進階搜尋


下載電子全文  
系統識別號 U0026-0408201016012800
論文名稱(中文) 轉錄機轉的調控及蛋白質穩定性對於Sp1在肺癌形成中大量堆積所扮演的角色
論文名稱(英文) Role of Transcriptional Control and Protein Stability in Sp1 Accumulation during Lung Cancer Tumorigenesis
校院名稱 成功大學
系所名稱(中) 生物資訊研究所
系所名稱(英) Institute of Bioinformatics
學年度 98
學期 2
出版年 99
研究生(中文) 陳思妤
研究生(英文) Szu-Yu Chen
學號 z2697101
學位類別 碩士
語文別 中文
論文頁數 60頁
口試委員 指導教授-洪建中
口試委員-張文昌
口試委員-呂增宏
中文關鍵字 肺癌 
英文關鍵字 Sp1 
學科別分類
中文摘要 Sp1(Specific protein 1)調控許多維持細胞正常運作的基因,是普遍在各種組織皆有表達的轉錄因子。受Sp1調控的目標基因涵蓋範圍很廣,包括細胞生長、細胞增生、控制細胞週期、細胞凋亡、血管新生等,其中有致癌基因也有抑癌基因,如血管內皮生長因子VEGF、p53,故Sp1表達異常可能引起細胞癌化。在許多種癌症細胞株及組織都會看到Sp1大量堆積,根據組織Array的結果,死亡率高且不易早期發現的肺癌組織也有Sp1 mRNA高表達的現象,實驗室先前研究也顯示,Sp1在大部份腫瘤中都有高度表現,並且發現蛋白質穩定度可能也在Sp1堆積的過程扮演重要角色。因此我們想要進一步了解Sp1在癌化過程堆積的詳細機轉,以及它可能扮演的角色。首先我們發現,以上皮生長因子(EGF)處理正常的肺細胞會使Sp1量增加,相反地,使用K-ras抑制劑則使Sp1表現量降低,顯示癌化過程中K-ras的活化可能與Sp1堆積有關。為了更詳細研究Sp1累積機制,我們建立可專一於肺部引發肺癌的小鼠模式,在此動物模式中,我們透過西方點墨法和免疫組織染色證明,肺癌形成的過程Sp1會大量堆積,且除了mRNA增加之外,蛋白質穩定度提高也牽涉其中──肺癌形成時,能保持Sp1在穩定磷酸化狀態的Pin1、Cyclin B1蛋白質表現量增加,且Sp1與E3泛素接合酶RNF4的作用降低。瞭解Sp1在肺癌形成過程中堆積之機轉後,為了解明它所扮演的角色,將Sp1的DNA結合抑制劑Mithramycin腹腔注射至K-ras 活化小鼠,發現腫瘤的大小被抑制。本研究的重要性在於釐清肺癌形成時Sp1堆積與Kras活性有關,並且以動物模式證明Sp1堆積對肺癌形成有正向功能。
英文摘要 Ubiquitously expressed Sp1 regulates genes associated with cell growth, angiogenesis, apoptosis, cell proliferation, and control of cell cycle. Some of the target gene related to tumorigenesis including tumor oncogenes and suppressors such as VEGF and p53. Previous studies indicate that significantly elevated Sp1 level was observed in various tumor types and associated with a poor prognosis. Moreover, according to our previous data, lung tumor tissue has higher levels of Sp1 expression than normal tissue. Lung cancer is the leading cause of cancer-related mortality in Taiwan. It has low survival rates and all too often it is diagnosed at a late stage. Therefore, we are interest in studying the mechanism of Sp1 accumulation during lung tumorigenesis. In this study, we found that EGF treatment could induce Sp1 accumulation in lung primary cells,but not in lung cancer cell, A549 cells. Blocking Ras activity by FTI compound in EGF-treated primary cells or A549 cells attenuated Sp1 accumulation. These results imply that in tumorigenesis, activated Ras might contribute to Sp1 accumulation. To more address this conclusion, we established conditional lung cancer transgenic mice for further study. In this animal model, we found that KRAS activation is important to Sp1 accumulation in lung cancer formation indeed. Furthermore, not only increase in mRNA was observed but also the protein stability led to Sp1 accumulation. In vivo result indicated that Sp1 accumulate from the early period of K-ras activation, and maintain to the late period that the lung tissue has changed into atypical adenomatous hyperplasia. In addition, expression of Pin1 and cyclin B1, and interaction of Sp1 and RNF4 also increased during tumorigenesis. Finally, to study the role of Sp1 accumulation in lung cancer, a DNA binding inhibitor of Sp1 was intraperitoneally injected into the tumor-bearing mice Result indicated that tumor formation could be repressed significantly. Taken together, these data figure out that ras-pathway activated in tumorigenesis is important for Sp1 accumulation, and the effect of Sp1 in lung cancers is positive.
論文目次 目錄
中文摘要……………………………………………………………………Ⅰ
英文摘要……………………………………………………………………Ⅱ
誌謝…………………………………………………………………………Ⅲ
目錄…………………………………………………………………………Ⅴ
表目錄………………………………………………………………………Ⅵ
圖目錄………………………………………………………………………Ⅶ
縮寫檢索表…………………………………………………………………Ⅷ
第一章 序論………………………………………………………………1
第二章 實驗材料…………………………………………………………10
第三章 實驗方法…………………………………………………………16
第四章 實驗結果…………………………………………………………28
第五章 實驗討論…………………………………………………………33
參考文獻……………………………………………………………………40
附圖…………………………………………………………………………45
附表…………………………………………………………………………59
自述…………………………………………………………………………60
參考文獻 Abdelrahim, M., C.H. Baker, J.L. Abbruzzese, and S. Safe. 2006. Tolfenamic acid and pancreatic cancer growth, angiogenesis, and Sp protein degradation. J Natl Cancer Inst. 98:855-68.
Abdelrahim, M., and S. Safe. 2005. Cyclooxygenase-2 inhibitors decrease vascular endothelial growth factor expression in colon cancer cells by enhanced degradation of Sp1 and Sp4 proteins. Mol Pharmacol. 68:317-29.
Abdelrahim, M., R. Smith, 3rd, R. Burghardt, and S. Safe. 2004. Role of Sp proteins in regulation of vascular endothelial growth factor expression and proliferation of pancreatic cancer cells. Cancer Res. 64:6740-9.
Adhikary, S., and M. Eilers. 2005. Transcriptional regulation and transformation by Myc proteins. Nat Rev Mol Cell Biol. 6:635-45.
Black, A.R., J.D. Black, and J. Azizkhan-Clifford. 2001. Sp1 and kruppel-like factor family of transcription factors in cell growth regulation and cancer. J Cell Physiol. 188:143-60.
Bonello, M.R., and L.M. Khachigian. 2004. Fibroblast growth factor-2 represses platelet-derived growth factor receptor-alpha (PDGFR-alpha) transcription via ERK1/2-dependent Sp1 phosphorylation and an atypical cis-acting element in the proximal PDGFR-alpha promoter. J Biol Chem. 279:2377-82.
Bouwman, P., and S. Philipsen. 2002. Regulation of the activity of Sp1-related transcription factors. Mol Cell Endocrinol. 195:27-38.
Cappuzzo, F., M. Varella-Garcia, H. Shigematsu, I. Domenichini, S. Bartolini, G.L. Ceresoli, E. Rossi, V. Ludovini, V. Gregorc, L. Toschi, W.A. Franklin, L. Crino, A.F. Gazdar, P.A. Bunn, Jr., and F.R. Hirsch. 2005. Increased HER2 gene copy number is associated with response to gefitinib therapy in epidermal growth factor receptor-positive non-small-cell lung cancer patients. J Clin Oncol. 23:5007-18.
Chen, J.L., L.D. Attardi, C.P. Verrijzer, K. Yokomori, and R. Tjian. 1994. Assembly of recombinant TFIID reveals differential coactivator requirements for distinct transcriptional activators. Cell. 79:93-105.
Chiefari, E., A. Brunetti, F. Arturi, J.M. Bidart, D. Russo, M. Schlumberger, and S. Filetti. 2002. Increased expression of AP2 and Sp1 transcription factors in human thyroid tumors: a role in NIS expression regulation? BMC Cancer. 2:35.
Cho, J.Y., and H.J. Sung. 2009. Proteomic approaches in lung cancer biomarker development. Expert Rev Proteomics. 6:27-42.
Chuang, J.Y., Y.T. Wang, S.H. Yeh, Y.W. Liu, W.C. Chang, and J.J. Hung. 2008. Phosphorylation by c-Jun NH2-terminal kinase 1 regulates the stability of transcription factor Sp1 during mitosis. Mol Biol Cell. 19:1139-51.
Courey, A.J., and R. Tjian. 1988. Analysis of Sp1 in vivo reveals multiple transcriptional domains, including a novel glutamine-rich activation motif. Cell. 55:887-98.
Deniaud, E., J. Baguet, A.L. Mathieu, G. Pages, J. Marvel, and Y. Leverrier. 2006. Overexpression of Sp1 transcription factor induces apoptosis. Oncogene. 25:7096-105.
Emili, A., J. Greenblatt, and C.J. Ingles. 1994. Species-specific interaction of the glutamine-rich activation domains of Sp1 with the TATA box-binding protein. Mol Cell Biol. 14:1582-93.
Fojas de Borja, P., N.K. Collins, P. Du, J. Azizkhan-Clifford, and M. Mudryj. 2001. Cyclin A-CDK phosphorylates Sp1 and enhances Sp1-mediated transcription. Embo J. 20:5737-47.
Han, I., and J.E. Kudlow. 1997. Reduced O glycosylation of Sp1 is associated with increased proteasome susceptibility. Mol Cell Biol. 17:2550-8.
Hanahan, D., and R.A. Weinberg. 2000. The hallmarks of cancer. Cell. 100:57-70.
Hosoi, Y., T. Watanabe, K. Nakagawa, Y. Matsumoto, A. Enomoto, A. Morita, H. Nagawa, and N. Suzuki. 2004. Up-regulation of DNA-dependent protein kinase activity and Sp1 in colorectal cancer. Int J Oncol. 25:461-8.
J. C. Yao, J.Z., K. Xie, L. Wang, Q. Li, X. Le and Z. Jia, . 2007 Preferential inhibition of Sp1 expression in growing tumors by mithramycin-A (MIT) directly correlates with its potent antiangiogenic effects in human carcinoid xenograft model. J Clin Oncol. 25:15041.
Jackson, S.P., J.J. MacDonald, S. Lees-Miller, and R. Tjian. 1990. GC box binding induces phosphorylation of Sp1 by a DNA-dependent protein kinase. Cell. 63:155-65.
Jackson, S.P., and R. Tjian. 1988. O-glycosylation of eukaryotic transcription factors: implications for mechanisms of transcriptional regulation. Cell. 55:125-33.
Jemal, A., R. Siegel, E. Ward, T. Murray, J. Xu, and M.J. Thun. 2007. Cancer statistics, 2007. CA Cancer J Clin. 57:43-66.
Jia, Z., Y. Gao, L. Wang, Q. Li, J. Zhang, X. Le, D. Wei, J.C. Yao, D.Z. Chang, S. Huang, and K. Xie. Combined treatment of pancreatic cancer with mithramycin A and tolfenamic acid promotes Sp1 degradation and synergistic antitumor activity. Cancer Res. 70:1111-9.
Jiang, Y., L. Wang, W. Gong, D. Wei, X. Le, J. Yao, J. Ajani, J.L. Abbruzzese, S. Huang, and K. Xie. 2004. A high expression level of insulin-like growth factor I receptor is associated with increased expression of transcription factor Sp1 and regional lymph node metastasis of human gastric cancer. Clin Exp Metastasis. 21:755-64.
Jonkers, J., and A. Berns. 2002. Conditional mouse models of sporadic cancer. Nat Rev Cancer. 2:251-65.
Kavurma, M.M., F.S. Santiago, E. Bonfoco, and L.M. Khachigian. 2001. Sp1 phosphorylation regulates apoptosis via extracellular FasL-Fas engagement. J Biol Chem. 276:4964-71.
LI Yan, C.Y.-q., L IW ei, et al. 2009. Expression and Signifcance of Survivin and Sp1 in Non-small Cell Lung Cancer. 中华全科医学 7.
Majello, B., P. De Luca, G. Suske, and L. Lania. 1995. Differential transcriptional regulation of c-myc promoter through the same DNA binding sites targeted by Sp1-like proteins. Oncogene. 10:1841-8.
Marin, M., A. Karis, P. Visser, F. Grosveld, and S. Philipsen. 1997. Transcription factor Sp1 is essential for early embryonic development but dispensable for cell growth and differentiation. Cell. 89:619-28.
Mendelsohn, J., and J. Baselga. 2003. Status of epidermal growth factor receptor antagonists in the biology and treatment of cancer. J Clin Oncol. 21:2787-99.
Milanini-Mongiat, J., J. Pouyssegur, and G. Pages. 2002. Identification of two Sp1 phosphorylation sites for p42/p44 mitogen-activated protein kinases: their implication in vascular endothelial growth factor gene transcription. J Biol Chem. 277:20631-9.
Mitsudomi, T., S.M. Steinberg, M.M. Nau, D. Carbone, D. D'Amico, S. Bodner, H.K. Oie, R.I. Linnoila, J.L. Mulshine, J.D. Minna, and et al. 1992. p53 gene mutations in non-small-cell lung cancer cell lines and their correlation with the presence of ras mutations and clinical features. Oncogene. 7:171-80.
Moreno-Aliaga, M.J., M.M. Swarbrick, S. Lorente-Cebrian, K.L. Stanhope, P.J. Havel, and J.A. Martinez. 2007. Sp1-mediated transcription is involved in the induction of leptin by insulin-stimulated glucose metabolism. J Mol Endocrinol. 38:537-46.
Mukhopadhyay, D., and K. Datta. 2004. Multiple regulatory pathways of vascular permeability factor/vascular endothelial growth factor (VPF/VEGF) expression in tumors. Semin Cancer Biol. 14:123-30.
Ohgami, T., K. Kato, H. Kobayashi, K. Sonoda, T. Inoue, S.I. Yamaguchi, T. Yoneda, and N. Wake. 2010. Low-dose mithramycin exerts its anticancer effect via the p53 signaling pathway and synergizes with nutlin-3 in gynecologic cancers. Cancer Sci.
Olofsson, B.A., C.M. Kelly, J. Kim, S.M. Hornsby, and J. Azizkhan-Clifford. 2007. Phosphorylation of Sp1 in response to DNA damage by ataxia telangiectasia-mutated kinase. Mol Cancer Res. 5:1319-30.
Pan, M.R., and W.C. Hung. 2002. Nonsteroidal anti-inflammatory drugs inhibit matrix metalloproteinase-2 via suppression of the ERK/Sp1-mediated transcription. J Biol Chem. 277:32775-80.
Safe, S., and M. Abdelrahim. 2005. Sp transcription factor family and its role in cancer. Eur J Cancer. 41:2438-48.
Samson, S.L., and N.C. Wong. 2002. Role of Sp1 in insulin regulation of gene expression. J Mol Endocrinol. 29:265-79.
Sato, T., and K. Furukawa. 2004. Transcriptional regulation of the human beta-1,4-galactosyltransferase V gene in cancer cells: essential role of transcription factor Sp1. J Biol Chem. 279:39574-83.
Schuh, R., W. Aicher, U. Gaul, S. Cote, A. Preiss, D. Maier, E. Seifert, U. Nauber, C. Schroder, R. Kemler, and et al. 1986. A conserved family of nuclear proteins containing structural elements of the finger protein encoded by Kruppel, a Drosophila segmentation gene. Cell. 47:1025-32.
Sherr, C.J., and J.M. Roberts. 1999. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13:1501-12.
Shi, Q., X. Le, J.L. Abbruzzese, Z. Peng, C.N. Qian, H. Tang, Q. Xiong, B. Wang, X.C. Li, and K. Xie. 2001. Constitutive Sp1 activity is essential for differential constitutive expression of vascular endothelial growth factor in human pancreatic adenocarcinoma. Cancer Res. 61:4143-54.
Spengler, M.L., and M.G. Brattain. 2006. Sumoylation inhibits cleavage of Sp1 N-terminal negative regulatory domain and inhibits Sp1-dependent transcription. J Biol Chem. 281:5567-74.
Spengler, M.L., L.W. Guo, and M.G. Brattain. 2008. Phosphorylation mediates Sp1 coupled activities of proteolytic processing, desumoylation and degradation. Cell Cycle. 7:623-30.
Spira, A., and D.S. Ettinger. 2004. Multidisciplinary management of lung cancer. N Engl J Med. 350:379-92.
Su, K., M.D. Roos, X. Yang, I. Han, A.J. Paterson, and J.E. Kudlow. 1999. An N-terminal region of Sp1 targets its proteasome-dependent degradation in vitro. J Biol Chem. 274:15194-202.
Suzuki, T., A. Kimura, R. Nagai, and M. Horikoshi. 2000. Regulation of interaction of the acetyltransferase region of p300 and the DNA-binding domain of Sp1 on and through DNA binding. Genes Cells. 5:29-41.
Tatham, M.H., M.C. Geoffroy, L. Shen, A. Plechanovova, N. Hattersley, E.G. Jaffray, J.J. Palvimo, and R.T. Hay. 2008. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol. 10:538-46.
Wang, L., D. Wei, S. Huang, Z. Peng, X. Le, T.T. Wu, J. Yao, J. Ajani, and K. Xie. 2003. Transcription factor Sp1 expression is a significant predictor of survival in human gastric cancer. Clin Cancer Res. 9:6371-80.
Wang, Y.T., J.Y. Chuang, M.R. Shen, W.B. Yang, W.C. Chang, and J.J. Hung. 2008. Sumoylation of specificity protein 1 augments its degradation by changing the localization and increasing the specificity protein 1 proteolytic process. J Mol Biol. 380:869-85.
Wei, D., L. Wang, Y. He, H.Q. Xiong, J.L. Abbruzzese, and K. Xie. 2004. Celecoxib inhibits vascular endothelial growth factor expression in and reduces angiogenesis and metastasis of human pancreatic cancer via suppression of Sp1 transcription factor activity. Cancer Res. 64:2030-8.
Wells, L., K. Vosseller, and G.W. Hart. 2001. Glycosylation of nucleocytoplasmic proteins: signal transduction and O-GlcNAc. Science. 291:2376-8.
Wierstra, I. 2008. Sp1: emerging roles--beyond constitutive activation of TATA-less housekeeping genes. Biochem Biophys Res Commun. 372:1-13.
Yuan, P., L. Wang, D. Wei, J. Zhang, Z. Jia, Q. Li, X. Le, H. Wang, J. Yao, and K. Xie. 2007. Therapeutic inhibition of Sp1 expression in growing tumors by mithramycin a correlates directly with potent antiangiogenic effects on human pancreatic cancer. Cancer. 110:2682-90.
Zhu, G.H., M. Lenzi, and E.L. Schwartz. 2002. The Sp1 transcription factor contributes to the tumor necrosis factor-induced expression of the angiogenic factor thymidine phosphorylase in human colon carcinoma cells. Oncogene. 21:8477-85.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2012-08-09起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-08-09起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw