進階搜尋


下載電子全文  
系統識別號 U0026-0408201014111600
論文名稱(中文) 太陽熱能煙囪之自然通風效益解析-以綠色魔法學校展覽室為例
論文名稱(英文) Ventilation Efficiency Analysis of Passive Solar Chimney-A Case Study of the Exhibition Room in the Magic School of Green Technology
校院名稱 成功大學
系所名稱(中) 建築學系碩博士班
系所名稱(英) Department of Architecture
學年度 98
學期 2
出版年 99
研究生(中文) 吳玉婷
研究生(英文) Yu-Ting Wu
學號 n7697426
學位類別 碩士
語文別 中文
論文頁數 83頁
口試委員 指導教授-林憲德
口試委員-周榮華
口試委員-李魁鵬
口試委員-黃漢泉
中文關鍵字 太陽熱能煙囪  浮力通風  CFD數值解析  縮尺空氣模型  自然通風 
英文關鍵字 Solar Chimney  Buoyancy Ventilation  CFD  Reduced-scale Air Model  Natural Ventilation 
學科別分類
中文摘要 近年來因能源危機,節能意識抬頭,使自然通風手法於建築運用上日益受到重視。但自然通風常因室外氣候不穩定,有熱壓差或風壓差過小造成室內通風不佳之情形。太陽熱能煙囪為一種強化自然通風熱壓差及通風量的手法,可改善自然通風不穩定及難以調控的缺點,故本研究以太陽熱能煙囪之通風效益為探討之課題。

本研究以應用太陽熱能煙囪之綠色魔法學校展覽室為案例,利用「電腦計算流體力學(Computational Fluid Dynamic,CFD)」模擬室內流場,並輔以縮尺模型實驗驗證CFD條件設定之精確性及模擬誤差範圍,經由太陽熱能煙囪之結構設計與室外氣候條件對其通風效果之相關解析,歸納出以下主要研究成果。

在夏季及春秋季不同狀態下,由模擬展覽室上、下午之通風效益及人體熱舒適性結果得知,雖然太陽熱能煙囪不論春秋季或夏季,其通風量皆遠大於法定換氣量,符合基本換氣健康需求;但對人體熱舒適而言,太陽熱能煙囪在春秋季適用性較夏季高,當春秋季外氣溫26℃時,其室內環境溫度介於26℃~27.2℃,室內可產生0.1m/s~0.2m/s之自然通風風速,約可等效降溫0.5℃~1.1℃,皆符合春秋季自然調節空間90%群眾可接受之溫度23.5℃~28.5℃,而夏季外氣溫30℃時,室內溫度則只符合80%群眾之可接受溫度。

在戶外風速方面,戶外風速有助於增加太陽熱能煙囪之通風效益,本研究在室內相同之發散熱設定下,相比於同時間之戶外無風狀態,其展覽室之通風量增加率約13.4%~22.2%,換氣次數約增加2.9次/小時~3.8次/小時,其中以春秋季下午增加最多,夏季上午增加最少。
英文摘要 Due to energy crisis and the increasing energy-saving consciousness, natural ventilation techniques for buildings consequently caught a lot of attention. However, natural ventilation will be affected by outdoor climatic conditions, such as smaller pressure differences due to heat or wind and can cause design instability. Solar chimney is a design to strengthen natural ventilation, thermal pressure differential and ventilation rate manipulation. It can improve the weakness of instability and difficulties of natural ventilation. So this study explores the issue of ventilation efficiency of solar chimney.

The research investigates the performance of the solar chimney of the exhibition room of the Magic School of Green Technology as a case study by the method of computational fluid dynamics, supplemented by scale model experiments to verify the accuracy of CFD simulations. Through the structural variation of the solar chimney and the outdoor climatic conditions on the ventilation, the following main results are obtained.

In terms of ventilation efficiency and human thermal comfort in the exhibition room under different seasonal conditions, the ventilation rate is much larger than the regulatory requirement irrespective of spring/autumn or summer season, and is consistent with the basic ventilation health needs. For human thermal comfort, the applicability of solar chimney in spring/autumn is better than in summer. While the external temperature is 26℃ in spring/autumn, the interior temperature is between 26℃~27.2℃, and the interior wind speed is between 0.1m/s ~ 0.2m/s. The equivalent temperature reduction is between 0.5℃~1.1℃; namely the indoor temperature meets the 90% acceptability limits of 23.5℃~28.5℃. But when the external temperature is 30℃ in summer, the interior temperature only meets 80% of the acceptability limits.

External wind is helpful for increasing the ventilation efficiency of the passive solar chimney. In comparison with the situation of no outdoor wind under the same conditions, the ventilation rate of the exhibition room increases 13.4%~22.2%, and the ACH increases 2.9h-1~3.8h-1. The ventilation rate increases most in the spring/autumn afternoon, and least in the summer morning.
論文目次 第一章 緒論 1
1-1 前言 1
1-2 研究動機 3
1-3 研究目的 5
1-4 研究範圍與內容 6
1-5 研究流程 7

第二章 理論與文獻回顧 8
2-1 台南市之氣候條件 8
2-1-1 太陽日射量 8
2-1-2 環境溫度 10
2-1-3 戶外風速與風向 10
2-2 室內通風效益討論範圍 11
2-2-1 室內物理環境評估因子 11
2-2-2 空氣環境評估 12
2-2-3 溫熱環境評估 13
2-3 建築的自然通風 15
2-3-1 風力通風 15
2-3-2 浮力通風 17
2-4 太陽熱能煙囪的自然通風 19
2-4-1 太陽熱能煙囪簡介 19
2-4-2 太陽熱能煙囪理論公式 20
2-4-3 太陽熱能煙囪相關文獻 24
2-4-4 太陽熱能煙囪小結 26

第三章 CFD簡介與實驗解析 28
3-1 電腦計算流體力學(CFD) 28
3-1-1 室內氣流特徵之數學描述 30
3-1-2 數值解析方法 34
3-2 縮尺模型實驗 38
3-2-1 實驗目的與方法 38
3-2-2 實驗設備與量測 39
3-2-3 縮尺實驗模型之建構 41
3-2-4 實驗流程 43
3-2-5 縮尺實驗結果 46
3-3 縮尺模型之CFD數值模擬 48
3-3-1 數值模型建立 48
3-3-2 縮尺模型之數值模擬結果 49
3-4 縮尺實驗與數值模擬條件設定驗證 51

第四章 展覽室數值模擬與通風效益解析 53
4-1 模擬對象 53
4-1-1 數值模擬模型建構 56
4-1-2 數值模擬模型邊界條件設定 58
4-1-3 獨立格點分析 59
4-2 模擬參數設定 60
4-2-1 研究變因選定 60
4-2-2 研究變因簡介 61
4-2-3 數值模擬解析線位置說明 62
4-3 數值模擬與通風效益解析 64
4-3-1 煙囪結構設計變因 64
4-3-2 煙囪結構設計變因小結 66
4-3-3 室外氣候變因 66
4-3-4 室外氣候變因小結 76

第五章 結論與建議 77
5-1 結論 77
5-2 後續研究與建議 78

參考文獻 79
參考文獻 A. Bouchair. (1994). Solar chimney for promoting cooling ventilation in southern Algeria. Building Services Engineering Research and Technology 15, 頁 81-93.

B.E. Launder, D.B. Spalding. (1974). The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering 3, 頁 269-289.

Climate Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Change. (2007). Climate Change 2007: The Physical Science Basis.

David Etheridge, Mats Sandberg. (1996). Building ventilation: theory and measurement. John Wiley & Sons.

Emad H. Amer. (2006). Passive options for solar cooling of buildings in arid areas. Energy 31, 頁 1332-1344.

Fluent Inc. (2006). LUENT HELP.

G. Gan, S.B. Riffat (1998). A numerical study of solar chimney for natural ventilation of buildings with heat recovery. Applied Thermal Engineering 18, 頁 1171-1187.

G.S. Barozzi, M.S.E. Imbabi, E. Nobile, A.C.M. Sousa. (1992). Physical and numerical modelling of a solar chimney-based ventilation system for buildings. Building and Environment 27, 頁 433-455.

Gan Guohui. (1998). A parametric study of Trombe walls for passive cooling of buildings. Energy and Buildings 27, 頁 37-43.

Gan Guohui. (2006). Simulation of buoyancy-induced flow in open cavities for natural ventilation. Energy and Buildings 38, 頁 410-420.

J. Arce, M.J. Jimenez, J.D. Guzman, M.R. Heras, G. Alvarez, J. Xaman. (2009). Experimental study for natural ventilation on a solar chimney. Renewable Energy 34, 頁 2928-2934.

Lechner Norbert. (1991). Heating, cooling, lighting :design methods for architects. New York :Wiley.

M.M. AboulNaga, S.N. Abdrabboh. (2000). Improving night ventilation into low-rise buildings in hot-arid climates exploring a combined wall–roof solar chimney. Renewable Energy 19, 頁 47-54.

N.C. Markatos, M.R. Malin, G. Cox. (1982). Mathematical modelling of buoyancy-induced smoke flow in enclosures. International Journal of Heat and Mass Transfer 25, 頁 63-75.

N.K. Bansal. (1993). Solar chimney for enhanced stack ventilation. Building and Environment 28, 頁 373-377.

N.K. Bansal, R. Mathur, M.S. Bhandari. (1994). A study of solar chimney assisted wind tower system for natural ventilation in buildings. Building and Environment 29, 頁 495-500.

S. Spencer (2001). Experimental investigation of a solar chimney natural ventilation system. Canada: PHD thesis.

Z.D. Cheng, P. Bandopadhayaya, J. Halldorssonb, C. Byrjalsenb, P. Heiselbergb, Y. Lic. (2003). An experimental investigation of a solar chimney model with uniform wall heat flux. Building and Environment 38, 頁 893-906.

今井與藏. (1988). 絵とき建築環境工學. 彰國社.

中央氣象局. (2009). 1890-2008台灣氣候變化統計報告.

王麗萍. (2003). 太陽能煙囪提高室內熱壓通風效果的數值模擬. 西安建築科大碩論.

田中俊六、武田仁、足立哲夫、土屋喬雄著, 簡裕榮、薛寧心譯. (2004). 建築環境工學. 臺北市: 六合出版社.

江哲銘. (1997). 建築物理. 三民書局.

朱佳仁. (2006). 風工程概論. 科技圖書出版公司. 臺北市.

周鼎金. (1995). 建築物理. 旭營文化公司.

林憲德. (2009). 人居熱環境. 詹氏書局.

林憲德. (2006). 綠色建築. 詹氏書局.

荊海薇. (2005). 太陽能煙囪自然通風效果實驗研究. 西安建築科大碩論.

郝彩俠. (2006). 太陽能煙囪自然通風效果實驗與設計方法研究. 西安建築科大碩論.

黃國倉. (2006). 辦公建築生命週期節能與二氧化碳減量評估之研究. 成功大學博論.

賈力,解國珍,陳向東. (2005). 室內氣流模擬過程中計算流體力學的紊流模型評價與選擇. 製冷空調與電力機械 02, 頁 42-45.

廖崇文. (2003). 不同空調通風路徑對室內空氣與溫熱環境影響之研究. 樹德科大碩論.

趙平歌. (2002). 太陽能煙囪自然通風效果的初步研究. 西安建築科大碩論.

劉姵君. (2007). 中庭浮力通風評估之研究. 成功大學碩論.

簡君翰. (2009). 無動力太陽能通風塔能源效益解析-以綠色魔法學校國際會議廳為例. 成大碩論.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2011-08-13起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2011-08-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw