進階搜尋


下載電子全文  
系統識別號 U0026-0408201409054500
論文名稱(中文) 利用全基因組整合方法分析癌症生物標誌與細胞分化之遺傳變異
論文名稱(英文) Genome-wide Meta-analysis of Cancer Biomarkers and Genetic Variations in Cellular Differentiation
校院名稱 成功大學
系所名稱(中) 資訊工程學系
系所名稱(英) Institute of Computer Science and Information Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 程俊培
研究生(英文) Chun-Pei Cheng
電子信箱 ccp0625@gmail.com
學號 P78981118
學位類別 博士
語文別 英文
論文頁數 123頁
口試委員 指導教授-曾新穆
口試委員-王憶卿
口試委員-黃宣誠
口試委員-莊曜宇
口試委員-唐傳義
口試委員-阮雪芬
口試委員-楊永正
中文關鍵字 癌症生物標誌  全基因組  基因調控網路  遺傳變異  整合性分析  微陣列 
英文關鍵字 cancer biomarker  genome-wide  gene regulatory network  genetic variation  meta-analysis  microarray 
學科別分類
中文摘要 微陣列與次世代定序技術進行大規模基因組分子活動探索已成為生物資訊中越來越重要之研究議題。同時,大量有價值的網路信息也已被存放於數個公開的資料庫中。伴隨著這些不同型態的資料產生,如何針對不同有興趣的研究主題正確地整合與分析不同型態的資料(整合性分析)是非常重要的。在本論文中,我們將探討關於生物資訊整合性分析之數個重要研究議題,如以下所示:I) 人類疾病常是受到一組相關的基因變異所造成,而不是單一各自無相關的基因變異。先前大部分基於微陣列的整合分析確認疾病之獨立性相關基因或生物標誌。我們提出第一個能夠考慮基因組合效應之整合分析方法,在不同微陣列平台進行有效辨別關聯生物標誌 (ABs)。II) 預後標誌物的鑑定有助於防止或控制癌症轉移之進程,整合微陣列與生物網路也已被用於找這樣的標誌,但往往此發現沒有在另一個獨立的樣本群中驗證。我們設計了一個新的整合性分析框架,可有效找出癌症預後標誌物,並應用於食道鱗狀癌發展相關基因調控網路,及找出與食道癌預後能力有關之DNA 上CpG甲基化差異位點。III) 常見的人類遺傳變異的庫存已接近完成,但其對生物的影響並不是很清楚。從不同的組織和細胞註解基因與調節元件,提供功能性說明來預測遺傳變異之後果。其中的一些後果可能僅在特定的生理條件之下被揭示,如壓力反應或細胞分化。我們因此提出了一個有效的整合性分析流程以結合各種已註解資訊,並應用於找出與心臟分化有關之遺傳變異。
關於第一個研究主題,我們提出一個叫作MiningABs的整合分析方法,在不同微陣列資料集挖掘關聯生物標誌。這個方法能夠從不同獨立產生的微陣列資料集,有效地辨識關聯生物標誌,而且我們透過基因本體分析、文獻調查和網路分析,證明這個方法在癌症生物學上的有效性。我們推論透過關聯生物標誌的找尋,能促進新標靶和藥物的發現,進而改善臨床治療。
關於第二個研究主題,我們初步篩選44個最顯著之甲基化位點,這些位點不僅與病人存活率有關而且還落於食道癌進展調控網路所包含之基因的啟動子上。在另一個獨立食道癌病人群中,我們證實了食道癌網路所包含之8/10 CpG位點與患者的存活率有顯著相關。相較之下,在食道癌網路外的基因之啟動子,無 (0/10) CpG位點與患者的存活率有關。我們推論我們的分析框架能夠在部分基因體之DNA甲基化研究中改善真正預後標誌物之找尋。
關於第三個研究主題,我們所提出的整合性分析流程除了包含由體外心臟分化過程中活化組織蛋白H3K4me3修飾之啟動子資訊。為了增加其生理性,我們限制了最強之啟動子標記於人類胎兒心臟之DNA酶 (DNase I) 高敏感性位置。我們的結果說明了遺傳變異可發生在心臟分化過程中之特定DNA調控元件。
英文摘要 Large-scale exploring of genome-wide molecular activities by using microarray or next-generation sequencing (NGS) techniques has become a very important topic in bioinformatics. Meanwhile, a lot of valuable network information has also been deposited in several publicly available databases. With these diverse data, it is very important to properly integrate and analyze, i.e., to do meta-analysis, for different research topics of interest. In this dissertation, we will discuss about several research topics of bioinformatics meta-analysis as follows: I) Human disease often arises as a consequence of alterations in a set of associated genes rather than alterations to a set of unassociated individual genes. Most previous microarray-based meta-analyses identified disease-associated genes or biomarkers independent of genetic interactions. We present the first meta-analysis method capable of taking gene combination effects into account to efficiently identify associated biomarkers (ABs) across different microarray platforms. II) The identification of prognostic biomarkers would help prevent or control cancer metastatic progression. The integration of microarray and network analyses has also been used to find such markers, but do not always validate in separate cohorts. We present a new meta-analysis framework, which is able to find prognostic cancer biomarkers by applying cancer progression networks. We designed the framework with esophageal squamous cell carcinoma (ESCC) progression-associated gene regulatory network (GRNescc), to identify differentially DNA methylated CpG sites prognostic of ESCC progression. III) The inventory of common human genetic variation is nearly complete but its impact on biology is not always clearly understood. Annotations of genes and, more recently regulatory elements through tissue and cell types, provide the functional context to predict the consequences of genetic variation. Some of these consequences may only be revealed under certain physiological conditions such as stress response or cellular differentiation. We therefore propose a useful meta-analysis pipeline involving several annotated information and then apply the pipeline on cardiac differentiation to identify relevant genetic variations.
Regarding the first research topic, we propose a new meta-analysis approach called MiningABs to mine ABs across different array-based datasets. The method is able to efficiently identify ABs from different independently performed array-based datasets, and we show its validity in cancer biology via GO enrichment, literature survey and network analyses. We postulate that the ABs may facilitate novel target and drug discovery, leading to improved clinical treatment.
Regarding the second research topic, we selected 44 CpG loci most highly associated with survival and located in the promoters of genes more likely to belong to GRNescc. Using an independent ESCC cohort, we confirmed that 8/10 of CpG loci in the promoter of GRNescc genes significantly correlated with patient survival. In contrast, 0/10 CpG loci in the promoter genes outside the GRNescc were correlated with patient survival. We postulate that our analysis framework improves the identification of bona fide prognostic biomarkers from DNA methylation studies especially with partial genome coverage.
Regarding the third research topic, the proposed pipeline involved gene promoters, identified through histone H3K4me3 modifications, activated during in vitro cardiac differentiation. We increased the physiological relevance by restricting to analysis to human fetal heart DNase I hypersensitive sites (DHSs), which overlapped with the strongest promoter marks. Our final report illustrates the prevalence of genetic variation in the regulatory elements that are remodeled during cardiac differentiation.
論文目次 摘 要 I
ABSTRACT III
ACKNOWLEDGEMENTS VI
CONTENTS VIII
LIST OF FIGURES XI
LIST OF TABLES XII
LIST OF SUPPLEMENTAL INFORMATION XIII
CHAPTER 1 INTRODUCTION 1
1.1 MOTIVATION 1
1.2 OVERVIEW OF DISSERTATION 4
1.2.1 Mining associated biomarkers across multi-connected gene expression datasets 4
1.2.2 Network-based analysis identifies epigenetic biomarkers of esophageal squamous cell carcinoma progression 5
1.2.3 Identification of genetic variations in dynamic regulatory elements of cardiac differentiation 6
1.3 ORGANIZATION OF DISSERTATION 7
CHAPTER 2 BACKGROUND AND RELATED WORK 8
2.1 META-ANALYSIS OF MICROARRAY DATASETS 8
2.2 META-ANALYSIS OF MICROARRAY DATA AND BIOLOGICAL NETWORKS 10
2.3 META-ANALYSIS OF NEXT GENERATION SEQUENCING-BASED DATA AND THE ANNOTATION OF GENOMIC COORDINATES 10
CHAPTER 3 MINING ASSOCIATED BIOMARKERS ACROSS MULTI-CONNECTED GENE EXPRESSION DATASETS 12
3.1 INTRODUCTION 12
3.2 PROPOSED METHOD 13
3.2.1 Overview of datasets 13
3.2.2 Integrating sk-LMs to classify cancer samples 15
3.2.2.1 Development of individual logit model from single dataset 15
3.2.2.2 Probe sequence similarity matrix development as a bridge to connect datasets 16
3.2.2.3 Identification of c-LM from multi-connected-datasets 19
3.2.3 Improving c-LM via a heuristic selection process 21
3.2.4 Evaluating improved c-LM using a reciprocal test 23
3.3 RESULTS AND DISCUSSION 24
3.3.1 Discovering improved c-LMs using a genetic algorithm 24
3.3.2 Considering more datasets yields better accuracy compared to increasing the gene number 25
3.3.3 Improved c-LMs reveal ABs 26
3.3.4 ABs are highly related to cancer development and connected in network 28
3.4 SUMMARY 33
CHAPTER 4 NETWORK-BASED ANALYSIS IDENTIFIES EPIGENETIC BIOMARKERS OF ESOPHAGEAL SQUAMOUS CELL CARCINOMA PROGRESSION 35
4.1 INTRODUCTION 35
4.2 PROPOSED METHOD 36
4.2.1 Patients and biopsy specimens 36
4.2.2 Construction of an ESCC-related gene regulatory network 37
4.2.3 Generation and analysis of DNA methylation microarray data 38
4.2.3.1 Microarray data generation 38
4.2.3.2 Microarray data analysis 39
4.2.3.3 Identification of CpG sites associated with progression 39
4.2.3.4 Identification of CpG sites associated with survival 40
4.2.4 Network analysis 40
4.2.5 Pyrosequencing validation and survival analysis 41
4.2.6 Quantitative RT-PCR 41
4.3 RESULTS AND DISCUSSION 42
4.3.1 Overall framework and ESCC network construction 42
4.3.2 Identification of candidate CpG sites associated with ESCC progression 44
4.3.3 Network based selection of candidate CpG sites associated with survival 45
4.3.4 Validation of the findings 47
4.3.5 GRNescc network topology 51
4.4 SUMMARY 52
CHAPTER 5 IDENTIFICATION OF GENETIC VARIATIONS IN DYNAMIC REGULATORY ELEMENTS OF CARDIAC DIFFERENTIATION 54
5.1 INTRODUCTION 54
5.2 PROPOSED METHODS 56
5.2.1 Identifying dynamic DHSs in cardiac development 56
5.2.2 Clustering dynamic DHSs 57
5.2.3 Transcription factor motif enrichment analysis of clustered dynamic DHSs 58
5.2.4 Enrichment of cardiac development-related genes 59
5.2.5 Enrichment of cardiac disease-related SNPs in dynamic DHSs 59
5.2.6 Identification of temporal SNPs with allele-specific binding and eQTLs 60
5.2.7 Identification of SNP-containing regulatory motifs 61
5.3 RESULTS AND DISCUSSION 61
5.3.1 Overlapping fetal heart DHSs and a temporal H3K4me3 signature 61
5.3.2 Inducible dynamic DHSs corresponding to well-known genes in cardiac development 64
5.3.3 Inducible dynamic DHSs corresponding to transcription factor binding motifs 65
5.3.4 Well-known heart SNPs are enriched in inducible dynamic DHSs 68
5.3.5 Identification of allele specific events at dynamic fetal heart DHSs 68
5.4 SUMMARY 70
CHAPTER 6 CONCLUSION AND FUTURE WORK 71
BIBLIOGRAPHY 74
SUPPLEMENTAL INFORMATION 89
參考文獻 [1] I. Akagi, M. Miyashita, H. Makino, T. Nomura, N. Hagiwara, K. Takahashi, et al., "Overexpression of PIK3CA is associated with lymph node metastasis in esophageal squamous cell carcinoma," Int J Oncol, vol. 34, pp. 767-75, Mar 2009.
[2] Y. Benjamini and D. Yekutieli, "The Control of the False Discovery Rate in Multiple Testing under Dependency," The Annals of Statistics, vol. 29, pp. 1165-1188, // 2001.
[3] S. L. Berger, "The complex language of chromatin regulation during transcription," Nature, vol. 447, pp. 407-12, May 24 2007.
[4] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kötter, T. Meinl, et al., "KNIME: The Konstanz Information Miner," in Studies in Classification, Data Analysis, and Knowledge Organization (GfKL 2007).
[5] M. Bibikova, Z. Lin, L. Zhou, E. Chudin, E. W. Garcia, B. Wu, et al., "High-throughput DNA methylation profiling using universal bead arrays," Genome Res, vol. 16, pp. 383-93, Mar 2006.
[6] E. Bollschweiler, S. E. Baldus, W. Schroder, P. M. Schneider, and A. H. Holscher, "Staging of esophageal carcinoma: length of tumor and number of involved regional lymph nodes. Are these independent prognostic factors?," J Surg Oncol, vol. 94, pp. 355-63, Oct 1 2006.
[7] B. L. Browning and S. R. Browning, "Improving the accuracy and efficiency of identity-by-descent detection in population data," Genetics, vol. 194, pp. 459-71, Jun 2013.
[8] M. Buckingham, S. Meilhac, and S. Zaffran, "Building the mammalian heart from two sources of myocardial cells," Nat Rev Genet, vol. 6, pp. 826-35, Nov 2005.
[9] W. F. Cao, L. Y. Zhang, B. Zhang, Y. Q. Wang, Z. H. Liu, and B. C. Sun, "[Expression of SLP-2 protein in esophageal squamous cell carcinoma is associated with cancer invasion]," Zhonghua Zhong Liu Za Zhi, vol. 32, pp. 830-3, Nov 2010.
[10] S. L. Carter, C. M. Brechbuhler, M. Griffin, and A. T. Bond, "Gene co-expression network topology provides a framework for molecular characterization of cellular state," Bioinformatics, vol. 20, pp. 2242-50, Sep 22 2004.
[11] E. G. Cerami, B. E. Gross, E. Demir, I. Rodchenkov, O. Babur, N. Anwar, et al., "Pathway Commons, a web resource for biological pathway data," Nucleic Acids Res, vol. 39, pp. D685-90, Jan 2011.
[12] L. C. Chang, H. M. Lin, E. Sibille, and G. C. Tseng, "Meta-analysis methods for combining multiple expression profiles: comparisons, statistical characterization and an application guideline," BMC Bioinformatics, vol. 14, p. 368, 2013.
[13] H. Chen, W. D. Jia, J. S. Li, W. Wang, G. L. Xu, J. L. Ma, et al., "Extracellular matrix protein 1, a novel prognostic factor, is associated with metastatic potential of hepatocellular carcinoma," Med Oncol, vol. 28 Suppl 1, pp. S318-25, Dec 2011.
[14] Y. K. Chen, W. S. Chang, I. C. Wu, L. H. Li, S. F. Yang, J. Y. Chen, et al., "Molecular characterization of invasive subpopulations from an esophageal squamous cell carcinoma cell line," Anticancer Res, vol. 30, pp. 727-36, Mar 2010.
[15] Z. L. Chen, X. H. Zhao, J. W. Wang, B. Z. Li, Z. Wang, J. Sun, et al., "microRNA-92a promotes lymph node metastasis of human esophageal squamous cell carcinoma via E-cadherin," J Biol Chem, vol. 286, pp. 10725-34, Mar 25 2011.
[16] C.-P. Cheng, Y.-C. Liu, Y.-L. Tsai, and V. Tseng, "An efficient method for mining cross-timepoint gene regulation sequential patterns from time course gene expression datasets," BMC Bioinformatics, vol. 14, p. S3, 2013.
[17] C. P. Cheng, Y. L. Tsai, and V. S. Tseng, "CTGR-Span: Efficient mining of cross-timepoint gene regulation sequential patterns from microarray datasets," in Bioinformatics and Biomedicine (BIBM), 2012 IEEE International Conference on, 2012, pp. 1-4.
[18] T. Chiba, H. Kawachi, T. Kawano, J. Kumagai, K. Kitagaki, M. Sekine, et al., "Independent histological risk factors for lymph node metastasis of superficial esophageal squamous cell carcinoma; implication of claudin-5 immunohistochemistry for expanding the indications of endoscopic resection," Dis Esophagus, vol. 23, pp. 398-407, Jul 2010.
[19] J. K. Choi, U. Yu, S. Kim, and O. J. Yoo, "Combining multiple microarray studies and modeling interstudy variation," Bioinformatics, vol. 19 Suppl 1, pp. i84-90, 2003.
[20] H. Y. Chuang, E. Lee, Y. T. Liu, D. Lee, and T. Ideker, "Network-based classification of breast cancer metastasis," Mol Syst Biol, vol. 3, p. 140, 2007.
[21] W. Y. Chuang, C. J. Yeh, Y. C. Wu, Y. K. Chao, Y. H. Liu, C. K. Tseng, et al., "Tumor cell expression of podoplanin correlates with nodal metastasis in esophageal squamous cell carcinoma," Histol Histopathol, vol. 24, pp. 1021-7, Aug 2009.
[22] E. P. Consortium, "The ENCODE (ENCyclopedia Of DNA Elements) Project," Science, vol. 306, pp. 636-40, Oct 22 2004.
[23] G. T. Consortium, "The Genotype-Tissue Expression (GTEx) project," Nat Genet, vol. 45, pp. 580-5, Jun 2013.
[24] M. Costanzo, A. Baryshnikova, J. Bellay, Y. Kim, E. D. Spear, C. S. Sevier, et al., "The genetic landscape of a cell," Science, vol. 327, pp. 425-31, Jan 22 2010.
[25] H. Cramer, Mathematical Methods of Statistics. Princeton, NJ: Princeton University Press, 1946.
[26] Q. Cui, Y. Ma, M. Jaramillo, H. Bari, A. Awan, S. Yang, et al., "A map of human cancer signaling," Mol Syst Biol, vol. 3, p. 152, 2007.
[27] M. den Hoed, M. Eijgelsheim, T. Esko, B. J. Brundel, D. S. Peal, D. M. Evans, et al., "Identification of heart rate-associated loci and their effects on cardiac conduction and rhythm disorders," Nat Genet, vol. 45, pp. 621-31, Jun 2013.
[28] G. Dennis, Jr., B. T. Sherman, D. A. Hosack, J. Yang, W. Gao, H. C. Lane, et al., "DAVID: Database for Annotation, Visualization, and Integrated Discovery," Genome Biol, vol. 4, p. P3, 2003.
[29] M. A. DePristo, E. Banks, R. Poplin, K. V. Garimella, J. R. Maguire, C. Hartl, et al., "A framework for variation discovery and genotyping using next-generation DNA sequencing data," Nat Genet, vol. 43, pp. 491-8, May 2011.
[30] Y. Ding, Y. Shimada, M. Maeda, A. Kawabe, J. Kaganoi, I. Komoto, et al., "Association of CC chemokine receptor 7 with lymph node metastasis of esophageal squamous cell carcinoma," Clin Cancer Res, vol. 9, pp. 3406-12, Aug 15 2003.
[31] T. P. Dooley, S. P. Reddy, T. W. Wilborn, and R. L. Davis, "Biomarkers of human cutaneous squamous cell carcinoma from tissues and cell lines identified by DNA microarrays and qRT-PCR," Biochem Biophys Res Commun, vol. 306, pp. 1026-36, Jul 11 2003.
[32] A. Drummond and K. Strimmer, "PAL: an object-oriented programming library for molecular evolution and phylogenetics," Bioinformatics, vol. 17, pp. 662-3, Jul 2001.
[33] A. W. F. Edwards, "The Measure of Association in a 2 × 2 Table," Journal of the Royal Statistical Society, vol. 126, pp. 109-114, 1963.
[34] R. Fagin, R. Kumar, and D. Sivakumar, "Comparing top k lists," presented at the Proceedings of the fourteenth annual ACM-SIAM symposium on Discrete algorithms, Baltimore, Maryland, 2003.
[35] M. Garcia, R. Millat-Carus, F. Bertucci, P. Finetti, D. Birnbaum, and G. Bidaut, "Interactome-transcriptome integration for predicting distant metastasis in breast cancer," Bioinformatics, vol. 28, pp. 672-8, Mar 1 2012.
[36] J. A. Gasche, J. Hoffmann, C. R. Boland, and A. Goel, "Interleukin-6 promotes tumorigenesis by altering DNA methylation in oral cancer cells," Int J Cancer, vol. 129, pp. 1053-63, Sep 1 2011.
[37] O. Gayou, S. K. Das, S. M. Zhou, L. B. Marks, D. S. Parda, and M. Miften, "A genetic algorithm for variable selection in logistic regression analysis of radiotherapy treatment outcomes," Med Phys, vol. 35, pp. 5426-33, Dec 2008.
[38] C. Genomes Project, G. R. Abecasis, D. Altshuler, A. Auton, L. D. Brooks, R. M. Durbin, et al., "A map of human genome variation from population-scale sequencing," Nature, vol. 467, pp. 1061-73, Oct 28 2010.
[39] M. Goode, K. Strimmer, A. Drummond, E. Buckler, and A. Rodrigo, "A brief introduction to the Phylogenetic Analysis Library version 1.5," presented at the Proceedings of the second conference on Asia-Pacific bioinformatics - Volume 29, Dunedin, New Zealand, 2004.
[40] C. E. Grant, T. L. Bailey, and W. S. Noble, "FIMO: scanning for occurrences of a given motif," Bioinformatics, vol. 27, pp. 1017-8, Apr 1 2011.
[41] S. I. Grivennikov, F. R. Greten, and M. Karin, "Immunity, inflammation, and cancer," Cell, vol. 140, pp. 883-99, Mar 19 2010.
[42] K. D. Grugan, C. G. Miller, Y. Yao, C. Z. Michaylira, S. Ohashi, A. J. Klein-Szanto, et al., "Fibroblast-secreted hepatocyte growth factor plays a functional role in esophageal squamous cell carcinoma invasion," Proc Natl Acad Sci U S A, vol. 107, pp. 11026-31, Jun 15 2010.
[43] W. Guo, T. Zhu, Z. Dong, L. Cui, M. Zhang, and G. Kuang, "Decreased expression and aberrant methylation of Gadd45G is associated with tumor progression and poor prognosis in esophageal squamous cell carcinoma," Clin Exp Metastasis, Jun 21 2013.
[44] K. Gyobu, S. Yamashita, Y. Matsuda, H. Igaki, T. Niwa, D. Oka, et al., "Identification and validation of DNA methylation markers to predict lymph node metastasis of esophageal squamous cell carcinomas," Ann Surg Oncol, vol. 18, pp. 1185-94, Apr 2011.
[45] B. Gyorffy and R. Schafer, "Meta-analysis of gene expression profiles related to relapse-free survival in 1,079 breast cancer patients," Breast Cancer Res Treat, vol. 118, pp. 433-41, Dec 2009.
[46] B. Han, M. Park, and X. W. Chen, "A Markov blanket-based method for detecting causal SNPs in GWAS," BMC Bioinformatics, vol. 11 Suppl 3, p. S5, 2010.
[47] U. Han, O. I. Can, S. Han, B. Kayhan, and B. U. Onal, "Expressions of p53, VEGF C, p21: could they be used in preoperative evaluation of lymph node metastasis of esophageal squamous cell carcinoma?," Dis Esophagus, vol. 20, pp. 379-85, 2007.
[48] S. Hannenhalli, M. E. Putt, J. M. Gilmore, J. Wang, M. S. Parmacek, J. A. Epstein, et al., "Transcriptional genomics associates FOX transcription factors with human heart failure," Circulation, vol. 114, pp. 1269-76, Sep 19 2006.
[49] L. V. Hansen, O. D. Laerum, M. Illemann, B. S. Nielsen, and M. Ploug, "Altered expression of the urokinase receptor homologue, C4.4A, in invasive areas of human esophageal squamous cell carcinoma," Int J Cancer, vol. 122, pp. 734-41, Feb 15 2008.
[50] O. Harismendy, D. Notani, X. Song, N. G. Rahim, B. Tanasa, N. Heintzman, et al., "9p21 DNA variants associated with coronary artery disease impair interferon-gamma signalling response," Nature, vol. 470, pp. 264-8, Feb 10 2011.
[51] J. H. Holland, Adaptation in natural and artificial systems: MIT Press, 1992.
[52] F. Hong, R. Breitling, C. W. McEntee, B. S. Wittner, J. L. Nemhauser, and J. Chory, "RankProd: a bioconductor package for detecting differentially expressed genes in meta-analysis," Bioinformatics, vol. 22, pp. 2825-7, Nov 15 2006.
[53] J. Hou, E. M. Li, J. H. Shen, Z. Qing, Z. Y. Wu, X. E. Xu, et al., "Cytoplasmic HDPR1 is involved in regional lymph node metastasis and tumor development via beta-catenin accumulation in esophageal squamous cell carcinoma," J Histochem Cytochem, vol. 59, pp. 711-8, Jul 2011.
[54] N. Hu, R. J. Clifford, H. H. Yang, C. Wang, A. M. Goldstein, T. Ding, et al., "Genome wide analysis of DNA copy number neutral loss of heterozygosity (CNNLOH) and its relation to gene expression in esophageal squamous cell carcinoma," BMC Genomics, vol. 11, p. 576, 2010.
[55] K. W. Hunter, N. P. Crawford, and J. Alsarraj, "Mechanisms of metastasis," Breast Cancer Res, vol. 10 Suppl 1, p. S2, 2008.
[56] K. Ishida, M. Iwahashi, M. Nakamori, M. Nakamura, S. Yokoyama, T. Iida, et al., "High CCR7 mRNA expression of cancer cells is associated with lymph node involvement in patients with esophageal squamous cell carcinoma," Int J Oncol, vol. 34, pp. 915-22, Apr 2009.
[57] Y. Itan, S. Y. Zhang, G. Vogt, A. Abhyankar, M. Herman, P. Nitschke, et al., "The human gene connectome as a map of short cuts for morbid allele discovery," Proc Natl Acad Sci U S A, vol. 110, pp. 5558-63, Apr 2 2013.
[58] T. Ito, Y. Shimada, T. Kan, S. David, Y. Cheng, Y. Mori, et al., "Pituitary tumor-transforming 1 increases cell motility and promotes lymph node metastasis in esophageal squamous cell carcinoma," Cancer Res, vol. 68, pp. 3214-24, May 1 2008.
[59] S. Iwagami, Y. Baba, M. Watanabe, H. Shigaki, K. Miyake, T. Ishimoto, et al., "LINE-1 hypomethylation is associated with a poor prognosis among patients with curatively resected esophageal squamous cell carcinoma," Ann Surg, vol. 257, pp. 449-55, Mar 2013.
[60] A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, "Global cancer statistics," CA Cancer J Clin, vol. 61, pp. 69-90, Mar-Apr 2011.
[61] W. J. Jiao, J. Xu, H. Pan, T. Y. Wang, and Y. Shen, "Effect of endothelin-1 in esophageal squamous cell carcinoma invasion and its correlation with cathepsin B," World J Gastroenterol, vol. 13, pp. 4002-5, Aug 7 2007.
[62] H. Jin, S. Morohashi, F. Sato, Y. Kudo, H. Akasaka, S. Tsutsumi, et al., "Vimentin expression of esophageal squamous cell carcinoma and its aggressive potential for lymph node metastasis," Biomed Res, vol. 31, pp. 105-12, Apr 2010.
[63] T. Kaihara, T. Kusaka, H. Kawamata, Y. Oda, S. Fujii, K. Morita, et al., "Decreased expression of E-cadherin and Yamamoto-Kohama's mode of invasion highly correlates with lymph node metastasis in esophageal squamous cell carcinoma," Pathobiology, vol. 69, pp. 172-8, 2001.
[64] M. Kasowski, F. Grubert, C. Heffelfinger, M. Hariharan, A. Asabere, S. M. Waszak, et al., "Variation in transcription factor binding among humans," Science, vol. 328, pp. 232-5, Apr 9 2010.
[65] M. Kasowski, S. Kyriazopoulou-Panagiotopoulou, F. Grubert, J. B. Zaugg, A. Kundaje, Y. Liu, et al., "Extensive variation in chromatin states across humans," Science, vol. 342, pp. 750-2, Nov 8 2013.
[66] K. Kato, Y. Hida, M. Miyamoto, H. Hashida, T. Shinohara, T. Itoh, et al., "Overexpression of caveolin-1 in esophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage," Cancer, vol. 94, pp. 929-33, Feb 15 2002.
[67] T. Kawamura, N. Goseki, M. Koike, T. Takizawa, and M. Endo, "Acceleration of proliferative activity of esophageal squamous cell carcinoma with invasion beyond the mucosa: immunohistochemical analysis of Ki-67 and p53 antigen in relation to histopathologic findings," Cancer, vol. 77, pp. 843-9, Mar 1 1996.
[68] X. S. Ke, Y. Qu, Y. Cheng, W. C. Li, V. Rotter, A. M. Oyan, et al., "Global profiling of histone and DNA methylation reveals epigenetic-based regulation of gene expression during epithelial to mesenchymal transition in prostate cells," BMC Genomics, vol. 11, p. 669, 2010.
[69] W. J. Kent, C. W. Sugnet, T. S. Furey, K. M. Roskin, T. H. Pringle, A. M. Zahler, et al., "The human genome browser at UCSC," Genome Res, vol. 12, pp. 996-1006, Jun 2002.
[70] E. Khurana, Y. Fu, V. Colonna, X. J. Mu, H. M. Kang, T. Lappalainen, et al., "Integrative annotation of variants from 1092 humans: application to cancer genomics," Science, vol. 342, p. 1235587, Oct 4 2013.
[71] H. Kilpinen, S. M. Waszak, A. R. Gschwind, S. K. Raghav, R. M. Witwicki, A. Orioli, et al., "Coordinated effects of sequence variation on DNA binding, chromatin structure, and transcription," Science, vol. 342, pp. 744-7, Nov 8 2013.
[72] H. K. Kim, H. Zhang, H. Li, T. T. Wu, S. Swisher, D. He, et al., "Slit2 inhibits growth and metastasis of fibrosarcoma and squamous cell carcinoma," Neoplasia, vol. 10, pp. 1411-20, Dec 2008.
[73] J. Kim, L. Gao, and K. Tan, "Multi-analyte network markers for tumor prognosis," PLoS One, vol. 7, p. e52973, 2012.
[74] M. S. Kim, K. Yamashita, Y. K. Chae, Y. Tokumaru, X. Chang, M. Zahurak, et al., "A promoter methylation pattern in the N-methyl-D-aspartate receptor 2B gene predicts poor prognosis in esophageal squamous cell carcinoma," Clin Cancer Res, vol. 13, pp. 6658-65, Nov 15 2007.
[75] Y. Kita, K. Mimori, M. Iwatsuki, T. Yokobori, K. Ieta, F. Tanaka, et al., "STC2: a predictive marker for lymph node metastasis in esophageal squamous-cell carcinoma," Ann Surg Oncol, vol. 18, pp. 261-72, Jan 2011.
[76] W. Klösgen, "Problems for knowledge discovery in databases and their treatment in the statistics interpreter explora," International Journal of Intelligent Systems, vol. 7, pp. 649-673, Sep. 1992 1992.
[77] J. M. Kleinberg, "Authoritative sources in a hyperlinked environment," J. ACM, vol. 46, pp. 604-632, 1999.
[78] K. L. Kong, D. L. Kwong, T. H. Chan, S. Y. Law, L. Chen, Y. Li, et al., "MicroRNA-375 inhibits tumour growth and metastasis in oesophageal squamous cell carcinoma through repressing insulin-like growth factor 1 receptor," Gut, vol. 61, pp. 33-42, Jan 2012.
[79] T. Krejsgaard, U. Ralfkiaer, E. Clasen-Linde, K. W. Eriksen, K. L. Kopp, C. M. Bonefeld, et al., "Malignant cutaneous T-cell lymphoma cells express IL-17 utilizing the Jak3/Stat3 signaling pathway," J Invest Dermatol, vol. 131, pp. 1331-8, Jun 2011.
[80] M. Krzystek-Korpacka, M. Matusiewicz, D. Diakowska, K. Grabowski, K. Blachut, and T. Banas, "Up-regulation of VEGF-C secreted by cancer cells and not VEGF-A correlates with clinical evaluation of lymph node metastasis in esophageal squamous cell carcinoma (ESCC)," Cancer Lett, vol. 249, pp. 171-7, May 8 2007.
[81] T. Kurokawa, M. Miyamoto, K. Kato, Y. Cho, Y. Kawarada, Y. Hida, et al., "Overexpression of hypoxia-inducible-factor 1alpha(HIF-1alpha) in oesophageal squamous cell carcinoma correlates with lymph node metastasis and pathologic stage," Br J Cancer, vol. 89, pp. 1042-7, Sep 15 2003.
[82] M. L. LaCroix-Fralish, J. S. Austin, F. Y. Zheng, D. J. Levitin, and J. S. Mogil, "Patterns of pain: meta-analysis of microarray studies of pain," Pain, vol. 152, pp. 1888-98, Aug 2011.
[83] P. W. Laird, "The power and the promise of DNA methylation markers," Nat Rev Cancer, vol. 3, pp. 253-66, Apr 2003.
[84] E. J. Lee, B. B. Lee, J. W. Kim, Y. M. Shim, I. Hoseok, J. Han, et al., "Aberrant methylation of Fragile Histidine Triad gene is associated with poor prognosis in early stage esophageal squamous cell carcinoma," Eur J Cancer, vol. 42, pp. 972-80, May 2006.
[85] H. Li and R. Durbin, "Fast and accurate short read alignment with Burrows-Wheeler transform," Bioinformatics, vol. 25, pp. 1754-60, Jul 15 2009.
[86] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, et al., "The Sequence Alignment/Map format and SAMtools," Bioinformatics, vol. 25, pp. 2078-9, Aug 15 2009.
[87] J. Li, P. Roebuck, S. Grunewald, and H. Liang, "SurvNet: a web server for identifying network-based biomarkers that most correlate with patient survival data," Nucleic Acids Res, vol. 40, pp. W123-6, Jul 2012.
[88] K. Li, W. He, N. Lin, X. Wang, and Q. X. Fan, "N-cadherin knock-down decreases invasiveness of esophageal squamous cell carcinoma in vitro," World J Gastroenterol, vol. 15, pp. 697-704, Feb 14 2009.
[89] K. Li, W. He, N. Lin, X. Wang, and Q. X. Fan, "Downregulation of N-cadherin expression inhibits invasiveness, arrests cell cycle and induces cell apoptosis in esophageal squamous cell carcinoma," Cancer Invest, vol. 28, pp. 479-86, Jun 2010.
[90] K. Li, X. Wang, W. He, N. Lin, and Q. X. Fan, "Expression of N-cadherin in esophageal squamous cell carcinoma and silencing expression of N-cadherin using RNA interference on invasiveness of EC9706 cells," Ai Zheng, vol. 28, pp. 8-13, Jan 2009.
[91] L. Li, M. Miyamoto, Y. Ebihara, S. Mega, R. Takahashi, R. Hase, et al., "DRD2/DARPP-32 expression correlates with lymph node metastasis and tumor progression in patients with esophageal squamous cell carcinoma," World J Surg, vol. 30, pp. 1672-9; discussion 1680-1, Sep 2006.
[92] N. Li, S. S. Li, H. Y. Zhang, X. Y. Xuan, X. Z. Zheng, F. Wang, et al., "[Effect of KISS-1 on invasive potential and proliferation of esophageal squamous carcinoma cell line EC-1]," Zhonghua Bing Li Xue Za Zhi, vol. 38, pp. 263-7, Apr 2009.
[93] P. Li, Z. Ling, H. Yang, Y. Huang, M. Zhao, Z. Zheng, et al., "Expression profile of metastasis-associated genes in esophageal squamous cell carcinoma," J Huazhong Univ Sci Technolog Med Sci, vol. 26, pp. 167-71, 2006.
[94] W. Li, F. Ding, L. Zhang, Z. Liu, Y. Wu, A. Luo, et al., "Overexpression of stefin A in human esophageal squamous cell carcinoma cells inhibits tumor cell growth, angiogenesis, invasion, and metastasis," Clin Cancer Res, vol. 11, pp. 8753-62, Dec 15 2005.
[95] W. W. Lin and M. Karin, "A cytokine-mediated link between innate immunity, inflammation, and cancer," J Clin Invest, vol. 117, pp. 1175-83, May 2007.
[96] M. Lioni, P. Brafford, C. Andl, A. Rustgi, W. El-Deiry, M. Herlyn, et al., "Dysregulation of claudin-7 leads to loss of E-cadherin expression and the increased invasion of esophageal squamous cell carcinoma cells," Am J Pathol, vol. 170, pp. 709-21, Feb 2007.
[97] G. H. Liu, I. Sancho-Martinez, and J. C. Izpisua Belmonte, "Cut and paste: restoring cellular function by gene correction," Cell Res, vol. 22, pp. 283-4, Feb 2012.
[98] S. G. Liu, B. S. Wang, Y. Y. Jiang, T. T. Zhang, Z. Z. Shi, Y. Yang, et al., "Atypical protein kinase Ciota (PKCiota) promotes metastasis of esophageal squamous cell carcinoma by enhancing resistance to Anoikis via PKCiota-SKP2-AKT pathway," Mol Cancer Res, vol. 9, pp. 390-402, Apr 2011.
[99] Y. C. Liu, C. P. Cheng, and V. S. Tseng, "Discovering relational-based association rules with multiple minimum supports on microarray datasets," Bioinformatics, vol. 27, pp. 3142-8, Nov 15 2011.
[100] Y. C. Liu, C. P. Cheng, and V. S. Tseng, "Mining differential top-k co-expression patterns from time course comparative gene expression datasets," BMC Bioinformatics, vol. 14, p. 230, 2013.
[101] S. Lu, J. Li, C. Song, K. Shen, and G. C. Tseng, "Biomarker detection in the integration of multiple multi-class genomic studies," Bioinformatics, vol. 26, pp. 333-40, Feb 1 2010.
[102] M. L. Luo, X. M. Shen, Y. Zhang, F. Wei, X. Xu, Y. Cai, et al., "Amplification and overexpression of CTTN (EMS1) contribute to the metastasis of esophageal squamous cell carcinoma by promoting cell migration and anoikis resistance," Cancer Res, vol. 66, pp. 11690-9, Dec 15 2006.
[103] M. L. Luo and M. R. Wang, "CTTN (EMS1): an oncogene contributing to the metastasis of esophageal squamous cell carcinoma," Cell Res, vol. 17, pp. 298-300, Apr 2007.
[104] D. L. Mandelker, K. Yamashita, Y. Tokumaru, K. Mimori, D. L. Howard, Y. Tanaka, et al., "PGP9.5 promoter methylation is an independent prognostic factor for esophageal squamous cell carcinoma," Cancer Res, vol. 65, pp. 4963-8, Jun 1 2005.
[105] K. Matsushima, H. Isomoto, N. Yamaguchi, N. Inoue, H. Machida, T. Nakayama, et al., "MiRNA-205 modulates cellular invasion and migration via regulating zinc finger E-box binding homeobox 2 expression in esophageal squamous cell carcinoma cells," J Transl Med, vol. 9, p. 30, 2011.
[106] Y. Matsushita, K. Yoshiie, Y. Imamura, H. Ogawa, H. Imamura, S. Takao, et al., "A subcloned human esophageal squamous cell carcinoma cell line with low thrombomodulin expression showed increased invasiveness compared with a high thrombomodulin-expressing clone--thrombomodulin as a possible candidate for an adhesion molecule of squamous cell carcinoma," Cancer Lett, vol. 127, pp. 195-201, May 15 1998.
[107] M. T. Maurano, R. Humbert, E. Rynes, R. E. Thurman, E. Haugen, H. Wang, et al., "Systematic localization of common disease-associated variation in regulatory DNA," Science, vol. 337, pp. 1190-5, Sep 7 2012.
[108] O. G. McDonald, H. Wu, W. Timp, A. Doi, and A. P. Feinberg, "Genome-scale epigenetic reprogramming during epithelial-to-mesenchymal transition," Nat Struct Mol Biol, vol. 18, pp. 867-74, Aug 2011.
[109] G. McVicker, B. van de Geijn, J. F. Degner, C. E. Cain, N. E. Banovich, A. Raj, et al., "Identification of genetic variants that affect histone modifications in human cells," Science, vol. 342, pp. 747-9, Nov 8 2013.
[110] C. Z. Michaylira, G. S. Wong, C. G. Miller, C. M. Gutierrez, H. Nakagawa, R. Hammond, et al., "Periostin, a cell adhesion molecule, facilitates invasion in the tumor microenvironment and annotates a novel tumor-invasive signature in esophageal cancer," Cancer Res, vol. 70, pp. 5281-92, Jul 1 2010.
[111] B. Minguez and A. Lachenmayer, "Diagnostic and prognostic molecular markers in hepatocellular carcinoma," Dis Markers, vol. 31, pp. 181-90, 2011.
[112] T. Miyazaki, H. Kato, M. Nakajima, M. Sohda, Y. Fukai, N. Masuda, et al., "FAK overexpression is correlated with tumour invasiveness and lymph node metastasis in oesophageal squamous cell carcinoma," Br J Cancer, vol. 89, pp. 140-5, Jul 7 2003.
[113] T. Miyazaki, H. Kato, Y. Shitara, M. Yoshikawa, K. Tajima, N. Masuda, et al., "Mutation and expression of the metastasis suppressor gene KAI1 in esophageal squamous cell carcinoma," Cancer, vol. 89, pp. 955-62, Sep 1 2000.
[114] D. Moher, A. Liberati, J. Tetzlaff, D. G. Altman, and P. Group, "Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement," Int J Surg, vol. 8, pp. 336-41, 2010.
[115] Y. Moreau, S. Aerts, B. De Moor, B. De Strooper, and M. Dabrowski, "Comparison and meta-analysis of microarray data: from the bench to the computer desk," Trends Genet, vol. 19, pp. 570-7, Oct 2003.
[116] Y. Mori, T. Okumura, S. Tsunoda, Y. Sakai, and Y. Shimada, "Gli-1 expression is associated with lymph node metastasis and tumor progression in esophageal squamous cell carcinoma," Oncology, vol. 70, pp. 378-89, 2006.
[117] T. Mukherjee, A. Kumar, M. Mathur, T. K. Chattopadhyay, and R. Ralhan, "Ets-1 and VEGF expression correlates with tumor angiogenesis, lymph node metastasis, and patient survival in esophageal squamous cell carcinoma," J Cancer Res Clin Oncol, vol. 129, pp. 430-6, Jul 2003.
[118] C. L. Mummery, J. Zhang, E. S. Ng, D. A. Elliott, A. G. Elefanty, and T. J. Kamp, "Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview," Circ Res, vol. 111, pp. 344-58, Jul 20 2012.
[119] S. Nagatani, Y. Shimada, Z. Li, J. Kaganoi, T. Kan, M. Maeda, et al., "Validation of intra-operative detection of paratracheal lymph node metastasis using real-time RT-PCR targeting esophageal squamous cell carcinoma," Jpn J Clin Oncol, vol. 33, pp. 549-55, Nov 2003.
[120] Y. Nakajima, K. Nagai, S. Miyake, K. Ohashi, T. Kawano, and T. Iwai, "Evaluation of an indicator for lymph node metastasis of esophageal squamous cell carcinoma invading the submucosal layer," Jpn J Cancer Res, vol. 93, pp. 305-12, Mar 2002.
[121] N. Oda and Y. Ono, "[Significance of the Yamamoto-Kohama mode of invasion in the prognosis of esophageal squamous cell carcinoma: relationship with reduced expression of involucrin protein]," Nihon Shokakibyo Gakkai Zasshi, vol. 101, pp. 591-7, Jun 2004.
[122] H. Ogata, S. Goto, K. Sato, W. Fujibuchi, H. Bono, and M. Kanehisa, "KEGG: Kyoto Encyclopedia of Genes and Genomes," Nucleic Acids Res, vol. 27, pp. 29-34, Jan 1 1999.
[123] I. Olkin and H. Saner, "Approximations for trimmed Fisher procedures in research synthesis," Stat Methods Med Res, vol. 10, pp. 267-76, Aug 2001.
[124] A. Ooki, K. Yamashita, S. Kikuchi, S. Sakuramoto, N. Katada, and M. Watanabe, "Phosphatase of regenerating liver-3 as a convergent therapeutic target for lymph node metastasis in esophageal squamous cell carcinoma," Int J Cancer, vol. 127, pp. 543-54, Aug 1 2010.
[125] T. Opsahl, F. Agneessens, and J. Skvoretz, "Node centrality in weighted networks: Generalizing degree and shortest paths," Social Networks, vol. 32, pp. 245-251, 2010.
[126] G. Ostlund, M. Lindskog, and E. L. Sonnhammer, "Network-based Identification of novel cancer genes," Mol Cell Proteomics, vol. 9, pp. 648-55, Apr 2010.
[127] S. L. Paige, S. Thomas, C. L. Stoick-Cooper, H. Wang, L. Maves, R. Sandstrom, et al., "A temporal chromatin signature in human embryonic stem cells identifies regulators of cardiac development," Cell, vol. 151, pp. 221-32, Sep 28 2012.
[128] A. Pennathur, M. K. Gibson, B. A. Jobe, and J. D. Luketich, "Oesophageal carcinoma," Lancet, vol. 381, pp. 400-12, Feb 2 2013.
[129] G. Piatetsky-Shapiro, Discovery, analysis, and presentation of strong rules. Cambridge, MA: AAAI/MIT Press, 1991.
[130] H. Qian, N. Lu, L. Xue, X. Liang, X. Zhang, M. Fu, et al., "Reduced MTA1 expression by RNAi inhibits in vitro invasion and migration of esophageal squamous cell carcinoma cell line," Clin Exp Metastasis, vol. 22, pp. 653-62, 2005.
[131] X. Qiao, H. H. Zhang, Y. Liu, M. J. Todd, and J. S. Marron, "Weighted Distance Weighted Discrimination and Its Asymptotic Properties," J Am Stat Assoc, vol. 105, pp. 401-414, Mar 1 2010.
[132] Y. Ren, S. Law, X. Huang, P. Y. Lee, M. Bacher, G. Srivastava, et al., "Macrophage migration inhibitory factor stimulates angiogenic factor expression and correlates with differentiation and lymph node status in patients with esophageal squamous cell carcinoma," Ann Surg, vol. 242, pp. 55-63, Jul 2005.
[133] D. R. Rhodes, T. R. Barrette, M. A. Rubin, D. Ghosh, and A. M. Chinnaiyan, "Meta-analysis of microarrays: interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer," Cancer Res, vol. 62, pp. 4427-33, Aug 1 2002.
[134] S. Roessler, E. L. Long, A. Budhu, Y. Chen, X. Zhao, J. Ji, et al., "Integrative genomic identification of genes on 8p associated with hepatocellular carcinoma progression and patient survival," Gastroenterology, vol. 142, pp. 957-966 e12, Apr 2012.
[135] N. Sadanaga, H. Kuwano, M. Watanabe, S. Maekawa, M. Mori, and K. Sugimachi, "Local immune response to tumor invasion in esophageal squamous cell carcinoma. The expression of human leukocyte antigen-DR and lymphocyte infiltration," Cancer, vol. 74, pp. 586-91, Jul 15 1994.
[136] S. Sahar and Y. Mansour, "An Empirical Evaluation of Interest-Level Criteria," in Data Mining and Knowledge Discovery: Theory, Tools, and Technology, 1999.
[137] M. Sakai, H. Kato, A. Sano, N. Tanaka, T. Inose, H. Kimura, et al., "Expression of lysyl oxidase is correlated with lymph node metastasis and poor prognosis in esophageal squamous cell carcinoma," Ann Surg Oncol, vol. 16, pp. 2494-501, Sep 2009.
[138] M. Sakamoto, T. Mori, Y. Masugi, K. Effendi, I. Rie, and W. Du, "Candidate molecular markers for histological diagnosis of early hepatocellular carcinoma," Intervirology, vol. 51 Suppl 1, pp. 42-5, 2008.
[139] T. Sanford, P. H. Chung, A. Reinish, V. Valera, R. Srinivasan, W. M. Linehan, et al., "Molecular sub-classification of renal epithelial tumors using meta-analysis of gene expression microarrays," PLoS One, vol. 6, p. e21260, 2011.
[140] D. Savic, H. Ye, I. Aneas, S. Y. Park, G. I. Bell, and M. A. Nobrega, "Alterations in TCF7L2 expression define its role as a key regulator of glucose metabolism," Genome Res, vol. 21, pp. 1417-25, Sep 2011.
[141] X. M. Shen, Y. P. Wu, Y. B. Feng, M. L. Luo, X. L. Du, Y. Zhang, et al., "Interaction of MT1-MMP and laminin-5gamma2 chain correlates with metastasis and invasiveness in human esophageal squamous cell carcinoma," Clin Exp Metastasis, vol. 24, pp. 541-50, 2007.
[142] Y. Shen, Y. Matsuno, S. D. Fouse, N. Rao, S. Root, R. Xu, et al., "X-inactivation in female human embryonic stem cells is in a nonrandom pattern and prone to epigenetic alterations," Proc Natl Acad Sci U S A, vol. 105, pp. 4709-14, Mar 25 2008.
[143] J. Shi, L. Y. Xue, N. Yin, J. Lu, M. Fu, L. J. Dong, et al., "[Clinical significance of abnormal expression of Aurora-A in human esophageal squamous cell carcinoma with or without lymph node metastasis]," Zhonghua Zhong Liu Za Zhi, vol. 32, pp. 748-51, Oct 2010.
[144] T. Shibata, T. Noguchi, S. Takeno, Y. Takahashi, S. Fumoto, and K. Kawahara, "Impact of nuclear galectin-3 expression on histological differentiation and vascular invasion in patients with esophageal squamous cell carcinoma," Oncol Rep, vol. 13, pp. 235-9, Feb 2005.
[145] Y. Song, C. Zhao, L. Dong, M. Fu, L. Xue, Z. Huang, et al., "Overexpression of cyclin B1 in human esophageal squamous cell carcinoma cells induces tumor cell invasive growth and metastasis," Carcinogenesis, vol. 29, pp. 307-15, Feb 2008.
[146] C. Stark, B. J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, and M. Tyers, "BioGRID: a general repository for interaction datasets," Nucleic Acids Res, vol. 34, pp. D535-9, Jan 1 2006.
[147] B. E. Stranger, S. B. Montgomery, A. S. Dimas, L. Parts, O. Stegle, C. E. Ingle, et al., "Patterns of cis regulatory variation in diverse human populations," PLoS Genet, vol. 8, p. e1002639, 2012.
[148] B. E. Stranger, E. A. Stahl, and T. Raj, "Progress and promise of genome-wide association studies for human complex trait genetics," Genetics, vol. 187, pp. 367-83, Feb 2011.
[149] H. Su, N. Hu, J. Shih, Y. Hu, Q. H. Wang, E. Y. Chuang, et al., "Gene expression analysis of esophageal squamous cell carcinoma reveals consistent molecular profiles related to a family history of upper gastrointestinal cancer," Cancer Res, vol. 63, pp. 3872-6, Jul 15 2003.
[150] H. Su, N. Hu, H. H. Yang, C. Wang, M. Takikita, Q. H. Wang, et al., "Global gene expression profiling and validation in esophageal squamous cell carcinoma and its association with clinical phenotypes," Clin Cancer Res, vol. 17, pp. 2955-66, May 1 2011.
[151] H. Sun, M. S. Chua, D. Yang, A. Tsalenko, B. J. Peter, and S. So, "Antibody Arrays Identify Potential Diagnostic Markers of Hepatocellular Carcinoma," Biomark Insights, vol. 3, pp. 1-18, 2008.
[152] H. Sun and S. Wang, "Network-based regularization for matched case-control analysis of high-dimensional DNA methylation data," Stat Med, vol. 32, pp. 2127-39, May 30 2013.
[153] M. M. Suzuki and A. Bird, "DNA methylation landscapes: provocative insights from epigenomics," Nat Rev Genet, vol. 9, pp. 465-76, Jun 2008.
[154] S. Suzuki, T. Miyazaki, N. Tanaka, M. Sakai, A. Sano, T. Inose, et al., "Prognostic significance of CD151 expression in esophageal squamous cell carcinoma with aggressive cell proliferation and invasiveness," Ann Surg Oncol, vol. 18, pp. 888-93, Mar 2011.
[155] P. Tang, Z. Yu, K. Zhang, Y. Wang, Z. Ma, S. Zhang, et al., "Slug down-regulation by RNA interference inhibits invasion growth in human esophageal squamous cell carcinoma," BMC Gastroenterol, vol. 11, p. 60, 2011.
[156] Y. Tezuka, S. Yonezawa, I. Maruyama, Y. Matsushita, T. Shimizu, H. Obama, et al., "Expression of thrombomodulin in esophageal squamous cell carcinoma and its relationship to lymph node metastasis," Cancer Res, vol. 55, pp. 4196-200, Sep 15 1995.
[157] R. E. Thurman, E. Rynes, R. Humbert, J. Vierstra, M. T. Maurano, E. Haugen, et al., "The accessible chromatin landscape of the human genome," Nature, vol. 489, pp. 75-82, Sep 6 2012.
[158] S. Tian, J. G. Krueger, K. Li, A. Jabbari, C. Brodmerkel, M. A. Lowes, et al., "Meta-analysis derived (MAD) transcriptome of psoriasis defines the "core" pathogenesis of disease," PLoS One, vol. 7, p. e44274, 2012.
[159] M. Tomita, T. Ayabe, Y. Matsuzaki, M. Edagawa, M. Maeda, T. Shimizu, et al., "Expression of nm23-H1 gene product in esophageal squamous cell carcinoma and its association with vessel invasion and survival," BMC Cancer, vol. 1, p. 3, 2001.
[160] G. C. Tseng, D. Ghosh, and E. Feingold, "Comprehensive literature review and statistical considerations for microarray meta-analysis," Nucleic Acids Res, vol. 40, pp. 3785-99, May 2012.
[161] M. Tsuchiya, J. S. Parker, H. Kono, M. Matsuda, H. Fujii, and I. Rusyn, "Gene expression in nontumoral liver tissue and recurrence-free survival in hepatitis C virus-positive hepatocellular carcinoma," Mol Cancer, vol. 9, p. 74, 2010.
[162] C. L. Tucker and S. Fields, "Lethal combinations," Nat Genet, vol. 35, pp. 204-5, Nov 2003.
[163] S. Tufféry, Data Mining and Statistics for Decision Making. Chichester, GB: John Wiley & Sons, 2011.
[164] S. Uchida, Y. Shimada, G. Watanabe, Z. G. Li, T. Hong, M. Miyake, et al., "Motility-related protein (MRP-1/CD9) and KAI1/CD82 expression inversely correlate with lymph node metastasis in oesophageal squamous cell carcinoma," Br J Cancer, vol. 79, pp. 1168-73, Mar 1999.
[165] Y. Uchikado, H. Inoue, N. Haraguchi, K. Mimori, S. Natsugoe, H. Okumura, et al., "Gene expression profiling of lymph node metastasis by oligomicroarray analysis using laser microdissection in esophageal squamous cell carcinoma," Int J Oncol, vol. 29, pp. 1337-47, Dec 2006.
[166] Y. Usami, H. Chiba, F. Nakayama, J. Ueda, Y. Matsuda, N. Sawada, et al., "Reduced expression of claudin-7 correlates with invasion and metastasis in squamous cell carcinoma of the esophagus," Hum Pathol, vol. 37, pp. 569-77, May 2006.
[167] T. Vaissiere, R. J. Hung, D. Zaridze, A. Moukeria, C. Cuenin, V. Fasolo, et al., "Quantitative analysis of DNA methylation profiles in lung cancer identifies aberrant DNA methylation of specific genes and its association with gender and cancer risk factors," Cancer Res, vol. 69, pp. 243-52, Jan 1 2009.
[168] L. J. van 't Veer, H. Dai, M. J. van de Vijver, Y. D. He, A. A. Hart, M. Mao, et al., "Gene expression profiling predicts clinical outcome of breast cancer," Nature, vol. 415, pp. 530-6, Jan 31 2002.
[169] P. van Hagen, M. C. Hulshof, J. J. van Lanschot, E. W. Steyerberg, M. I. van Berge Henegouwen, B. P. Wijnhoven, et al., "Preoperative chemoradiotherapy for esophageal or junctional cancer," N Engl J Med, vol. 366, pp. 2074-84, May 31 2012.
[170] A. Verma, N. K. Shukla, S. V. Deo, S. D. Gupta, and R. Ralhan, "MEMD/ALCAM: a potential marker for tumor invasion and nodal metastasis in esophageal squamous cell carcinoma," Oncology, vol. 68, pp. 462-70, 2005.
[171] S. Vinterbo and L. Ohno-Machado, "A genetic algorithm to select variables in logistic regression: example in the domain of myocardial infarction," Proc AMIA Symp, pp. 984-8, 1999.
[172] J. Wang, K. R. Coombes, W. E. Highsmith, M. J. Keating, and L. V. Abruzzo, "Differences in gene expression between B-cell chronic lymphocytic leukemia and normal B cells: a meta-analysis of three microarray studies," Bioinformatics, vol. 20, pp. 3166-78, Nov 22 2004.
[173] J. Wang, Y. Tian, K. L. Phillips, N. Chiverton, G. Haddock, R. A. Bunning, et al., "Tumor necrosis factor alpha- and interleukin-1beta-dependent induction of CCL3 expression by nucleus pulposus cells promotes macrophage migration through CCR1," Arthritis Rheum, vol. 65, pp. 832-42, Mar 2013.
[174] X. Wang, L. Dong, J. Xie, T. Tong, and Q. Zhan, "Stable knockdown of Aurora-A by vector-based RNA interference in human esophageal squamous cell carcinoma cell line inhibits tumor cell proliferation, invasion and enhances apoptosis," Cancer Biol Ther, vol. 8, pp. 1852-9, Oct 2009.
[175] X. C. Wang, Y. P. Wu, B. Ye, D. C. Lin, Y. B. Feng, Z. Q. Zhang, et al., "Suppression of anoikis by SKP2 amplification and overexpression promotes metastasis of esophageal squamous cell carcinoma," Mol Cancer Res, vol. 7, pp. 12-22, Jan 2009.
[176] Y. Wang, J. G. Klijn, Y. Zhang, A. M. Sieuwerts, M. P. Look, F. Yang, et al., "Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer," Lancet, vol. 365, pp. 671-9, Feb 19-25 2005.
[177] L. D. Ward and M. Kellis, "HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants," Nucleic Acids Res, vol. 40, pp. D930-4, Jan 2012.
[178] D. Welter, J. MacArthur, J. Morales, T. Burdett, P. Hall, H. Junkins, et al., "The NHGRI GWAS Catalog, a curated resource of SNP-trait associations," Nucleic Acids Res, vol. 42, pp. D1001-6, Jan 2014.
[179] J. West, M. Widschwendter, and A. E. Teschendorff, "Distinctive topology of age-associated epigenetic drift in the human interactome," Proc Natl Acad Sci U S A, vol. 110, pp. 14138-43, Aug 27 2013.
[180] S. White and P. Smyth, "Algorithms for estimating relative importance in networks," presented at the Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, Washington, D.C., 2003.
[181] P. Wirapati, C. Sotiriou, S. Kunkel, P. Farmer, S. Pradervand, B. Haibe-Kains, et al., "Meta-analysis of gene expression profiles in breast cancer: toward a unified understanding of breast cancer subtyping and prognosis signatures," Breast Cancer Res, vol. 10, p. R65, 2008.
[182] F. H. Wong, C. Y. Huang, L. J. Su, Y. C. Wu, Y. S. Lin, J. Y. Hsia, et al., "Combination of microarray profiling and protein-protein interaction databases delineates the minimal discriminators as a metastasis network for esophageal squamous cell carcinoma," Int J Oncol, vol. 34, pp. 117-28, Jan 2009.
[183] V. C. Wong, P. L. Chan, C. Bernabeu, S. Law, L. D. Wang, J. L. Li, et al., "Identification of an invasion and tumor-suppressing gene, Endoglin (ENG), silenced by both epigenetic inactivation and allelic loss in esophageal squamous cell carcinoma," Int J Cancer, vol. 123, pp. 2816-23, Dec 15 2008.
[184] V. C. Wong, J. M. Ko, R. Z. Qi, P. J. Li, L. D. Wang, J. L. Li, et al., "Abrogated expression of DEC1 during oesophageal squamous cell carcinoma progression is age- and family history-related and significantly associated with lymph node metastasis," Br J Cancer, vol. 104, pp. 841-9, Mar 1 2011.
[185] F. Xie, K. Li, and X. Ouyang, "Twist, an independent prognostic marker for predicting distant metastasis and survival rates of esophageal squamous cell carcinoma patients," Clin Exp Metastasis, vol. 26, pp. 1025-32, 2009.
[186] F. Xie, L. Ye, J. Chen, N. Wu, Z. Zhang, Y. Yang, et al., "The impact of Metastasis Suppressor-1, MTSS1, on oesophageal squamous cell carcinoma and its clinical significance," J Transl Med, vol. 9, p. 95, 2011.
[187] J. J. Xie, L. Y. Xu, Y. M. Xie, Z. P. Du, C. H. Feng, H. Dong, et al., "Involvement of Cyr61 in the growth, invasiveness and adhesion of esophageal squamous cell carcinoma cells," Int J Mol Med, vol. 27, pp. 429-34, Mar 2011.
[188] G. Xiong, H. Guo, X. Ge, X. Xu, X. Yang, K. Yang, et al., "Decoy receptor 3 expression in esophageal squamous cell carcinoma: correlation with tumour invasion and metastasis," Biomarkers, vol. 16, pp. 155-60, Mar 2011.
[189] H. Yamamoto, F. Itoh, S. Iku, M. Hosokawa, and K. Imai, "Expression of the gamma(2) chain of laminin-5 at the invasive front is associated with recurrence and poor prognosis in human esophageal squamous cell carcinoma," Clin Cancer Res, vol. 7, pp. 896-900, Apr 2001.
[190] S. Yan, C. Zhou, X. Lou, Z. Xiao, H. Zhu, Q. Wang, et al., "PTTG overexpression promotes lymph node metastasis in human esophageal squamous cell carcinoma," Cancer Res, vol. 69, pp. 3283-90, Apr 15 2009.
[191] W. Yan, J. H. Shih, J. Rodriguez-Canales, M. A. Tangrea, K. Ylaya, J. Hipp, et al., "Identification of unique expression signatures and therapeutic targets in esophageal squamous cell carcinoma," BMC Res Notes, vol. 5, p. 73, 2012.
[192] T. P. Yang, C. Beazley, S. B. Montgomery, A. S. Dimas, M. Gutierrez-Arcelus, B. E. Stranger, et al., "Genevar: a database and Java application for the analysis and visualization of SNP-gene associations in eQTL studies," Bioinformatics, vol. 26, pp. 2474-6, Oct 1 2010.
[193] Y. L. Yang, J. Y. Chu, M. L. Luo, Y. P. Wu, Y. Zhang, Y. B. Feng, et al., "Amplification of PRKCI, located in 3q26, is associated with lymph node metastasis in esophageal squamous cell carcinoma," Genes Chromosomes Cancer, vol. 47, pp. 127-36, Feb 2008.
[194] Q. Ye, Z. Yan, X. Liao, Y. Li, J. Yang, J. Sun, et al., "MUC1 induces metastasis in esophageal squamous cell carcinoma by upregulating matrix metalloproteinase 13," Lab Invest, vol. 91, pp. 778-87, May 2011.
[195] H. F. Yuen, Y. P. Chan, K. K. Chan, Y. Y. Chu, M. L. Wong, S. Y. Law, et al., "Id-1 and Id-2 are markers for metastasis and prognosis in oesophageal squamous cell carcinoma," Br J Cancer, vol. 97, pp. 1409-15, Nov 19 2007.
[196] H. F. Yuen, Y. P. Chan, M. L. Wong, W. K. Kwok, K. K. Chan, P. Y. Lee, et al., "Upregulation of Twist in oesophageal squamous cell carcinoma is associated with neoplastic transformation and distant metastasis," J Clin Pathol, vol. 60, pp. 510-4, May 2007.
[197] C. Zhang, K. Li, L. Wei, Z. Li, P. Yu, L. Teng, et al., "p300 expression repression by hypermethylation associated with tumour invasion and metastasis in oesophageal squamous cell carcinoma," J Clin Pathol, vol. 60, pp. 1249-53, Nov 2007.
[198] H. Y. Zhang, X. Z. Zheng, X. H. Wang, X. Y. Xuan, F. Wang, and S. S. Li, "S100A4 mediated cell invasion and metastasis of esophageal squamous cell carcinoma via the regulation of MMP-2 and E-cadherin activity," Mol Biol Rep, vol. 39, pp. 199-208, Jan 2012.
[199] H. Y. Zhang, X. Z. Zheng, X. Y. Xuan, X. H. Wang, F. Wang, and S. S. Li, "[Expression of S100A4 in esophageal squamous cell carcinoma and its relation to tumor invasion and metastasis]," Nan Fang Yi Ke Da Xue Xue Bao, vol. 30, pp. 1541-4, Jul 2010.
[200] X. Zhang, P. Lin, Z. H. Zhu, H. Long, J. Wen, H. Yang, et al., "Expression profiles of early esophageal squamous cell carcinoma by cDNA microarray," Cancer Genet Cytogenet, vol. 194, pp. 23-9, Oct 2009.
[201] Z. Q. Zhou, W. H. Cao, J. J. Xie, J. Lin, Z. Y. Shen, Q. Y. Zhang, et al., "Expression and prognostic significance of THBS1, Cyr61 and CTGF in esophageal squamous cell carcinoma," BMC Cancer, vol. 9, p. 291, 2009.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-08-14起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-08-14起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw