進階搜尋


下載電子全文  
系統識別號 U0026-0408201315282800
論文名稱(中文) 非熱微電漿對促進傷口癒合之效用探討
論文名稱(英文) Efficacy study of non-thermal micro-plasma for promoting wound healing
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系碩博士班
系所名稱(英) Department of Materials Science and Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 王奕程
研究生(英文) Yi-Cheng Wang
學號 n56001103
學位類別 碩士
語文別 中文
論文頁數 84頁
口試委員 指導教授-廖峻德
口試委員-王士豪
口試委員-王德華
口試委員-翁志強
中文關鍵字 非熱微電漿  二氧化碳雷射  傷口癒合  上皮再生 
英文關鍵字 non-thermal micro-plasma  CO2 laser  wound healing  reepithelialization 
學科別分類
中文摘要 皮膚上有許多問題如皺紋、疤痕、色素沉澱與粉刺等問題,可經由雷射手術將上述問題獲得改善。經雷射照射後的傷口需時四至十二周可完成皮膚重塑,而在傷口癒合的照護上使用aquaphor healing ointment、biafine toptical emulsion、polysporin、neosporin等常見臨床用治療藥膏,但部分藥膏有刺激性,使用時會伴隨刺痛感,且藥物過敏者不建議使用,且使用藥膏需每天更換敷藥。所以提出一種非接觸式、無痛、不造成過敏並具抗菌附加效果,且免除每天頻繁換藥的治療方式。故使用非熱微電漿系統在雷射照射後傷口進行治療,探討其表皮與真皮介面接合與促進傷口癒合。
非熱微電漿系統以射頻電源供應器作為激發源,工作距離固定為4 mm。主要激發氣體為氬氣與氮氣,流量分別為5 slm與5 sccm。在此工作距離下調控電漿激發功率與氮氣及氬氣混合比例進行電漿物種與溫度診斷。因此以激發功率為17 W時,電漿溫度低於37℃;並以氮氣混合比例為0.1%時,NO物種之相對強度為純氬氣電漿之八倍為治療參數。主要在非熱微電漿中的物種為NO、OH、O、Ar等。實驗分為三組:未治療組、電漿治療一次組、電漿治療三次組(術後前三天)。以傷口面積評估法評估癒合速率。癒合品質部分,以光學同調斷層掃描(OCT)、免疫組織化學染色與血流分布造影評估。傷口面積評估顯示,電漿治療一次後平均十八天結痂掉落,較未治療組平均二十五天結痂掉落縮短28% 的癒合時程。OCT與組織化學染色觀察中,電漿治療三次組在術後第七天觀察到表皮與真皮介面接合,即上皮再生。而電漿治療一次與三次組在術後七天也觀察到發展良好的肉芽組織。而未治療組在術後第十四天才出現表皮與真皮介面接合。OCT影像積分密度量化,在術後第十四天電漿治療三次組上升87.2%,電漿治療一次組上升87.6%,未治療組上升49.6%。血流通量分布造影部分,在術後第二十一天電漿治療組三次組上升60.4%,電漿治療一次組上升35.2%,未治療組上升37.0%。由縮短癒合時程、OCT影像積分密度與血流通量分佈,顯示電漿治療在促進傷口癒合與表皮與真皮介面接合之成效。
英文摘要 Currently, wound healing and skin regenerations are one of the major public health concerns which required considerable method and takes time. The laser irradiation is the frequently using method for the facial problems such as wrinkle, scar, pigmentation and acne. In addition, it could be promotes the remodeling of dermal-epidermal junction and need 4~12 weeks for complete recovery from wound healing and skin regeneration. In general, the common clinical prescription of the laser irradiation of the wound has been used by healing ointment such as aqurphor healing ointment (AHO), biafine topical emulsion (BTE), polysporin and neosporin, etc. However, healing ointment has might feel uncomfortable, tingling and allergy problem for some patients which indicates the urgent need to develop effective techniques to overcome the above problems. In the recent years, plasma therapy has attracted widespread interest which providing more advantage such as contact-free, painless, non-allergy and with antibacterial effect.
In this present work, we are introducing non-thermal micro-plasma techniques which significantly inducing skin remodeling dermal-epidermal junction and promoting wound healing. Herein, the animal modeling was divided into three conditions such as non-treatment (NT), plasma treatment once (PT1) and plasma treatment three times (PT3). The non-thermal micro-plasma was generated from radio frequency and working distance between skin surface and micro-plasma was 4 mm. The optimized micro-plasma plume temperature 37°C was controlled by adjusting applied power and nitrogen gas insert. The plasma species was investigated with optical emission spectroscopy (OES) which resulted that the NO, OH, O, and Ar were major species in the non-thermal micro-plasma system. The reduction percentage of wound area at the 21 postoperative days (POD) was found to be 80%, 90% and 100% for NT, PT1 and PT3 respectively in presence of nitrogen 0.1%.
In addition, the highest intensity of NO species was significantly increased by the laser irradiated wound healing. The wound healing quality assessments were studied by the optical coherence tomography (OCT), histochemistry and immunohistochemistry staining. The remodeling of dermal-epidermal junction, reepithelialization and well-developed granulation tissues were observed at 7 POD for PT1, PT3 group and 14 POD for NT group. The quantification of OCT image intensity at 14 POD and blood flow intensity at 21 POD results suggest that NT, PT1, PT3 group increased 49.6%, 87.6%, 87.2% and 37.0%, 35.2%, 60.4% by comparing with 1 POD intensity. Theses evidences proved that this novel non-thermal micro-plasma technique promising to be used as a fast and effective treatment for laser irradiated wound healing and remodeling the dermal-epidermal junction.
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 VI
表目錄 IX
圖目錄 X
第一章 序論 1
1.1 前言 1
1.2 研究動機 1
1.3 文獻回顧 2
1.3.1 微電漿形式 3
1.3.2 非熱微電漿在動物模式上傷口癒合的可適用性 5
1.3.3 以非熱微電漿產生一氧化氮分子對傷口癒合之影響 10
1.3.4 非熱微電漿應用在雷射照射後傷口癒合 11
1.4 研究目的 13
第二章 理論基礎 14
2.1 雷射與皮膚醫學 14
2.2 傷口癒合 17
2.3 電漿 18
2.3.1 電漿簡介 18
2.3.2 大氣電漿 20
2.3.3 微電漿 21
2.3.4 電漿中的物種與效應 25
第三章 材料與方法 29
3.1 實驗設計與流程 29
3.2 實驗材料與製備 30
3.2.1 實驗動物 30
3.2.2 傷口製造 30
3.2.3 非熱微電漿系統 31
3.3 分析儀器 34
3.3.1 光學放射光譜儀 34
3.3.2 螢光式光纖溫度計 37
3.3.3 雷射都卜勒血流分佈造影 37
3.3.4 光學同調斷層掃描 39
3.3.5 組織病理學分析 40
第四章 非熱微電漿系統診斷與雷射照射傷口模式的建立 44
4.1 非熱微電漿系統溫度量測 44
4.2 非熱微電漿系統之特性光譜解析- 光學放射光譜儀 46
4.2.1 電漿全區段光譜掃描分析 46
4.2.2 電漿中特定物種之光譜掃描與半定量分析 48
4.3 二氧化碳雷射強度與照射後傷口深度關係 52
第五章 非熱微電漿系統在傷口癒合速率、品質與組織學的評估 55
5.1 傷口癒合速率 - 傷口面積評估法 55
5.2 傷口癒合品質評估 58
5.2.1 血流分布評估 58
5.2.2. 光學同調斷層掃描 61
5.3 傷口在組織學的評估 65
5.3.1 組織化學染色- H&E stain 65
5.3.2 免疫組織化學染色- 層黏蛋白(Laminin) 67
5.3.3 免疫組織化學染色- 基質金屬蛋白酵素第三型 (MMP-3) 69
5.4 非熱微電漿對重塑表皮與真皮介面接合與促進雷射照射傷口癒合之可能機轉 71
結論 73
參考文獻 75
附錄 82
參考文獻 [1] M. D. Adam J. Singer and M. D. Alexander B. Dagum, "Current Management of Acute Cutaneous Wounds," The New England Journal of Medicine, vol. 359, pp. 1037-1046, 2008.
[2] G. C. Gurtner, S. Werner, Y. Barrandon, and M. T. Longaker, "Wound repair and regeneration," Nature, vol. 453, pp. 314-321, 2008.
[3] C. Harvey, "Wound Healing," Orthopaedic Nursing, vol. 24, pp. 143-157, 2005.
[4] L. M. Morton and T. J. Phillips, "Wound healing update," Seminars in Cutaneous Medicine and Surgery, vol. 31, pp. 33-37, 2012.
[5] D. S. Sarnoff, "A comparison of wound healing between a skin protectant ointment and a medical device topical emulsion after laser resurfacing of the perioral area," Journal of the American Academy of Dermatology, vol. 64, pp. 36-43, 2011.
[6] N. S. Trookman, R. L. Rizer, and T. Weber, "Treatment of minor wounds from dermatologic procedures: a comparison of three topical wound care ointments using a laser wound model," Journal of the American Academy of Dermatology, vol. 64, pp. 8-15, 2011.
[7] M. Lupo and L. Jacob, "Cosmeceuticals used in conjunction with laser resurfacing," Seminars in Cutaneous Medicine and Surgery, vol. 30, pp. 156-162, 2011.
[8] I. Langmuir, "Oscillations in Ionized Gases," Proceedings of the National Academy of Sciences, vol. 14, pp. 627-637, 1928.
[9] A. Sch¨utze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and a. R. F. Hicks, "The atmospheric-pressure plasma jet: a review and comparison to other plasma sources," IEEE Transactios on plasma science, vol. 26, pp. 1685-1694, 1998.
[10] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, "Atmospheric pressure plasmas: A review," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 61, pp. 2-30, 2006.
[11] W. K. Huang, C. C. Weng, J. D. Liao, Y. C. Wang, and S. F. Chuang, "Capillary-tube-based micro-plasma system for disinfecting dental biofilm," International Journal of Radiation Biology, vol. 89, pp. 364-370, 2013.
[12] F. Spencer P. Kuo, IEEE, Cheng-Yen Chen, Chuan-Shun Lin, and Shu-Hsing Chiang, "Applications of Air Plasma for Wound Bleeding Control and Healing
" IEEE Transactions on plasma science, vol. 40, pp. 1117-1723, 2012.
[13] E. Garcia-Alcantara, R. Lopez-Callejas, P. R. Morales-Ramirez, R. Pena-Eguiluz, R. Fajardo-Munoz, A. Mercado-Cabrera, S. R. Barocio, R. Valencia-Alvarado, B. G. Rodriguez-Mendez, A. E. Munoz-Castro, A. D. Piedad-Beneitez, and I. A. Rojas-Olmedo, "In Vivo Accelerated Acute Wound Healing in Mouse Skin Using Combined Treatment of Argon and Helium Plasma Needle," Archives of Medical Research, vol. 44, pp. 169-177, 2013.
[14] A. B. Shekhter, V. A. Serezhenkov, T. G. Rudenko, A. V. Pekshev, and A. F. Vanin, "Beneficial effect of gaseous nitric oxide on the healing of skin wounds," Nitric Oxide, vol. 12, pp. 210-219, 2005.
[15] H.-R. Metelmann, T. T. Vu, H. T. Do, T. N. B. Le, T. H. A. Hoang, T. T. T. Phi, T. M. L. Luong, V. T. Doan, T. T. H. Nguyen, T. H. M. Nguyen, T. L. Nguyen, D. Q. Le, T. K. X. Le, T. von Woedtke, R. Bussiahn, K.-D. Weltmann, R. Khalili, and F. Podmelle, "Scar formation of laser skin lesions after cold atmospheric pressure plasma (CAP) treatment: A clinical long term observation," Clinical Plasma Medicine, vol. 1, pp. 30-35, 2013.
[16] W. Funk, F. Podmelle, C. Guiol, and H. R. Metelmann, "Aesthetic satisfaction scoring - introducing an aesthetic numeric analogue scale (ANA-scale)," Journal of Cranio-Maxillofacial Surgery, vol. 40, pp. 439-442, 2012.
[17] N. B. Meduri, "Facial resurfacing: An overview," Operative Techniques in Otolaryngology-Head and Neck Surgery, vol. 18, pp. 172-180, 2007.
[18] Z. Tannous, "Fractional resurfacing," Clinics in Dermatology, vol. 25, pp. 480-486, 2007.
[19] D. Manstein, G. S. Herron, R. K. Sink, H. Tanner, and R. R. Anderson, "Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury," Lasers in Surgery and Medicine, vol. 34, pp. 426-438, 2004.
[20] W. R. Lee, S. C. Shen, S. A. Al-Suwayeh, Y. C. Li, and J. Y. Fang, "Erbium:YAG laser resurfacing increases skin permeability and the risk of excessive absorption of antibiotics and sunscreens: the influence of skin recovery on drug absorption," Toxicology Letters, vol. 211, pp. 150-158, 2012.
[21] M. Wanner, E. L. Tanzi, and T. S. Alster, "Fractional photothermolysis: treatment of facial and nonfacial cutaneous photodamage with a 1,550-nm erbium-doped fiber laser," Dermatologic Surgery, vol. 33, pp. 23-28, 2007.
[22] G. Lloyd, G. Friedman, S. Jafri, G. Schultz, A. Fridman, and K. Harding, "Gas Plasma: Medical Uses and Developments in Wound Care," Plasma Processes and Polymers, vol. 7, pp. 194-211, 2010.
[23] K. H. Becker, K. H. Schoenbach, and J. G. Eden, "Microplasmas and applications," Journal of Physics D: Applied Physics, vol. 39, pp. 55-70, 2006.
[24] K. H. Becker, N. M. Masoud, K. E. Martus, and K. H. Schoenbach, "Electron-driven processes in high-pressure plasmas," The European Physical Journal D, vol. 35, pp. 279-297, 2005.
[25] A. L. Garner, "Cathode spot motion in an oblique magnetic field," Applied Physics Letters, vol. 92, p. 011505, 2008.
[26] Y. H. Lee, C. H. Yi, M. J. Chung, and G. Y. Yeom, "Characteristics of He/O2 atmospheric pressure glow discharge and its dry etching properties of organic materials," Surface and Coatings Technology, vol. 146-147, pp. 474-479, 2001.
[27] J. Heinlin, G. Isbary, W. Stolz, G. Morfill, M. Landthaler, T. Shimizu, B. Steffes, T. Nosenko, J. Zimmermann, and S. Karrer, "Plasma applications in medicine with a special focus on dermatology," Journal of the European Academy of Dermatology and Venereology, vol. 25, pp. 1-11, 2011.
[28] J. Heinlin, G. Morfill, M. Landthaler, W. Stolz, G. Isbary, J. L. Zimmermann, T. Shimizu, and S. Karrer, "Plasma medicine: possible applications in dermatology," Journal der Deutschen Dermatologischen Gesellschaft, vol. 8, pp. 968-976, 2010.
[29] J. W. Fluhr, S. Sassning, O. Lademann, M. E. Darvin, S. Schanzer, A. Kramer, H. Richter, W. Sterry, and J. Lademann, "In vivo skin treatment with tissue-tolerable plasma influences skin physiology and antioxidant profile in human stratum corneum," Experimental Dermatology, vol. 21, pp. 130-134, 2012.
[30] T. von Woedtke, S. Reuter, K. Masur, and K. D. Weltmann, "Plasmas for medicine," Physics Reports, vol. 00, pp. 1-38, 2013.
[31] 林天送, "一氧化氮醫學," 科學發展, vol. 461, pp. 72-75, 2011.
[32] J. M. Wong and T. R. Billiar, "Regulation and Function of Inducible Nitric Oxide Synthase during Sepsis and Acute Inflammation," in Advances in Pharmacology. vol. 34, I. Louis and M. Ferid, Eds., ed: Academic Press, 1995, pp. 155-170.
[33] C. Szabó and C. Thiemermann, "Regulation of the Expression of the Inducible Isoform of Nitric Oxide Synthase," in Advances in Pharmacology. vol. 34, I. Louis and M. Ferid, Eds., ed: Academic Press, 1995, pp. 113-153.
[34] M. D. Maria B. Witte and M. D. Adrian Barbul, "Role of nitric oxide in wound repair," The American Journal of Surgery, vol. 183, pp. 406-412, 2002.
[35] M. Rizk, M. B. Witte, and A. Barbul, "Nitric oxide and wound healing," World Journal of Surgery, vol. 28, pp. 301-306, 2004.
[36] A. Villalobo, "Nitric oxide and cell proliferation," FEBS Journal, vol. 273, pp. 2329-2344, 2006.
[37] M. Hoentsch, T. von Woedtke, K.-D. Weltmann, and J. Barbara Nebe, "Time-dependent effects of low-temperature atmospheric-pressure argon plasma on epithelial cell attachment, viability and tight junction formationin vitro," Journal of Physics D: Applied Physics, vol. 45, p. 025206, 2012.
[38] J. L. Garcia, A. Asadinezhad, J. Pachernik, M. Lehocky, I. Junkar, P. Humpolicek, P. Saha, and P. Valasek, "Cell proliferation of HaCaT keratinocytes on collagen films modified by argon plasma treatment," Molecules, vol. 15, pp. 2845-2856, 2010.
[39] H. Zhu, B. Ka, and F. Murad, "Nitric oxide accelerates the recovery from burn wounds," World Journal of Surgery, vol. 31, pp. 624-631, 2007.
[40] B. B. Childress and J. K. Stechmiller, "Role of Nitric Oxide in Wound Healing," Biological Research For Nursing, vol. 4, pp. 5-15, 2002.
[41] H. Zhu, X. Wei, K. Bian, and F. Murad, "Effects of nitric oxide on skin burn wound healing," Journal of Burn Care & Research, vol. 29, pp. 804-814, 2008.
[42] Ann Schwentker, Yoram Vodovotz, Richard Weller, and a. T. R. Billiar, "Nitric oxide and wound repair: role of cytokines?," Nitric Oxide, vol. 7, pp. 1-10, 2002.
[43] J. Liebmann, J. Scherer, N. Bibinov, P. Rajasekaran, R. Kovacs, R. Gesche, P. Awakowicz, and V. Kolb-Bachofen, "Biological effects of nitric oxide generated by an atmospheric pressure gas-plasma on human skin cells," Nitric Oxide, vol. 24, pp. 8-16, 2011.
[44] 郭緒東 and 張天長, "外傷傷口癒合與慢性傷口," 家庭醫學與基層醫療, vol. 27, pp. 414-421, 2012.
[45] S. Kalghatgi, G. Friedman, A. Fridman, and A. M. Clyne, "Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release," Annals of Biomedical Engineering, vol. 38, pp. 748-757, 2010.
[46] R. Huo, Q. Ma, J. J. Wu, K. Chin-Nuke, Y. Jing, J. Chen, M. E. Miyar, S. C. Davis, and J. Li, "Noninvasive electromagnetic fields on keratinocyte growth and migration," Journal of Surgical Research, vol. 162, pp. 299-307, 2010.
[47] M. J. Callaghan, E. I. Chang, N. Seiser, S. Aarabi, S. Ghali, E. R. Kinnucan, B. J. Simon, and G. C. Gurtner, "Pulsed electromagnetic fields accelerate normal and diabetic wound healing by increasing endogenous FGF-2 release," Plastic and Reconstructive Surgery, vol. 121, pp. 130-141, 2008.
[48] R. Fitzpatrick, E. Bernstein, S. Iyer, D. Brown, P. Andrews, and K. Penny, "A histopathologic evaluation of the Plasma Skin Regeneration System (PSR) versus a standard carbon dioxide resurfacing laser in an animal model," Lasers in Surgery and Medicine, vol. 40, pp. 93-99, 2008.
[49] C. I. Wright, C. I. Kroner, and R. Draijer, "Non-invasive methods and stimuli for evaluating the skin's microcirculation," Journal of Pharmacological and Toxicological Methods, vol. 54, pp. 1-25, 2006.
[50] E. R. La Hei, A. J. Holland, and H. C. Martin, "Laser Doppler imaging of paediatric burns: burn wound outcome can be predicted independent of clinical examination," Burns, vol. 32, pp. 550-553, 2006.
[51] P. G. McGuire and T. R. Howdieshell, "The importance of engraftment in flap revascularization: confirmation by laser speckle perfusion imaging," Journal of Surgical Research, vol. 164, pp. 201-212, 2010.
[52] K. Sahu, Y. Verma, M. Sharma, K. D. Rao, and P. K. Gupta, "Non-invasive assessment of healing of bacteria infected and uninfected wounds using optical coherence tomography," Skin Research and Technology, vol. 16, pp. 428-437, 2010.
[53] M. J. Cobb, Y. Chen, R. A. Underwood, M. L. Usui, J. Olerud, and X. Li, "Noninvasive assessment of cutaneous wound healing using ultrahigh-resolution optical coherence tomography," Journal of Biomedical Optics vol. 11, p. 064002, 2006.
[54] T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, and K. Hoffmann, "Applications of optical coherence tomography in dermatology," Journal of Dermatological Science, vol. 40, pp. 85-94, 2005.
[55] K. H. Kim, M. C. Pierce, G. Maguluri, B. H. Park, S. J. Yoon, M. Lydon, R. Sheridan, and J. F. de Boer, "In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography," Journal of Biomedical Optics, vol. 17, p. 066012, 2012.
[56] M. Boone, G. B. Jemec, and V. Del Marmol, "High-definition optical coherence tomography enables visualization of individual cells in healthy skin: comparison to reflectance confocal microscopy," Experimental Dermatology, vol. 21, pp. 740-744, 2012.
[57] K. G. Phillips, Y. Wang, D. Levitz, N. Choudhury, E. Swanzey, J. Lagowski, M. Kulesz-Martin, and S. L. Jacques, "Dermal reflectivity determined by optical coherence tomography is an indicator of epidermal hyperplasia and dermal edema within inflamed skin," Journal of Biomedical Optics, vol. 16, p. 040503, 2011.
[58] N. A. Mauskar, S. Sood, T. E. Travis, S. E. Matt, M. J. Mino, M. S. Burnett, L. T. Moffatt, P. Fidler, S. E. Epstein, M. H. Jordan, and J. W. Shupp, "Donor Site Healing Dynamics: Molecular, Histological, and Noninvasive Imaging Assessment in a Porcine Model," Journal of Burn Care & Research, 2013.
[59] 曾慶誠, "免疫組織化學染色發展的歷史回顧," 生物醫學, vol. 5, pp. 105-111, 2012.
[60] T. Nishiyama, I. Kii, T. G. Kashima, Y. Kikuchi, A. Ohazama, M. Shimazaki, M. Fukayama, and A. Kudo, "Delayed Re-Epithelialization in Periostin-Deficient Mice during Cutaneous Wound Healing," PLoS One, vol. 6, p. e18410, 2011.
[61] J. S. Orringer, L. Rittie, T. Hamilton, D. J. Karimipour, J. J. Voorhees, and G. J. Fisher, "Intraepidermal erbium:YAG laser resurfacing: impact on the dermal matrix," Journal of the American Academy of Dermatology, vol. 64, pp. 119-128, 2011.
[62] B. K. Pilcher, M. I. N. Wang, X.-J. Qin, W. C. Parks, R. M. Senior, and H. G. Welgus, "Role of Matrix Metalloproteinases and Their Inhibition in Cutaneous Wound Healing and Allergic Contact Hypersensitivity," Annals of the New York Academy of Sciences, vol. 878, pp. 12-24, 1999.
[63] 蔡淑珺, 蔡慧貞, 翁竹音, 汪文琲, 洪珮娟, 廖志清, 陳羿貞, and 姚宗珍, "機械力刺激對骨細胞表現基質金屬蛋白酵素-3之影響," J Taiwan Assoc Orthod, vol. 22, pp. 13-23, 2010.
[64] S. E. Gill and W. C. Parks, "Metalloproteinases and their inhibitors: regulators of wound healing," The International Journal of Biochemistry & Cell Biology vol. 40, pp. 1334-1347, 2008.
[65] U. Lindqvist, I. Phil-Lundin, and A. Engström-Laurent, "Dermal Distribution of Hyaluronan in Psoriatic Arthritis; Coexistence of CD44, MMP3 and 9," Acta Dermato Venereologica, vol. 92, pp. 372-377, 2012.
[66] J. E. Kim, C. H. Won, H. Bak, G. Kositratna, D. Manstein, G. P. Dotto, and S. E. Chang, "Gene Profiling Analysis of the Early Effects of Ablative Fractional Carbon Dioxide Laser Treatment on Human Skin," Dermatologic Surgery, 2013.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-08-19起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-08-19起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw