進階搜尋


下載電子全文  
系統識別號 U0026-0408201116590100
論文名稱(中文) 光活化過硫酸鹽與臭氧氧化水中甲基第三丁基醚之動力研究
論文名稱(英文) Oxidation of methyl tert-butyl ether in water using UV-assited persulfate and ozone processes
校院名稱 成功大學
系所名稱(中) 環境工程學系碩博士班
系所名稱(英) Department of Environmental Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 洪采貝
研究生(英文) Tsai-Bei Hong
學號 P56984158
學位類別 碩士
語文別 中文
論文頁數 127頁
口試委員 指導教授-林財富
口試委員-葉宣顯
口試委員-王根樹
口試委員-梁振儒
中文關鍵字 甲基第三丁基醚  過硫酸鹽  臭氧  化學探針  自由基轉換率(Rct) 
英文關鍵字 Methyl tert-butyl ether  Persulfate  Ozone  Probe compound  Rct 
學科別分類
中文摘要 甲基第三丁基醚(Methyl tert-butyl ether, MTBE)為常見的汽油氧化添加劑,使汽油增加辛烷值以提高引擎燃燒效率。由於MTBE 大量使用加上不易生物分解、具有親水性等性質,油品一旦洩漏,MTBE 會擴散並污染地下水及表面水體。本研究利用紫外光催化過硫酸鹽及臭氧去除水相之MTBE,實驗使用的紫外光波長範圍300-400 nm 且藉由光纖進行傳導。實驗是以批次式進行氧化動力實驗,改變光強度(150, 205 及225 W/m2)氧化去離子水與自來水體中的MTBE,MTBE 的濃度範圍為20- 40 mg/L。為瞭解光活性不同氧化劑產生自由基的效率,研究利用化學探針(probe compound)化合物p-CBA(p-chlorobenzoic acid)計算過硫酸鹽與臭氧系統在不同光強度下之自由基和氧化劑濃度比值(Rct)。研究結果顯示過硫酸鹽/MTBE/UV 系統中,300-400nm 紫外光可產生自由基去MTBE。在225 W/m2 強度光源下,過硫酸鹽在去離子水與自來水系統氧化MTBE 具有極高的去除率;氧化10 分鐘內可完全去除MTBE。由於實驗的過硫酸鹽濃(10g/L)遠高於MTBE,氧化程序的過硫酸鹽濃度變異不大,過硫酸鹽/UV 氧化MTBE 的反應動力為假一階模式。過硫酸鹽/UV/不同光強度系統在pH 3 和12 的Rct 值範圍分別為0.22-1.6810-9 和1.76-3.94×10-11。藉由化學探針結果,推估過硫酸鹽/UV在pH 7 的系統中光催化產生SO4-.與.OH 濃度比例為1 比0.93。臭氧/UV 系統中,臭氧的濃度降解呈現一階反應且MTBE 的去除率約在10-40%附近;不同光強度系統的Rct 範圍為0.469-1.0×10-8。Rct 推導的動力模式顯示,過硫酸鹽/UV 系統與臭氧/UV 系統的kMTBE/SO4˙和kMTBE/˙OH分別為1.26×108 M-1s-1 與1.75-2.54×109 M-1s-1。藉由Rct 結合氧化動力模式可以合理預測過硫酸鹽/UV 與臭氧/UV 氧化MTBE 的去除效率。
英文摘要 Methyl tert-butyl ether (MTBE) is the most common oxygenated fuel additive used to increase the octane rating and to enhance the combustion efficiency of gasoline. As a consequence of widespread use of MTBE and the difficulty biodegradable, it has been found to present in many groundwater and surface water. In this study, the processes of UV-assisted persulfate and ozone oxidation were proposed to destruct MTBE from water. A UV lamp emitting 300-400 nm of wavelength with intensity of 150-225 W/m2 was coupled with optical fiber to trasmit the light in the oxidation processes.Kinetic experiments were conducted in batch reactors with deionized and tap waters under various UV intensities. In the experiments, the initial MTBE concentrations are in the range of 20 to 40 mg/L. To explore the efficiency of free radical production in the experiments, the ratio of radical to oxidant coecntration (Rct) was estimated using a chemical probe, p-chlorobenzoic acid(p-CBA).
Experimental results show that in persulfate/UV system enough radicals were produced to remove MTBE in water. Under 225 W/m2 UV intensity, MTBE removal efficiency was approximately 100 % in ten minutes in both deionized and tap waters. Because of persulfate concentration (10 g/L) was much higher than MTBE concentration, a pseudo-first-order kinetic model was successfully employed to describe the oxidation of MTBE in the system of persulfate/UV. The Rct in the system were 0.22-1.6810-9 and 1.76-3.94×10-11 for pH 3 and 12, respectively. At pH = 7, the ratio of SO4- .to.OH radical was estimated to be 1:0.93. For ozone/UV system, ozone decay followed first order model and the removal of MTBE is in the range of 10-40%. Under different UV intensities, the Rct of ozone/UV systems were 0.469-1.0×10-8.After obtaining Rct for both system, the rate constants of persulfate radical and hydroxyl radicals were estimated to be 1.26×108 M-1s-1 and 1.75-2.54×109 M-1s-1, respectively. Using the extracted Rct and rate constants, the kinetic model was successfully used to predict the MTBE removal in different water matrixes.
論文目次 摘要 ................................. ................ I
Abstract ............................ .............. III
目錄 ....................... .................... VI
表目錄 ............................ ............. XII
圖目錄 ........................................ XIV
第一章 緒論 .............................. 1
1-1 研究緣起 .................................... 1
1-2 研究內容 ................................. 2
1-3 研究目的 .................................. 4
第二章 文獻回顧 ........................... 5
2-1 甲基第三丁基醚的性質與影響 ............................ 5
2-1-1 甲基第三丁基醚特性 .................................. 5
2-1-2 MTBE 降解反應 .................................. 8
2-1-3 MTBE 對環境衝擊及流佈 ............................. 10
2-1-4 MTBE 對人體健康之影響 ............................ 11
2-2 應用於MTBE 之現地化學氧化法 ....................... 11
2-2-1 現地化學氧化法原理 ................................. 11
2-2-2 ISCO 常用化學氧化劑 ............................ 13
2-3 過硫酸鹽氧化劑 ................................... 16
2-3-1 過硫酸鹽物化特性 ................................ 16
2-3-2 過硫酸鹽於水溶液中的反應...................... 16
2-3-3 過硫酸鹽氧化反應與因素 .......................... 17
2-4 臭氧 ................................................ 21
2-4-1 臭氧之物化特性 ................................21
2-4-2 水相中臭氧反應 ............................. 23
2-5 自由基轉換率Rct .................................. 30
2-5-1 Rct 概念應用 ...................... 32
2-5-2 化學探針偵測自由基 ............................ 33
2-6 光纖簡介 .................. 35
2-6-1 光學及光纖原理 ...................... 35
2-6-2 光纖分類 ..................... 37
2-6-3 光纖於環境整治上之運用 ............................ 38
第三章 實驗設備與方法 .................................... 40
3-1 氧化實驗 ..................... 42
3-1-1 實驗方法 ................ 42
3-2 過硫酸鹽與臭氧分析 ............................. 46
3-2-1 過硫酸鹽 ................................. 46
3-2-2 臭氧 ................................... 47
3-3 MTBE 與氧化中間產物分析 ............................. 49
3-3-1 實驗試劑與設備 .................................. 49
3-3-2 MTBE 與中間產物分析方法 ......................... 49
3-4 TOC 分析 ................................ 50
3-5 UV 之波長強度量測 .............................. 51
3-5-1 實驗設備 ..................... 51
3-5-2 量測方法 ........................ 51
3-6 化學探針分析............... 53
3-6-1 實驗藥品 .............. 53
3-6-2 自由基探針對氯苯甲酸 ............................... 53
3-6-3 自由基探針酚 ........................... 54
3-6-4 自由基探針硝基苯 ................................ 55
第四章 結果與討論 .......................... 56
4-1 紫外光活化效能評估 ........................... 56
4-2 紫外光活化過硫酸鹽與MTBE 氧化降解 ................. 59
4-2-1 UV 活化過硫酸鹽在去離子水系統之氧化降解 .............. 59
4-2-2 UV 活化硫酸鹽在自來水系統之氧化降解 ................... 67
4-2-3 UV 活化過硫酸鹽氧化MTBE 降解質量平衡及總有機碳變化.... 74
4-3 紫外光活化臭氧與MTBE 氧化降解 ......................... 77
4-3-1 UV 活化臭氧在去離子水與自來水系統之氧化降解 ...... 77
4-3-2 UV 活化臭氧氧化MTBE 降解質量平衡及總有機碳變化 ....83
4-4 紫外光活化過硫酸鹽Rct 參數 ....................... 85
4-4-1 過硫酸鹽系統Rct................................ 85
4-4-2 紫外光活化過硫酸鹽酸鹼系統Rct 參數 .................. 89
4-4-3 紫外光活化過硫酸鹽在中性系統自由基比例 ................ 92
4-5 紫外光活化臭氧氧Rct .................................. 95
4-5-1 臭氧系統Rct 參數 ................................. 95
4-5-2 紫外光強度對臭氧系統之Rct 參數影響 .................. 96
4-6 氧化動力預測......................................... 99
4-6-1 過硫酸鹽氧化MTBE 動力預測 .......................... 99
4-6-2 臭氧氧化MTBE 動力預測 ........................... 108
第五章 結論與建議 ..................................... 115
5-1 結論 ............................................... 115
5-2 建議 ............................. 117
參考文獻 ....................................... 118
附錄1-1 MTBE 及化學探針與(自由基/氧化劑速率)常數表.......... 124
自述 ......................................... 127
參考文獻 Acero, J.L., Haderlein,S.B.,Schmidt,T.C.,Suter,M.J.,and Gunten,U.V., 2001.MTBE oxidation by conventional ozonation and the combinationozone/hydrogen peroxide:Efficiency of the processes and bromate formation.Environmental Sceince and Technology 35, 4252-4259.
Anipsitakis, G.P., Dionysiou, D.D., 2004. Transition metal/UV-based advanced oxidation technologies for water decontamination. Applied Catalysis B: Environmental 54, 155-163.
Barreto, R.D., Gray,K.A.,Anders,K., 1995. Photocatalytic degradation of methyl tert-butyl ether in TiO2 slurries: a proposed reaction scheme. Water Research 29, 1243-1248.
Behrman, E.J., and Dean,D.H., 1999. Sodium peroxydisulfate is a stable and cheap substitute for ammonium peroxydisulfate (persulfate) in polyacrylamide gell electrophoresis. Journal of Chromatography B 723,325-326.
Beltrán, F.J., 2004. Ozone reaction kinetics for water and wastewater systems.
Boukari, S.O.B., Pellizzari, F., Karpel Vel Leitner, N., 2011. Influence of persulfate ions on the removal of phenol in aqueous solution using electronbeam irradiation. Journal of Hazardous Materials 185, 844-851.
Buxton, V.B., Greenstock, C.L. Helman, W.P., Ross, A.B.,, 1988. Critical review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals(OH˙/O-˙) in aqueous solution. J.Phys. Chem,, 513-795.
Ch. George, H.E.R., J.M. Chovelon, 2001. reactivity of selected volatile organic compounds(VOCs) toward the sulfate radical(SO4-). international journal of chemical kinetics 33.
Chan, T.W., Graham, N.J.D., Chu, W., 2010. Degradation of iopromide bycombined UV irradiation and peroxydisulfate. Journal of Hazardous Materials181, 508-513.
Chang, H.L.a.Y., T.F., 2000. An improved chemical-assisted ultrasound treatment for MTBE. In:Proceedings of The Seventh International Conference on Advanced Oxidation Technologies for water and Air Remediation C2-6,195-200.
Chang, P.B.L., Young, T.M., 2000. Kinetics of methyl tert-butyl ether degradation and by-product formation during UV/hydrogen peroxide water treatment. Water Research 34, 2233-2240.
Clarke, N., Knowles, G.,, 1982. High purity water using H2O2 and UV radiation. Effluent and water treatment Journal 22, 335-341.
Criquet, J., Leitner, N.K.V., 2009. Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis. Chemosphere 77, 194-200.
David Yao, C.C., Haag, W.R., 1991. Rate constants for direct reactions of ozone with several drinking water contaminants. Water Research 25, 761-773.
Devi, L.G., Kumar, S.G., Reddy, K.M., 2009. Photo fenton like process Fe3+/(NH4)(2)S2O8/UV for the degradation of Di azo dye congo red using low iron concentration. Cent. Eur. J. Chem 7, 468-477.
Elovitz, M., von Gunten, U., 1999. Hydroxyl radical/ozone ratios during ozonation processes. I.The Rct Concept. . Ozone Sci.Eng. 21, 239-260.
Elovitz, M.S., von Gunten, U., 1999. Hydroxyl Radical/Ozone Ratios During Ozonation Processes. I. The Rct Concept. Ozone: Science & Engineering: The Journal of the International Ozone Association 21, 239-260.
Garoma, T., and Gurol, M.D., 2008. Comprehensive kinetic model for the degradation of methyl tert-butyl ether by and ozone/UV process. Industrial&Engineering Chemistry Research 47, 7654-7662.
Garoma, T., Gurol, M.D., Osibodu, O., Thotakura, L., 2008. Treatment of groundwater contaminated with gasoline components by an ozone/UV process. Chemosphere 73, 825-831.
Graham, J.L., Striebich, R., Patterson, C.L., Radha Krishnan, E., Haught, R.C.,2004. MTBE oxidation byproducts from the treatment of surface waters by ozonation and UV-ozonation. Chemosphere 54, 1011-1016.
Hayon, E., Treinin, A., and Wilf, A., 1972. Flash photolysis in the vacuum ultraviolet region of SO4
2-, CO32- and OH- ions in aqueous solutions. The Journal of Physical Chemistry 71, 1472-1477.
Hoigné, J., Bader, H., 1976. The role of hydroxyl radical reactions in ozonation processes in aqueous solutions. Water Research 10, 377-386.
House, D.A., 1962. kinetics and mechanism of oxidations by peroxydisulfate.Chemical Reviews 62, 185-203.
Hu, Q.H., Zhang, C.L., Wang, Z.R., Yan, C., Mao, K.H., Zhang, X.Q., Xiong,Y.L., Zhu, M.J., 2008. Photodegradation of methyl tert-butyl ether (MTBE)by UV/H2O2 and UV/TiO2. Journal of Hazardous Materials 154, 795-803.
Huang, K.C., Couttenye, R.A., Hoag, G.E., 2002. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere 49,413-420.
Huang, Y.-F., Huang, Y.-H., 2009. Identification of produced powerful radicals involved in the mineralization of bisphenol A using a novel UV-Na2S2O8/H2O2-Fe(II,III) two-stage oxidation process. Journal of Hazardous Materials 162, 1211-1216.
Huber, M.M., Canonica, S., Park, G.-Y., von Gunten, U., 2003. Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes.Environmental Science & Technology 37, 1016-1024.
Kim, J.-H., Elovitz, M.S., von Gunten, U., Shukairy, H.M., Mariñas, B.J.,2007. Modeling Cryptosporidium parvum oocyst inactivation and bromate in a flow-through ozone contactor treating natural water. Water Research 41,467-475.
Lahvis, M.A.a.R., L.C., 1999. Simulation of Methyl Tert-Butyl Ether(MTBE)Transport to Ground Water From Immobile Sources of Gasoline in the VadoseZone. 247-259.
Langlais, B., Reckhow, D.A., Brink, D.R., 1991. Ozone in water treatment:application and engineering.
Leetham, J.T., 2001. In-situ chemical oxidation of MTBE and BTEX in soil and groundwater:A case study. Contaminated Soil Sediment and Water spring,54-58.
Liang, C., Guo, Y.-Y., Chien, Y.-C., Wu, Y.-J., 2010. Oxidative Degradation of MTBE by Pyrite-Activated Persulfate: Proposed Reaction Pathways.Industrial & Engineering Chemistry Research 49, 8858-8864.
Liang, C., Su, H.-W., 2009. Identification of Sulfate and Hydroxyl Radicals in Thermally Activated Persulfate. Industrial & Engineering Chemistry Research 48, 5558-5562.
Liang, C., Wang, Z.-S., Bruell, C.J., 2007. Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere 66, 106-113.
Lin, Y.-T., Liang, C., Chen, J.-H., 2011. Feasibility study of ultraviolet activated persulfate oxidation of phenol. Chemosphere 82, 1168-1172.
Lindsey, M.E., Tarr, M.A., 1999. Inhibition of Hydroxyl Radical Reaction with Aromatics by Dissolved Natural Organic Matter. Environmental Science & Technology 34, 444-449.
Lu, G., Li, C., Zheng, Y., Zhang, Q., Peng, J., Fu, M., 2008. A novel fiber optical device for ultraviolet disinfection of water. Journal of Photochemistry and Photobiology B: Biology 92, 42-46.
Méndez-Díaz, J., Sánchez-Polo, M., Rivera-Utrilla, J., Canonica, S., von Gunten, U., 2010. Advanced oxidation of the surfactant SDBS by means of hydroxyl and sulphate radicals. Chemical Engineering Journal 163, 300-306.
Maak-Sang Tsao, W.K.W., 1959. The Aqueous Chemistry of Inorganic Free Radicals. I. The Mechanism of the Photolytic Decomposition of Aqueous Persulfate Ion and Evidence Regarding the Sulfate–Hydroxyl RadicalInterconversion Equilibrium. The Journal of Physical Chemistry 63, 346-353.
Moyer, E.E., Kostecki, P.T., 2004. MTBE Remediation Handbook. 225.
Neta, P., Dorfman Leon, M., 1968. Pulse Radiolysis Studies. XIII. Rate Constants for the Reaction of Hydroxyl Radicals with Aromatic Compounds in Aqueous Solutions. Radiation Chemistry. AMERICAN CHEMICAL SOCIETY, pp. 222-230.
Neta, P., Madhavan, V., Zemel, H., Fessenden, R.W., 1976. Rate constants and mechanism of reaction of sulfate radical anion with aromatic compounds.Journal of the American Chemical Society 99, 163-164.
Neta, P., Madhavan, V., Zemel, H., Fessenden, R.W., 1977. Rate constants and mechanism of reaction of sulfate radical anion with aromatic compounds.Journal of the American Chemical Society 99, 163-164.
Neta, P.H., R. E.;Ross, A. B., 1988. Rate Constants for reaction so f inorganic radicals in aquesous solution. J.Phys. Chem, 79, 1027-1284.
Oberle, D.W.a.S., D.L, 2000. Design considerations for in-situ chemical oxidation. In:Proceeding of the second international conference on temediation of chlorinated and recalcitrant compounds,chemical oxidation and reactive barriers:remediation of chlorinated and recalcitrant compounds.C2-6, 91-99.
Perry, R.H.a.G., D.W., 1997. Perry's Chemical Engineers' Handbook, 7th ed.Rosenfeldt, E.J., Linden, K.G., Canonica, S., von Gunten, U., 2006.Comparison of the efficiency of OH radical formation during ozonation and the advanced oxidation processes O3/H2O2 and UV/H2O2. Water Research
40, 3695-3704.
Sánchez-Polo, M., von Gunten, U., Rivera-Utrilla, J., 2005. Efficiency of activated carbon to transform ozone into OH radicals: Influence of operational parameters. Water Research 39, 3189-3198.
Sutherland, J., Adams, C., 2007. Determination of hydroxyl radical rate constants for fuel oxygenates. Environ. Eng. Sci. 24, 998-1005.
USEPA, 1998. Remediation of MTBE contaminated soil and groundwater Verhoeven, J.W., 1996. Glossary of terms used in photochemistry. pure application chemistry 68, 2223-2286.
von Gunten, U., 2003. Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Research 37, 1469-1487.
Waul, C., Arvin, E., Schmidt, J.E., 2009. Long term studies on the anaerobic biodegradability of MTBE and other gasoline ethers. Journal of Hazardous Materials 163, 427-432.
Yang, S., Wang, P., Yang, X., Shan, L., Zhang, W., Shao, X., Niu, R., 2010.Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat,UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide. Journal of Hazardous Materials 179, 552-558.
Zemel, H., Fessenden, R.W. , 1975. Electron spin resonance studies of phenyl and pyridyl radicals in aqueous solution. J.Phys. Chem, 79, 1419-1427.
Zhang, Y.Q., Huang, W.L., Fennell, D.E., 2010. In situ chemical oxidation of aniline by persulfate with iron(II) activation at ambient temperature. Chinese
Chemical Letters 21, 911-913.
Ziajka, J., Pasiuk-Bronikowska, W., 2005. Rate constants for atmospheric trace organics scavenging SO4- in the Fe-catalysed autoxidation of S(IV).Atmospheric Environment 39, 1431-1438.
李明潔,2008,臭氧對兩種產臭藍綠菌菌體破壞及其代謝物釋出之研究,國立成功大學環境工程研究所碩士論文。
林宏明,2004,以光纖反應器進行二氧化碳光催化還原,國立台灣大學化學工程研究所碩士論文。
林育寬,2010,活性碳吸附MTBE 及臭氧氧化再生之研究,國立成功大學環境工程學系碩士論文。
吳耀東,1997,光纖原理與應用,全華科技圖書股份有限公司。
梁振儒,2007,淺談土壤及地下水污染現地過硫酸鹽化學氧化整治法,
台灣土壤及地下水環境保護協會簡訊。
連雅棉,2009,紫外光活化過硫酸鹽氧化甲基第三丁基醚之研究,國立
成功大學環境工程學系碩士論文。
行政院環境保護署,2010,物質安全資料表。
台灣自來水公司, 台南縣市淨水廠平均水質,
http://www.water.gov.tw/05know/news_e_detail.asp?id=10
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-08-18起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-08-18起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw