系統識別號 U0026-0408201115445600
論文名稱(中文) 後十字韌帶缺損與接受重建術患者之下肢運動學與動力學分析
論文名稱(英文) Lower-Limb Kinematic and Kinetic Analysis for Individuals with Deficient- and Reconstructed-Posterior Cruciate Ligament
校院名稱 成功大學
系所名稱(中) 醫學工程研究所碩博士班
系所名稱(英) Institute of Biomedical Engineering
學年度 99
學期 2
出版年 100
研究生(中文) 劉玫舫
研究生(英文) Mei-Fang Liu
電子信箱 mefali@kmu.edu.tw
學號 p8891108
學位類別 博士
語文別 英文
論文頁數 109頁
口試委員 指導教授-蘇芳慶
中文關鍵字 後十字韌帶缺損  後十字韌帶重建  膝關節  運動學  動力學 
英文關鍵字 PCL deficiency  PCL reconstruction  knee joint  kinematics  kinetics 
中文摘要 後十字韌帶受傷後的臨床表現有很大的差異性,尤其是單獨後十字韌帶斷裂的患者,部分患者接受保守治療即有不錯的功能恢復,但仍有部分患者持續存在著膝關節疼痛與不穩定的症狀,無法恢復受傷前的活動程度,最後仍須選擇接受手術重建。單獨後十字韌帶受傷患者在進行日常的功能活動是否會造成下肢動作型態或關節負荷的異常,如果接受手術重建後,下肢關節的運動學與動力學是否可恢復至與健康未受傷者相同,相關的研究非常有限。為了增進對單獨後十字韌帶受傷後臨床表現的瞭解,提供臨床預後評估與治療策略決定的參考,因此對這群患者進行完整的下肢運動學與動力學分析有其必要性。
本研究的研究對象包含慢性單獨後十字韌帶缺損與接受後十字韌帶重建術後超過一年的患者,根據患者主觀描述再將慢性單獨後十字韌帶缺損患者分為有症狀與無症狀兩組,另外,控制組則是下肢未曾有嚴重肌肉骨骼傷害的健康成年人,每組分別有十名受試者。透過三度空間動作分析系統與力板,分析起立坐下、蹲下與平地行走三項日常動作的下肢關節運動學與動力學。研究目的如下: (1)建立後十字韌帶受傷患者(包括有症狀與無症狀後十字韌帶缺損與後十字韌帶重建術後的患者)從事三項日常活動的下肢生物力學特徵,探討與健康未受傷者之間的差異。(2) 比較患側與健側的各項生物力學參數,探討後十字韌帶受傷患者在動作對稱性的表現。(3) 從受傷後時間、韌帶鬆弛度、與活動程度與動作適應策略各方面,探討可能影響後十字韌帶受傷預後的因素。研究結果歸納如下:(1) 有症狀後十字韌帶缺損患者的下肢運動學與動力學與健康未受傷者較接近,兩側不對稱情形也不顯著;無症狀後十字韌帶缺損患者與健康未受傷者在步態站立末期時膝關節爆發力的表現不同,而且兩側不對稱的現象則普遍地存在於三項動作中。 (2) 無論是受傷後時間、韌帶鬆弛度、或活動程度,有症狀與無症狀後十字韌帶缺損受試者之間都沒有顯著差異,顯示這些因素並不是影響其預後的直接因素,兩組受試者的下肢神經肌肉調適的能力,可能才是影響受傷後預後的主要原因。 (3) 接受單束後十字韌帶重建術後,雖然有可接受的功能回復,但在下肢運動學與動力學方面,從事蹲下與行走時仍存在著與健康未受傷者的差異,而從事站立坐下時也有明顯的兩側不對稱。
英文摘要 Clinical studies of posterior cruciate ligament (PCL) injuries have yielded disparate results. This is especially true for patients with isolated PCL tears as some of these patients recovered reasonably with conservative treatment; others, however, continued to suffer from knee joint pain and instability and were unable to return to their level of activity prior to the injury and thus had to resort to surgical reconstruction. There is a dearth of studies on abnormalities of movement patterns or joint loads in the lower limb of patients suffering from isolated PCL injuries in activities of daily living and whether patients who undergo surgical reconstruction can return to the level of joint kinematics and kinetics they had prior to their injuries. It is necessary to conduct a comprehensive analysis of the kinematics and kinetics of the lower limbs of these patients to gain a better understanding of the clinical performance of patients with isolated PCL injuries, to serve as reference for evaluating the clinical prognosis and establishing treatment strategies.
The participants in this study were patients with chronic isolated PCL injuries and patients who underwent PCL reconstructive surgery more than a year ago. The patients are classified as symptomatic and asymptomatic based on their subjective descriptions of their PCL injuries. The control group, on the other hand, comprises healthy adults that have never suffered from severe musculoskeletal injuries in their lower limbs. Each group comprises 10 participants. This study analyzes the lower limb joint kinematics and kinetics of three tasks – sit-stand-sit, squat, and level walk – using a three-dimensional motion analysis system and two force plates. The aims of this study are as follows. (1) To identify the lower limb biomechanics of patients with PCL injuries (including patients with symptomatic and asymptomatic PCL injuries and patients who underwent PCL reconstructive surgery) when conducting three tasks to identify differences with healthy adults. (2) To compare the biomechanical parameters of the involved and noninvolved sides to determine the motion asymmetry of patients with PCL injuries. (3) To observe factors such as time since injury, ligament laxity, activity level, and movement adaptation strategies following injury to identify possible factors that could influence the prognosis of PCL injuries. The results of this study are as follows. (1) The lower limb kinematics and kinetics of patients with symptomatic PCL injuries had roughly the same performance as the healthy adults did and the asymmetry was not significant. Conversely, the knee joint power at the terminal stance of the gait of patients with asymptomatic PCL injuries was different from those of healthy adults and the asymmetry was evident in all three tasks. (2) There were no significant differences between patients with symptomatic and asymptomatic PCL injuries in terms of time since injury, ligament laxity, and activity level, indicating that these were not key factors that directly influence prognosis. The lower limb neuromuscular adaptive capacity of the two groups might be the key factor that influences prognosis after injury. (3) Single-bundle PCL reconstructive surgery was able to repair some functions, but it was evident that the lower limb kinematics and kinetics of patients were different from that of healthy adults when doing squats and level walks; the patients were also evidently asymmetric when doing sit-stand-sit.
This study pioneers research on the lower limb kinematics and kinetics of patients with isolated PCL injuries. This study divided participants into groups and discovered that patients employed various adaptation strategies, which could be a key factor influencing the prognosis after injury. This study also conducted the same biomechanical analyses on patients who underwent surgical reconstruction to provide a feasible direction for future research.
1.1 Research Background 1
1.2 Overview of the Posterior Cruciate Ligament Injury 2
1.2.1 Anatomy and Function of the Posterior Cruciate Ligament 2
1.2.2 Mechanism of Injury 3
1.2.3 Incidence of Injury 3
1.2.4 Classification and Treatment Strategy 4
1.2.5 Natural History of Nonoperatively Treated Isolated PCL Injuries 6
1.2.6 PCL Reconstruction: Techniques and Clinical Outcomes 9
1.3 Purposes of This Study 11
1.4 Hypotheses 13
2.1 Biomechanical Properties of the PCL 14
2.1.1 PCL Forces during Different Conditions 14
2.1.2 Three-Dimensional Deformations of the PCL 17
2.2 Biomechanics of PCL Deficiency 17
2.2.1 Effect of Cutting PCL on the Knee Laxity- In Vitro Studies 17
2.2.2 In Vivo Kinematics and Kinetics of PCL Deficiency 20
2.3 Biomechanics of PCL Reconstruction 24
2.3.1 Effect of PCL Reconstruction on Restoration of the Knee Stability and Kinematics- In Vitro Studies 24
2.3.2 In Vivo Kinematics and Kinetics of PCL Reconstruction 26
3.1 Subjects 28
3.1.1 Subjects with Chronic Isolated PCL Deficiency 28
3.1.2 Subjects with PCL Reconstruction 29
3.1.3 Normal Controls 29
3.2 Instrumentation 32
3.3 Procedure 32
3.4 Data Processing 34
3.4.1 Spatiotemporal Variables 37
3.4.2 Kinematic Variables 38
3.4.3 Kinetic Variables 38
3.5 Statistical Analysis 39
4.1 Performance Consistency 40
4.2 Between-Group Comparisons 41
4.2.1 Walk Tasks 41
4.2.2 Sit-Stand-Sit Tasks 48
4.2.3 Squat Tasks 54
4.3 Symmetry: Between-Limb Comparisons 60
4.3.1 Symptomatic PCLD group 60
4.3.2 Asymptomatic PCLD group 64
4.3.3 PCLR group 73
5.1 Selection and Categorization of Subjects 81
5.2 The Biomechanical Characteristics and Influencing Factors of the Three Tasks 82
5.2.1 Walk Tasks 82
5.2.2 Sit-Stand-Sit Tasks 83
5.2.3 Squat Tasks 85
5.3 Movement Adaptation Strategies Adopted after PCL Injuries 87
5.3.1 PCLD Groups 88
5.3.2 PCLR Group 92
5.4 Limitations of This Study 94
5.5 Future Directions 95

References 98
Appendices 106
參考文獻 1. Andriacchi TP, Birac D. Functional testing in the anterior cruciate ligament-deficient knee. Clin Orthop Relat Res 288:40-7, 1993.
2. Andriacchi TP, Stanwyck TS, Galante JO. Knee biomechanics and total knee replacement. J Arthroplasty 1:211-9, 1986.
3. Ashford S, De Souza L. A comparison of the timing of muscle activity during sitting down compared to standing up. Physiother Res Int 5:111-28, 2000.
4. Barrack RL, Skinner HB, Buckley SL. Proprioception in the anterior cruciate deficient knee. Am J Sports Med 17:1-6, 1989.
5. Barrett DS. Proprioception and function after anterior cruciate reconstruction. J Bone Joint Surg Br 73:833-7, 1991.
6. Barrett DS, Cobb AG, Bentley G. Joint proprioception in normal, osteoarthritic and replaced knees. J Bone Joint Surg Br 73:53-6, 1991.
7. Beard DJ, Kyberd PJ, Fergusson CM, et al. Proprioception after rupture of the anterior cruciate ligament. An objective indication of the need for surgery? J Bone Joint Surg Br 75:311-5, 1993.
8. Bergfeld JA, Graham SM, Parker RD, et al. A biomechanical comparison of posterior cruciate ligament reconstructions using single- and double-bundle tibial inlay techniques. Am J Sports Med 33:976-81, 2005.
9. Boerboom AL, Hof AL, Halbertsma JP, et al. Atypical hamstrings electromyographic activity as a compensatory mechanism in anterior cruciate ligament deficiency. Knee Surg Sports Traumatol Arthrosc 9:211-6, 2001.
10. Boynton MD, Tietjens BR. Long-term followup of the untreated isolated posterior cruciate ligament-deficient knee. Am J Sports Med 24:306-10, 1996.
11. Carlin GJ, Livesay GA, Harner CD, et al. In-situ forces in the human posterior cruciate ligament in response to posterior tibial loading. Ann Biomed Eng 24:193-7, 1996.
12. Castle TH, Jr., Noyes FR, Grood ES. Posterior tibial subluxation of the posterior cruciate-deficient knee. Clin Orthop Relat Res 284:193-202, 1992.
13. Chen CH, Chen WJ, Shih CH. Arthroscopic reconstruction of the posterior cruciate ligament: a comparison of quadriceps tendon autograft and quadruple hamstring tendon graft. Arthroscopy 18:603-12, 2002.
14. Clancy WG, Jr., Shelbourne KD, Zoellner GB, et al. Treatment of knee joint instability secondary to rupture of the posterior cruciate ligament. Report of a new procedure. J Bone Joint Surg Am 65:310-22, 1983.
15. Clancy WG, Jr., Sutherland TB. Combined posterior cruciate ligament injuries. Clin Sports Med 13:629-47, 1994.
16. Clark P, MacDonald PB, Sutherland K. Analysis of proprioception in the posterior cruciate ligament-deficient knee. Knee Surg Sports Traumatol Arthrosc 4:225-7, 1996.
17. Cooper DE, Stewart D. Posterior cruciate ligament reconstruction using single-bundle patella tendon graft with tibial inlay fixation: 2- to 10-year follow-up. Am J Sports Med 32:346-60, 2004.
18. Corrigan JP, Cashman WF, Brady MP. Proprioception in the cruciate deficient knee. J Bone Joint Surg Br 74:247-50, 1992.
19. Dandy DJ, Pusey RJ. The long-term results of unrepaired tears of the posterior cruciate ligament. J Bone Joint Surg Br 64:92-4, 1982.
20. Daniel DM, Stone ML, Barnett P, et al. Use of the quadriceps active test to diagnose posterior cruciate-ligament disruption and measure posterior laxity of the knee. J Bone Joint Surg Am 70:386-91, 1988.
21. Davis DK, Goltz DH, Fithian DC, et al. Anatomical posterior cruciate ligament transplantation: a biomechanical analysis. Am J Sports Med 34:1126-33, 2006.
22. Decker MJ, Torry MR, Noonan TJ, et al. Landing adaptations after ACL reconstruction. Med Sci Sports Exerc 34:1408-13, 2002.
23. Deehan DJ, Salmon LJ, Russell VJ, et al. Endoscopic single-bundle posterior cruciate ligament reconstruction: results at minimum 2-year follow-up. Arthroscopy 19:955-62, 2003.
24. DeFrate LE, Gill TJ, Li G. In vivo function of the posterior cruciate ligament during weightbearing knee flexion. Am J Sports Med 32:1923-8, 2004.
25. Dennis MG, Fox JA, Alford JW, et al. Posterior cruciate ligament reconstruction: current trends. J Knee Surg 17:133-9, 2004.
26. DeVita P, Hortobagyi T, Barrier J. Gait biomechanics are not normal after anterior cruciate ligament reconstruction and accelerated rehabilitation. Med Sci Sports Exerc 30:1481-8, 1998.
27. Dicharry J. Kinematics and kinetics of gait: from lab to clinic. Clin Sports Med 29:347-64, 2010.
28. Ernst GP, Saliba E, Diduch DR, et al. Lower extremity compensations following anterior cruciate ligament reconstruction. Phys Ther 80:251-60, 2000.
29. Escamilla RF. Knee biomechanics of the dynamic squat exercise. Med Sci Sports Exerc 33:127-41, 2001.
30. Escamilla RF, Fleisig GS, Zheng N, et al. Biomechanics of the knee during closed kinetic chain and open kinetic chain exercises. Med Sci Sports Exerc 30:556-69, 1998.
31. Escamilla RF, Fleisig GS, Zheng N, et al. Effects of technique variations on knee biomechanics during the squat and leg press. Med Sci Sports Exerc 33:1552-66, 2001.
32. Etnyre B, Thomas DQ. Event standardization of sit-to-stand movements. Phys Ther 87:1651-66, 2007.
33. Fanelli GC, Edson CJ. Posterior cruciate ligament injuries in trauma patients: Part II. Arthroscopy 11:526-9, 1995.
34. Fanelli GC, Giannotti BF, Edson CJ. The posterior cruciate ligament arthroscopic evaluation and treatment. Arthroscopy 10:673-88, 1994.
35. Fontbote CA, Sell TC, Laudner KG, et al. Neuromuscular and biomechanical adaptations of patients with isolated deficiency of the posterior cruciate ligament. Am J Sports Med 33:982-9, 2005.
36. Fowler PJ, Messieh SS. Isolated posterior cruciate ligament injuries in athletes. Am J Sports Med 15:553-7, 1987.
37. Fox RJ, Harner CD, Sakane M, et al. Determination of the in situ forces in the human posterior cruciate ligament using robotic technology. A cadaveric study. Am J Sports Med 26:395-401, 1998.
38. Garofalo R, Jolles BM, Moretti B, et al. Double-bundle transtibial posterior cruciate ligament reconstruction with a tendon-patellar bone-semitendinosus tendon autograft: clinical results with a minimum of 2 years' follow-up. Arthroscopy 22:1331-8 e1, 2006.
39. Gill TJ, DeFrate LE, Wang C, et al. The biomechanical effect of posterior cruciate ligament reconstruction on knee joint function. Kinematic response to simulated muscle loads. Am J Sports Med 31:530-6, 2003.
40. Gill TJ, Van de Velde SK, Wing DW, et al. Tibiofemoral and patellofemoral kinematics after reconstruction of an isolated posterior cruciate ligament injury: in vivo analysis during lunge. Am J Sports Med 37:2377-85, 2009.
41. Gollehon DL, Torzilli PA, Warren RF. The role of the posterolateral and cruciate ligaments in the stability of the human knee. A biomechanical study. J Bone Joint Surg Am 69:233-42, 1987.
42. Grood ES, Stowers SF, Noyes FR. Limits of movement in the human knee. Effect of sectioning the posterior cruciate ligament and posterolateral structures. J Bone Joint Surg Am 70:88-97, 1988.
43. Gross MM, Stevenson PJ, Charette SL, et al. Effect of muscle strength and movement speed on the biomechanics of rising from a chair in healthy elderly and young women. Gait Posture 8:175-85, 1998.
44. Hagemeister N, Duval N, Yahia L, et al. Computer-based method for the 3-D kinematic analysis of posterior cruciate ligament and postero-lateral corner lesions. Knee 9:301-8, 2002.
45. Harner CD, Hoher J. Evaluation and treatment of posterior cruciate ligament injuries. Am J Sports Med 26:471-82, 1998.
46. Harner CD, Janaushek MA, Kanamori A, et al. Biomechanical analysis of a double-bundle posterior cruciate ligament reconstruction. Am J Sports Med 28:144-51, 2000.
47. Hattin HC, Pierrynowski MR, Ball KA. Effect of load, cadence, and fatigue on tibio-femoral joint force during a half squat. Med Sci Sports Exerc 21:613-8, 1989.
48. Hirschfeld H, Thorsteinsdottir M, Olsson E. Coordinated ground forces exerted by buttocks and feet are adequately programmed for weight transfer during sit-to-stand. J Neurophysiol 82:3021-9, 1999.
49. Hoher J, Vogrin TM, Woo SL, et al. In situ forces in the human posterior cruciate ligament in response to muscle loads: a cadaveric study. J Orthop Res 17:763-8, 1999.
50. Hooper DM, Morrissey MC, Crookenden R, et al. Gait adaptations in patients with chronic posterior instability of the knee. Clin Biomech (Bristol, Avon) 17:227-33, 2002.
51. Houe T, Jorgensen U. Arthroscopic posterior cruciate ligament reconstruction: one- vs. two-tunnel technique. Scand J Med Sci Sports 14:107-11, 2004.
52. Ihara H, Nakayama A. Dynamic joint control training for knee ligament injuries. Am J Sports Med 14:309-15, 1986.
53. Inoue M, Yasuda K, Yamanaka M, et al. Compensatory muscle activity in the posterior cruciate ligament-deficient knee during isokinetic knee motion. Am J Sports Med 26:710-4, 1998.
54. Janousek AT, Jones DG, Clatworthy M, et al. Posterior cruciate ligament injuries of the knee joint. Sports Med 28:429-41, 1999.
55. Janssen WG, Bussmann HB, Stam HJ. Determinants of the sit-to-stand movement: a review. Phys Ther 82:866-79, 2002.
56. Jonsson H, Karrholm J. Three-dimensional knee kinematics and stability in patients with a posterior cruciate ligament tear. J Orthop Res 17:185-91, 1999.
57. Jordan SS, Campbell RB, Sekiya JK. Posterior cruciate ligament reconstruction using a new arthroscopic tibial inlay double-bundle technique. Sports Med Arthrosc 15:176-83, 2007.
58. Keller PM, Shelbourne KD, McCarroll JR, et al. Nonoperatively treated isolated posterior cruciate ligament injuries. Am J Sports Med 21:132-6, 1993.
59. Kerr KM, White JA, Barr DA, et al. Analysis of the sit-stand-sit movement cycle in normal subjects. Clin Biomech (Bristol, Avon) 12:236-45, 1997.
60. Khemlani MM, Carr JH, Crosbie WJ. Muscle synergies and joint linkages in sit-to-stand under two initial foot positions. Clin Biomech (Bristol, Avon) 14:236-46, 1999.
61. Kim SJ, Kim TE, Jo SB, et al. Comparison of the clinical results of three posterior cruciate ligament reconstruction techniques. J Bone Joint Surg Am 91:2543-9, 2009.
62. Kim SJ, Park IS. Arthroscopic reconstruction of the posterior cruciate ligament using tibial-inlay and double-bundle technique. Arthroscopy 21:1271, 2005.
63. Kohen RB, Sekiya JK. Single-bundle versus double-bundle posterior cruciate ligament reconstruction. Arthroscopy 25:1470-7, 2009.
64. Kralj A, Jaeger RJ, Munih M. Analysis of standing up and sitting down in humans: definitions and normative data presentation. J Biomech 23:1123-38, 1990.
65. Kumagai M, Mizuno Y, Mattessich SM, et al. Posterior cruciate ligament rupture alters in vitro knee kinematics. Clin Orthop Relat Res 395:241-8, 2002.
66. Li G, DeFrate LE, Sun H, et al. In vivo elongation of the anterior cruciate ligament and posterior cruciate ligament during knee flexion. Am J Sports Med 32:1415-20, 2004.
67. Li G, Gill TJ, DeFrate LE, et al. Biomechanical consequences of PCL deficiency in the knee under simulated muscle loads--an in vitro experimental study. J Orthop Res 20:887-92, 2002.
68. Li G, Most E, DeFrate LE, et al. Effect of the posterior cruciate ligament on posterior stability of the knee in high flexion. J Biomech 37:779-83, 2004.
69. Li G, Papannagari R, Li M, et al. Effect of posterior cruciate ligament deficiency on in vivo translation and rotation of the knee during weightbearing flexion. Am J Sports Med 36:474-9, 2008.
70. Li G, Zayontz S, DeFrate LE, et al. Kinematics of the knee at high flexion angles: an in vitro investigation. J Orthop Res 22:90-5, 2004.
71. Li G, Zayontz S, Most E, et al. In situ forces of the anterior and posterior cruciate ligaments in high knee flexion: an in vitro investigation. J Orthop Res 22:293-7, 2004.
72. Logan M, Williams A, Lavelle J, et al. The effect of posterior cruciate ligament deficiency on knee kinematics. Am J Sports Med 32:1915-22, 2004.
73. Mahoney OM, Noble PC, Rhoads DD, et al. Posterior cruciate function following total knee arthroplasty. A biomechanical study. J Arthroplasty 9:569-78, 1994.
74. Margheritini F, Rihn J, Musahl V, et al. Posterior cruciate ligament injuries in the athlete: an anatomical, biomechanical and clinical review. Sports Med 32:393-408, 2002.
75. Mariani PP, Adriani E, Santori N, et al. Arthroscopic posterior cruciate ligament reconstruction with bone-tendon-bone patellar graft. Knee Surg Sports Traumatol Arthrosc 5:239-44, 1997.
76. McGibbon CA. Toward a better understanding of gait changes with age and disablement: neuromuscular adaptation. Exerc Sport Sci Rev 31:102-8, 2003.
77. Morrison JB. The mechanics of the knee joint in relation to normal walking. J Biomech 3:51-61, 1970.
78. Nagura T, Dyrby CO, Alexander EJ, et al. Mechanical loads at the knee joint during deep flexion. J Orthop Res 20:881-6, 2002.
79. Nyland J, Hester P, Caborn DN. Double-bundle posterior cruciate ligament reconstruction with allograft tissue: 2-year postoperative outcomes. Knee Surg Sports Traumatol Arthrosc 10:274-9, 2002.
80. Papa E, Cappozzo A. Sit-to-stand motor strategies investigated in able-bodied young and elderly subjects. J Biomech 33:1113-22, 2000.
81. Parolie JM, Bergfeld JA. Long-term results of nonoperative treatment of isolated posterior cruciate ligament injuries in the athlete. Am J Sports Med 14:35-8, 1986.
82. Petrigliano FA, McAllister DR. Isolated posterior cruciate ligament injuries of the knee. Sports Med Arthrosc 14:206-12, 2006.
83. Race A, Amis AA. PCL reconstruction. In vitro biomechanical comparison of 'isometric' versus single and double-bundled 'anatomic' grafts. J Bone Joint Surg Br 80:173-9, 1998.
84. Roberts D, Friden T, Zatterstrom R, et al. Proprioception in people with anterior cruciate ligament-deficient knees: comparison of symptomatic and asymptomatic patients. J Orthop Sports Phys Ther 29:587-94, 1999.
85. Rudolph KS, Eastlack ME, Axe MJ, et al. 1998 Basmajian Student Award Paper: Movement patterns after anterior cruciate ligament injury: a comparison of patients who compensate well for the injury and those who require operative stabilization. J Electromyogr Kinesiol 8:349-62, 1998.
86. Safran MR, Allen AA, Lephart SM, et al. Proprioception in the posterior cruciate ligament deficient knee. Knee Surg Sports Traumatol Arthrosc 7:310-7, 1999.
87. Salem GJ, Salinas R, Harding FV. Bilateral kinematic and kinetic analysis of the squat exercise after anterior cruciate ligament reconstruction. Arch Phys Med Rehabil 84:1211-6, 2003.
88. Schoenfeld BJ. Squatting kinematics and kinetics and their application to exercise performance. J Strength Cond Res 24:3497-506, 2010.
89. Schulz MS, Russe K, Weiler A, et al. Epidemiology of posterior cruciate ligament injuries. Arch Orthop Trauma Surg 123:186-91, 2003.
90. Shelbourne KD, Davis TJ, Patel DV. The natural history of acute, isolated, nonoperatively treated posterior cruciate ligament injuries. A prospective study. Am J Sports Med 27:276-83, 1999.
91. Shelbourne KD, Gray T. Natural history of acute posterior cruciate ligament tears. J Knee Surg 15:103-7, 2002.
92. Shelbourne KD, Muthukaruppan Y. Subjective results of nonoperatively treated, acute, isolated posterior cruciate ligament injuries. Arthroscopy 21:457-61, 2005.
93. Shelburne KB, Pandy MG. Determinants of cruciate-ligament loading during rehabilitation exercise. Clin Biomech (Bristol, Avon) 13:403-13, 1998.
94. Shelburne KB, Pandy MG. A musculoskeletal model of the knee for evaluating ligament forces during isometric contractions. J Biomech 30:163-76, 1997.
95. Skinner HB, Barrack RL, Cook SD, et al. Joint position sense in total knee arthroplasty. J Orthop Res 1:276-83, 1984.
96. St Pierre P, Miller MD. Posterior cruciate ligament injuries. Clin Sports Med 18:199-221, vii, 1999.
97. Stuart MJ, Meglan DA, Lutz GE, et al. Comparison of intersegmental tibiofemoral joint forces and muscle activity during various closed kinetic chain exercises. Am J Sports Med 24:792-9, 1996.
98. Su FC, Lai KA, Hong WH. Rising from chair after total knee arthroplasty. Clin Biomech (Bristol, Avon) 13:176-81, 1998.
99. Tibone JE, Antich TJ, Perry J, et al. Functional analysis of untreated and reconstructed posterior cruciate ligament injuries. Am J Sports Med 16:217-23, 1988.
100. Torg JS, Barton TM, Pavlov H, et al. Natural history of the posterior cruciate ligament-deficient knee. Clin Orthop Relat Res 246:208-16, 1989.
101. Toritsuka Y, Horibe S, Hiro-Oka A, et al. Conservative treatment for rugby football players with an acute isolated posterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 12:110-4, 2004.
102. Toutoungi DE, Lu TW, Leardini A, et al. Cruciate ligament forces in the human knee during rehabilitation exercises. Clin Biomech (Bristol, Avon) 15:176-87, 2000.
103. Van de Velde SK, Gill TJ, Li G. Dual fluoroscopic analysis of the posterior cruciate ligament-deficient patellofemoral joint during lunge. Med Sci Sports Exerc 41:1198-205, 2009.
104. Wang CJ, Chan YS, Weng LH, et al. Comparison of autogenous and allogenous posterior cruciate ligament reconstructions of the knee. Injury 35:1279-85, 2004.
105. Wang CJ, Chen HS, Huang TW. Outcome of arthroscopic single bundle reconstruction for complete posterior cruciate ligament tear. Injury 34:747-51, 2003.
106. Wang CJ, Weng LH, Hsu CC, et al. Arthroscopic single- versus double-bundle posterior cruciate ligament reconstructions using hamstring autograft. Injury 35:1293-9, 2004.
107. Webster KE, Gonzalez-Adrio R, Feller JA. Dynamic joint loading following hamstring and patellar tendon anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 12:15-21, 2004.
108. Wexler G, Hurwitz DE, Bush-Joseph CA, et al. Functional gait adaptations in patients with anterior cruciate ligament deficiency over time. Clin Orthop Relat Res 348:166-75, 1998.
109. Wilk KE, Escamilla RF, Fleisig GS, et al. A comparison of tibiofemoral joint forces and electromyographic activity during open and closed kinetic chain exercises. Am J Sports Med 24:518-27, 1996.
110. Winter DA. Overall principle of lower limb support during stance phase of gait. J Biomech 13:923-7, 1980.
111. Yoshimura I, Naito M, Zhang J. Lateral thrust of anterior cruciate ligament-insufficient knees and posterior cruciate ligament-insufficient knees. Int Orthop 26:303-5, 2002.
112. Yoshioka S, Nagano A, Hay DC, et al. Biomechanical analysis of the relation between movement time and joint moment development during a sit-to-stand task. Biomed Eng Online 8:27, 2009.
113. Yoshioka S, Nagano A, Himeno R, et al. Computation of the kinematics and the minimum peak joint moments of sit-to-stand movements. Biomed Eng Online 6:26, 2007.
  • 同意授權校內瀏覽/列印電子全文服務,於2012-08-16起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-08-16起公開。

  • 如您有疑問,請聯絡圖書館