer K, Doremus R, Drobeck H. Tissue, cellular and subcellular events at a bone-ceramic hydroxyapatite interface. J Bioengineering 1977;1:79-92.
Jayesh P. Ruparelia, Arup Kumar Chatterjee, Siddhartha P. Duttagupta, Suparna Mukherji, Strain specificity in antimicrobial activity of silver and copper nanoparticles, 2008.
Jonck LM, Grobbelaar CJ. "The biological compatibility of glass ionomer cement in joint replacement." Clin. Mater. , 1989; 4: 85-107.
Johan Van der Stok, Esther M.M. Van Lieshout, Youssef El-Massoudi, Gerdine H. Van Kralingen,Peter Patka, Bone substitutes in the Netherlands – A systematic literature review, Acta Biomaterialia 7, 739-750, 2011.
Kokubo T. "Recent progress in glass-based materials for biomedical applications." The Centennial Memorial Issue of The Ceramic Society of Japan 99: 965-973, 1991.
K.Soballe, H.Brockstedt-Rasmussen, E.S.Hansen, and C.Bunger, ‘‘Hydroxyapatite Coating Modifies Implant Membrane Formation. Controlled Micromotion Studied in Dogs,’’ Acta Orthop. Scand., 63 [2]128–140 ,1992.
Lewis K. N, Thomas M. V, Puleo D. A.; Mechanical and degradation behavior of polymer-calcium sulfate composites. J Mater Sci: Mater Med 2006;17: 531–537.
Lewry A.J. and J. Williamsoon, "The setting of gypsum plaster partIII the effect of additives and impurities."J of materials science. Vol 29, p6085~6090, 1994.
Lingzhou Zhao, Paul K. Chu, Yumei Zhang, Zhifen Wu, "Review Antibacterial Coatings on Titanium Implants.", 2009.
Lingzhou Zhao, Hairong Wang, Kaifu Huo, Lingyun Cui, Wenrui Zhang, Hongwei Ni, Yumei Zhang, Zhifen Wu, Paul K. Chu, Antibacterial nano-structured titania coating incorporated with silver nanoparticles, Biomaterials, 2011.
L .Peltier, The use of plaster of Paris to fill large defects in bone. Am J Surg 97:311-315, 1959
L.Smith, ‘‘Ceramic–Plastic Material as a Bone Substitute,’’ Arch Surg., 87 653–661 ,1963.
Marı´a C. Cortizo, Tamara G. Oberti, Marı´a S. Cortizo, Mo´nica A. Ferna´ ndez Lorenzo de Mele, ‘‘Chlorhexidine delivery system from titanium/polybenzyl acrylate coating: Evaluation of cytotoxicity and early bacterial adhesion,’’ Dentistry, 2012.
M.Bohner and F.Baumgart, ‘‘Theoretical Model to Determine the Effects of Geometrical Factors on the Resorption of Calcium Phosphate Bone Substitutes,’’ Biomaterials, 25 [17] 3569–3582 ,2004.
M.Bohner, New hydraulic cements based on a-tricalcium phosphate–calcium sulfate dihydrate mixtures; Biomaterials 25 741–749,2004.
M.Bohner, U. Gbureck, J.E. BarraletTechnological issues for the development of more efficient calcium phosphate bone cements: A critical assessmentBiomaterials 26 6423–6429,2005.
Michel Kouassi, DDS, Pierre Michaı¨lesco, DDS, PhD, Anne Lacoste-Armynot, PhD, and Philippe Boudeville, PhD, Antibacterial Effect of a Hydraulic Calcium Phosphate Cement for Dental Applications, 2003.
Millenium Res Group, US markets for large-joint reconstructive implants, 2008.
Monma H, Goto M and Kohmura T , Gypsum & Lime, 1984 No.188, 11-16
Moore W.R, Graves S.E, Bain G.I. Synthetic Bone Graft Substitutes. ANZ J. Surg 71: 354-361,2001.
M. Stigter, J. Bezemer, K. de Groot, P. Layrolle. Incorporation of different antibiotics into carbonated hydroxyapatite coatings on titanium implants, release and antibiotic efficacy, 2004.
M.Sidqui , P.Collin , C.Vitte : Osteoblast adherence and resorption activity of isolated osteoclasts on calcium sulphate hemihydrate. Biomaterials 16:1327-1332; 1995.
Myerson A.S. Handbook of Industrial Crystallization Butterworth Heinemann Series, Chemical Engineering. USA, 1993.
Martin Clauss, Andrej Trampuz , Olivier Borens, Marc Bohner, Thomas Ilchmann, Biofilm formation on bone grafts and bone graft substitutes: Comparison of different materials by a standard in vitro test and microcalorimetry, Acta Biomaterialia 6, 2010.
Michiyo Honda, Yusuke Kawanobe, Ken Ishii, Toshiisa Konishi, Minori Mizumoto, Nobuyuki Kanzawa, Morio Matsumoto, Mamoru Aizawa, In vitro and in vivo antimicrobial properties of silver-containing hydroxyapatite prepared via ultrasonic spray pyrolysis route, Materials Science and Engineering C 33, 5008-5118, 2013.
Nilsson M., Ferna´ndez E. Sarda S. Lidgren 1L., Planell J.A. "Characterization of a novel calcium phosphate/sulphate bone cement." J Biomed Mater Res 61: 600–607, 2002.
Nilsson M., Wielanek L., J.S. Wang, K. E. Tanner, L. Lidgren. "Factors Influencing the Compressive Strength of an Injectable Calcium Sulfate-Hydroxyapatite Cement." Journal of Materials Science: Materials in Medicine 14: 399-404, 2003.
N. Matsumoto, K. Sato, K. Yoshida, K. Hashimoto, Y. Toda, Preparation and characterization of b-tricalcium phosphate co-doped with monovalent and divalent antibacterial metal ions, 2009.
N. Sindhura Reddy, S. Sowmya, Joel D. Bumgardner, K.P. Chennazhi, Raja Biswas, R. Jayakumar, Tetracycline nanoparticles loaded calcium sulfate composite beads for periodontal management, Biochimica et Biophysica Acta 1840, 2080-2090, 2014.
Outi Leppa¨ranta A Minna Vaahtio A Timo Peltola A Di Zhang A Leena Hupa A Mikko Hupa A Heimo Yla¨nen A Jukka I. Salonen A Matti K. Viljanen A Erkki Eerola, Antibacterial effect of bioactive glasses on clinically important anaerobic bacteria in vitro,2001
Park JB. Biomaterials, An Introduction. Plenum Press. New York, 1979.
Park JB. Biomaterials science and engineering. Plenum Press, New York and London, 1985.
Park JB, Bronzino JD. Biomaterials principles and applications. CRC Press, New York, 2003.
Park JB, Lakes RS. Biomaterials: an introduction. Plenum Press, 2nd ed., New York, 1992.
P. K.Stephenson, M. A. Freeman, P. A. Revell, J. Germain, M. Tuke, and C. J. Pirie, ‘‘The Effect of Hydroxyapatite Coating on Ingrowth of BoneInto Cavities in an Implant,’’ J. Arthroplasty, 6 [1] 51–58, 1991.
Rateitschak KH, Wolf HF. Color Atlas of Dental Medicine. Thieme Medical Publishers, 1995.
Ratner BD, Hoffman AS, Schoen FJ, Lemons JE. Biomaterials science. Academic Press, California, 1996;222-223.
R. E. Holmes, ‘‘Bone Regeneration Within a Coralline Hydroxyapatite Implant,’’ Plast. Reconstr. Surg., 63 [5] 626–633 ,1979.
R. S. Harland, C. Dubernet, J. P. Bennit and N. A. Peppas, "A modelof
dissolution-controlled, diffusional drug release from non-swellable
polymeric microspheres," J. Control. Rel., 7, 207-215, 1988.
S.F.Hulbert, J.C.Bokros, L.L.Hench,Wilson J,G.Heimke.T.Kokubo, Recent progress in glass-based materials for biomedical applications. The Centennial Memorial Issue of The Ceramic Society of Japan 99: 965-973, 1991.
Shi ZL, Chua PH, Neoh KG, Kang ET, Wang W. Bioactive titanium implant surfaces with bacterial inhibition and osteoblast function enhancement properties, 2008.
Silver FH. Biomaterials, medical devices, and tissue engineering: an integrated approach. Chapman & Hall, New York, 1994.
Siqueira JF, Lopes HP. Mechanisms of antimicrobial activity of calcium hydroxide: A critical review. Int Endod J 1999;32:361–369.
Soballe K. Hydroxyapatite ceramic coating for bone implant fixation. ACTA Orthopaed Scandin Supplem 1993;64:1-58.
S Saeed Hesaraki, Roghayeh Nemati, Cephalexin-Loaded Injectable Macroporous Calcium Phosphate Bone Cement, 2008.
Uwe Gbureck, Oliver Knappe, Liam M. Grover, Jake E. Barralet, Antimicrobial potency of alkali ion substituted calcium phosphate cements, Biomaterials, 2005.
Vasilev K, Cook J, Griesser HJ, Antibacterial surfaces for biomedical devices, 2009.
Verlaan JJ, Oner FC, Slootweg PJ, Verbout AJ, Dhert WJ Histologic changes after vertebroplasty. J Bone Joint Surg [Am] 86(A):1230-1238, 2004.
Volker Alta, Thorsten Bechert, Peter Steinr .ucke, Michael Wagener, Peter Seidel, Elvira Dingeldein, Eugen Domann, Reinhard Schnettler, An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement, Biomaterials, 2003.
Ying. Nanocrystalline apatites and composite prostheses incorporating them, and method for their production ,US patent 6013591, 2000.
Yong Wu, Joseph P. Zitelli, Kevor S. TenHuisen, Xiaojun Yu, Matthew R. Libera. Differential response of Staphylococci and osteoblasts to varying titanium surface roughness, 2010.
Yao-Hsuan Tseng, Der-Shan Sun, Wen-Shiang Wu, Hao Chan, Ming-Syuan Syue, Han-Chen Ho, Hsin-Hou Chang, Antibacterial performance of nanoscaled visible-light responsive platinum-containing titania photocatalyst in vitro and in vivo, Biochimica et Biophysica Acta 1830, 3787-3795, 2013.
A+醫學百科, 骨骼, from
http://cht.a-hospital.com/w/%E9%AA%A8%E9%AA%BC
施國正醫師, 骨髓炎, from
http://www.hch.gov.tw/CHAPTER/%E9%AA%A8%E9%AB%93%E7%82%8E.doc
衛生福利部食品藥物管理署, 金黃色葡萄球菌, from
http://www.fda.gov.tw/TC/siteContent.aspx?sid=1937
財團法人食品工業發展研究所 朱兆秀博士,抗菌機制, from
http://proj.ncku.edu.tw/nanosilver/online/knowledge/
維基百科, 密質骨, from
http://zh.wikipedia.org/wiki/%E5%AF%86%E8%B3%AA%E9%AA%A8
人體骨骼構造,緻密骨、皮質骨以及骨基質示意圖, from
http://darkwing.uoregon.edu/~louiso/BNSTRUC.GIF
WIKIMEDIA COMMONS, 骨母細胞, from
http://commons.wikimedia.org/wiki/File:WVSOM_Osteoblast.JPG
張炳龍,ROSS 組織學, 合記圖書出版社,147-158,1991
梁智仁,“骨質疏鬆致骨折專治生物材料的研製與市場化”京港學術交流第五十四期,2002
趙月秀 產業分析師 生技/醫藥速報半月刊 第 119 期
汪建民, 材料分析, 中國材料科學學會, 1998
邱家昌, 生物醫學, 2008年第一卷第三期:264~273, 2008
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw