進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0407202016113300
論文名稱(中文) 阻塞型睡眠呼吸中止症病患之創新復健模式發展-隨機對照試驗
論文名稱(英文) A New Rehabilitation Model for the Patients with Obstructive Sleep Apnea Syndrome- A Randomized Controlled Trial
校院名稱 成功大學
系所名稱(中) 健康照護科學研究所
系所名稱(英) Institute of Allied Health Sciences
學年度 108
學期 2
出版年 109
研究生(中文) 林欣妤
研究生(英文) Hsin-Yu Lin
學號 TA8051070
學位類別 博士
語文別 英文
論文頁數 99頁
口試委員 指導教授-洪菁霞
口試委員-陳郁文
口試委員-林政佑
口試委員-蔡昆霖
召集委員-傅鐵城
中文關鍵字 阻塞型睡眠呼吸中止症  結構障礙  口咽肌肉功能障礙  呼吸調控不穩定 
英文關鍵字 obstructive sleep apnea syndrome  anatomic impairment  oropharyngeal muscle dysfunction  espiratory control instability 
學科別分類
中文摘要 研究背景與目的 阻塞型睡眠呼吸中止症是上呼吸道完全或部分阻塞的睡眠呼吸疾患,因為睡眠周期影響呼吸道肌肉張力降低造成其通道坍陷而引起呼吸中止或淺呼吸的異常事件。然而過去的研究顯示傳統的復健訓練僅能適用輕度或中度的患者,可能因為重度的睡眠呼吸中止症其病理機轉尚還牽涉循環呼吸系統的調控。為突破目前臨床面臨的限制,所以我們將實驗分為兩個階段進行(1)利用系統性文獻回顧建立創新的全面性的復健治療模式(2)驗證此創新復健治療模式的臨床成效
研究方法 遵行系統性文獻回顧研究PRISMA的聲明來建置全面性的復健治療模式。在隨機分派的對照實驗中招募31位新診斷的中度及重度的阻塞型睡眠呼吸中(AHI≥15)隨機分派接受回顧研究所提出的復健治療。實驗組執行12週的復健訓練,包含20分鐘的口咽肌力訓練,15分鐘的呼吸肌肌力訓練,以及45分鐘的一般耐力訓練。實驗的結果包含治療前後共兩次的參數量測:睡眠多項生理檢查、口咽肌肉功能檢查,以及呼吸肌功能檢查等。
結果 在回顧型研究的結果中,收錄了8篇研究共203位受試者,整合結果發現傳統的復健治療可以改善呼吸異常指數約39%,治療的臨床適應症包含年齡是中年40-65歲、BMI小於40 kg/m2、診斷為輕度及中度睡眠呼吸中止症,並且無上呼吸道結構異常者。實驗組(N=16)其睡眠檢查結果顯示AHI有顯著的改善(46.7 ± 17.4 versus 33.3 ± 11.4 events/h, p<.001),對照組(N=15)AHI的結果顯示有顯著增加。其他的數據控制組多呈現12週前後沒有顯著變化,而實驗組則呈現多項顯著差異,包含arousal index (前43.6±17.1後34.1±9.5/h), mean SpO2 (前79.0±7.4後76.8±7.2%). 在其他口咽肌肉功能以及呼吸肌功能的結果也顯示實驗組有顯著的改善(tongue elevation前51.5±11.9後61.6±8.6 kpa;tongue protrusion前41.8±12.5後58.4±6.kpa;PImax前109.0±40.2後181.5±52.6 cmH2O;PEmax前71.4±24.0後108.9±34.2 cmH2O)。
結論 我們回顧型研究的結果認為完整的復健治療在口咽肌力功能訓練外,應同時強調循環呼吸迴路的調控能力,才可以更全面的介入阻塞型睡眠呼吸中止症的臨床問題。在我們的隨機分派對照的研究中發現,我們提出的創新的全面性復健治療模式可以有效改善阻塞型睡眠呼吸中止症的患者其睡眠檢查、口咽肌肉功能,以及呼吸肌肉功能等結果,證實針對中度及重度阻塞型睡眠呼吸中止症的患者此創新復健模式是一個有效的介入策略。
英文摘要 Background and objective: Obstructive sleep apnea (OSA) is characterized with complete or partial obstruction of upper airway during sleep. The vulnerable sites of upper airway collapses are consequences of sleep state-dependent reductions in pharyngeal muscle tone. According to phenotypic approach, oropharyngeal muscle dysfunction has been indicated for conventional oropharyngeal therapy, which was proven limited only for mild and moderate OSA. However, the severe OSA was implied to involve more than other pathogenesis, especially related to the circulorespiratory loops. Therefore, the purpose of the study is divided into two phases (1) to develop a new rehabilitation model using a systematic review, and (2) to investigate the clinical effects of a new rehabilitation model on OSA conducting a clinical trial.
Methods: The statement of Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) was followed to develop a comprehensive rehabilitation model for OSA. Subsequently, thirty-one subjects with newly diagnosed moderate and severe OSA were randomized receiving the rehabilitation program submitted from prior review study. The intervention group was conducted a 12-week intervention, including 20-min oropharyngeal muscle training, 15-min respiratory muscle training, and 45-min general endurance training, while the control group was kept on waiting for 12 weeks. Polysomnography (PSG) data, oropharyngeal and respiratory muscle performance were measured at baseline and after 12 weeks.
Results: A total of 8 studies with 203 patients were included to meta-synthesize the respondent indications that the patients with middle aged, BMI<40 kg/m2, mild and moderate OSA, and non-severe upper airway anatomical abnormality improved with approximate 39% on apnea-hypopnea index (AHI) from conventional oropharyngeal therapy. In the intervention group (N=16), AHI was significantly reduced (46.7 ± 17.4 versus 33.3 ± 11.4 events/h, p<.001). While the control group remained the similar results from baseline, the intervention group demonstrated other PSG outcomes significantly improved after intervention, including arousal index (43.6±17.1 versus 34.1±9.5/h), mean SpO2 (79.0±7.4 versus 76.8±7.2%). Compared to the control group, the intervention group was reported both oropharyngeal and respiratory muscle performance significantly increased (tongue elevation 51.5 ± 11.9 versus 61.6±8.6 kpa; tongue protrusion 41.8±12.5 versus 58.4±6. kpa; PImax 109.0±40.2 versus 181.5±52.6 cmH2O; PEmax 71.4±24.0 versus 108.9±34.2 cmH2O).
Conclusion: Our systematic review suggested a comprehensive rehabilitation should emphasize cardiorespiratory regulation capability in addition to oropharyngeal muscle function. Therefore, in the RCT study, our new model led to the significant clinical improvement, proven an effective therapy for the patients with moderate and severe OSA.
論文目次 中文摘要(CHINESE ABSTRACT) iii
英文摘要(ENGLISH ABSTRACT) iv
致謝(ACKNOWLEDGEMENT) vi
縮寫(ABBREVIATION) viii
1. INTRODUCTION 1
1.1 Definition 1
1.2 Epidemiology 1
1.3 Potential comorbidity 3
1.4 Impacts on cardiovascular disease 3
1.5 Intermittent hypoxia mediated endothelial dysfunction 4
1.6 Molecular profile 6
1.7 Phenotypes 9
1.8 Oropharyngeal muscle dysfunction 10
1.9 Ventilatory control instability 11
1.10 Strategy of current management 12
1.11 A new rehabilitation model 14
1.12 Upper airway muscle strengthening 14
1.13 Respiratory muscle strengthening 16
1.14 Cardiorespiratory fitness 17
1.15 Purposes 17
2. MATERIALS AND METHODS 18
2.1 A systematic review study 18
2.1.1 Eligibility 18
2.1.2 Search strategy 18
2.1.3 Methodology and quality assessment 19
2.1.4 Data extraction and statistics 19
2.2 A prospective randomized controlled trial 20
2.2.1 Participants 20
2.2.2 Experimental procedure 21
2.2.3 Intervention protocol 21
2.2.4 Outcome measures 26
2.2.5 Statistics 28
3. RESULTS 29
3.1 A systematic review study 29
3.1.1 Literature research 29
3.1.2 Risk of bias assessment 29
3.1.3 Synthesis of participant characteristics 30
3.1.4 Synthesis of current rehabilitation protocol 31
3.1.5 Meta-analysis 33
3.2 A prospective randomized controlled trial 35
3.2.1 Baseline characteristics 35
3.2.2 Anthropometric data 35
3.2.3 Polysomnography 36
3.2.4 Oropharyngeal function 37
3.2.5 Respiratory function 37
3.2.6 Correlation between AHI and potential predictors 38
4. DISCUSSION 39
4.1 Clinical effects 39
4.2 Biological effects 39
4.3 A comprehensive rehabilitation model 40
4.4 Upper airway muscle strengthening with multilevel approach 40
4.5 Intervention emphasis on hypopharyngeal training 41
4.6 Potential effects of general endurance training 42
4.7 Adverse events 43
4.8 Strengths and limitations 43
5. CONCLUSIONS 45
REFERENCES 46
參考文獻 1. Epstein LJ, Kristo D, Strollo PJ, Jr. et al (2009) Clinical guideline for the evaluation, management and long-term care of obstructive sleep apnea in adults. J Clin Sleep Med 5:263-276
2. Greenberg H, Lakticova V, Scharf SM (2017) Chapter 114 - Obstructive Sleep Apnea: Clinical Features, Evaluation, and Principles of Management A2 - Kryger, Meir. In: Roth T, Dement WC (ed) Principles and Practice of Sleep Medicine (Sixth Edition). Elsevier, pp 1110-1124.e1116
3. Lurie A (2011) Obstructive sleep apnea in adults: epidemiology, clinical presentation, and treatment options. Adv Cardiol 46:1-42. https://doi.org/10.1159/000327660
4. Pack AI (2012) Sleep apnea : pathogenesis, diagnosis, and treatment. Informa Healthcare, New York
5. Punjabi NM (2008) The epidemiology of adult obstructive sleep apnea. Proc Am Thorac Soc 5:136-143. https://doi.org/10.1513/pats.200709-155MG
6. Dempsey JA, Veasey SC, Morgan BJ, O'Donnell CP (2010) Pathophysiology of sleep apnea. Physiol Rev 90:47-112. https://doi.org/10.1152/physrev.00043.2008
7. Franklin KA, Lindberg E (2015) Obstructive sleep apnea is a common disorder in the population-a review on the epidemiology of sleep apnea. J Thorac Dis 7:1311-1322. https://doi.org/10.3978/j.issn.2072-1439.2015.06.11
8. Peppard PE, Young T, Palta M, Dempsey J, Skatrud J (2000) Longitudinal study of moderate weight change and sleep-disordered breathing. Jama 284:3015-3021. https://doi.org/10.1001/jama.284.23.3015
9. Jordan AS, McSharry DG, Malhotra A (2014) Adult obstructive sleep apnoea. Lancet 383:736-747. https://doi.org/10.1016/s0140-6736(13)60734-5
10. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM (2013) Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol 177:1006-1014. https://doi.org/10.1093/aje/kws342
11. Minic M, Ryan CM (2015) Significance of obstructive sleep apnea in the patient with pulmonary hypertension. Curr Opin Pulm Med 21:569-578. https://doi.org/10.1097/mcp.0000000000000206
12. Bauters F, Rietzschel ER, Hertegonne KB, Chirinos JA (2016) The Link Between Obstructive Sleep Apnea and Cardiovascular Disease. Curr Atheroscler Rep 18:1. https://doi.org/10.1007/s11883-015-0556-z
13. Carneiro G, Zanella MT (2018) Obesity metabolic and hormonal disorders associated with obstructive sleep apnea and their impact on the risk of cardiovascular events. Metabolism 84:76-84. https://doi.org/10.1016/j.metabol.2018.03.008
14. Lam DC, Lam KS, Ip MS (2015) Obstructive sleep apnoea, insulin resistance and adipocytokines. Clin Endocrinol (Oxf) 82:165-177. https://doi.org/10.1111/cen.12597
15. Bradley TD, Floras JS (2009) Obstructive sleep apnoea and its cardiovascular consequences. Lancet 373:82-93. https://doi.org/10.1016/s0140-6736(08)61622-0
16. Sajkov D, Wang T, Saunders NA, Bune AJ, McEvoy RD (2002) Continuous positive airway pressure treatment improves pulmonary hemodynamics in patients with obstructive sleep apnea. Am J Respir Crit Care Med 165:152-158. https://doi.org/10.1164/ajrccm.165.2.2010092
17. Birkbak J, Clark AJ, Rod NH (2014) The effect of sleep disordered breathing on the outcome of stroke and transient ischemic attack: a systematic review. J Clin Sleep Med 10:103-108. https://doi.org/10.5664/jcsm.3376
18. Yaggi HK, Concato J, Kernan WN, Lichtman JH, Brass LM, Mohsenin V (2005) Obstructive sleep apnea as a risk factor for stroke and death. N Engl J Med 353:2034-2041. https://doi.org/10.1056/NEJMoa043104
19. Marin JM, Carrizo SJ, Vicente E, Agusti AG (2005) Long-term cardiovascular outcomes in men with obstructive sleep apnoea-hypopnoea with or without treatment with continuous positive airway pressure: an observational study. Lancet 365:1046-1053. https://doi.org/10.1016/s0140-6736(05)71141-7
20. Anandam A, Patil M, Akinnusi M, Jaoude P, El-Solh AA (2013) Cardiovascular mortality in obstructive sleep apnoea treated with continuous positive airway pressure or oral appliance: an observational study. Respirology 18:1184-1190. https://doi.org/10.1111/resp.12140
21. Chang C-J (2018) The Effect of Physical Therapy Training on Tongue and Respiratory Muscle Performance, Six-Minute Walk Test, and Inflammatory Expression in Patients with Obstructive Sleep Apnea. Department of Physical Therapy. National Cheng Kung University, pp 1-54
22. McNicholas WT, Bonsigore MR (2007) Sleep apnoea as an independent risk factor for cardiovascular disease: current evidence, basic mechanisms and research priorities. Eur Respir J 29:156-178. https://doi.org/10.1183/09031936.00027406
23. Shamsuzzaman AS, Gersh BJ, Somers VK (2003) Obstructive sleep apnea: implications for cardiac and vascular disease. Jama 290:1906-1914. https://doi.org/10.1001/jama.290.14.1906
24. Parish JM, Somers VK (2004) Obstructive sleep apnea and cardiovascular disease. Mayo Clin Proc 79:1036-1046. https://doi.org/10.4065/79.8.1036
25. Shpilsky D, Erqou S, Patel SR et al (2018) Association of obstructive sleep apnea with microvascular endothelial dysfunction and subclinical coronary artery disease in a community-based population 23:331-339. https://doi.org/10.1177/1358863x18755003
26. Tuleta I, Franca CN, Wenzel D et al (2015) Intermittent Hypoxia Impairs Endothelial Function in Early Preatherosclerosis. Adv Exp Med Biol 858:1-7. https://doi.org/10.1007/5584_2015_114
27. Atkeson A, Jelic S (2008) Mechanisms of endothelial dysfunction in obstructive sleep apnea. Vasc Health Risk Manag 4:1327-1335. https://doi.org/10.2147/vhrm.s4078
28. Sanchez-de-la-Torre M, Campos-Rodriguez F, Barbe F (2013) Obstructive sleep apnoea and cardiovascular disease. Lancet Respir Med 1:61-72. https://doi.org/10.1016/s2213-2600(12)70051-6
29. Feng J, Zhang D, Chen B (2012) Endothelial mechanisms of endothelial dysfunction in patients with obstructive sleep apnea. Sleep Breath 16:283-294. https://doi.org/10.1007/s11325-011-0519-8
30. Somers VK, Dyken ME, Clary MP, Abboud FM (1995) Sympathetic neural mechanisms in obstructive sleep apnea. J Clin Invest 96:1897-1904. https://doi.org/10.1172/jci118235
31. Tilkian AG, Guilleminault C, Schroeder JS, Lehrman KL, Simmons FB, Dement WC (1976) Hemodynamics in sleep-induced apnea. Studies during wakefulness and sleep. Ann Intern Med 85:714-719. https://doi.org/10.7326/0003-4819-85-6-714
32. Ip MS, Tse HF, Lam B, Tsang KW, Lam WK (2004) Endothelial function in obstructive sleep apnea and response to treatment. Am J Respir Crit Care Med 169:348-353. https://doi.org/10.1164/rccm.200306-767OC
33. Cross MD, Mills NL, Al-Abri M et al (2008) Continuous positive airway pressure improves vascular function in obstructive sleep apnoea/hypopnoea syndrome: a randomised controlled trial. Thorax 63:578-583. https://doi.org/10.1136/thx.2007.081877
34. Lavie L (2012) Oxidative stress inflammation and endothelial dysfunction in obstructive sleep apnea. Front Biosci (Elite Ed) 4:1391-1403. https://doi.org/10.2741/469
35. Ramos AR, Figueredo P, Shafazand S et al (2017) Obstructive Sleep Apnea Phenotypes and Markers of Vascular Disease: A Review. Front Neurol 8:659. https://doi.org/10.3389/fneur.2017.00659
36. Arnardottir ES, Mackiewicz M, Gislason T, Teff KL, Pack AI (2009) Molecular signatures of obstructive sleep apnea in adults: a review and perspective. Sleep 32:447-470. https://doi.org/10.1093/sleep/32.4.447
37. Kraiczi H, Caidahl K, Samuelsson A, Peker Y, Hedner J (2001) Impairment of vascular endothelial function and left ventricular filling : association with the severity of apnea-induced hypoxemia during sleep. Chest 119:1085-1091. https://doi.org/10.1378/chest.119.4.1085
38. Vaziri ND, Rodríguez-Iturbe B (2006) Mechanisms of disease: oxidative stress and inflammation in the pathogenesis of hypertension. Nat Clin Pract Nephrol 2:582-593. https://doi.org/10.1038/ncpneph0283
39. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39:44-84. https://doi.org/10.1016/j.biocel.2006.07.001
40. Lavie L (2003) Obstructive sleep apnoea syndrome--an oxidative stress disorder. Sleep Med Rev 7:35-51. https://doi.org/10.1053/smrv.2002.0261
41. Ntalapascha M, Makris D, Kyparos A et al (2013) Oxidative stress in patients with obstructive sleep apnea syndrome. Sleep Breath 17:549-555. https://doi.org/10.1007/s11325-012-0718-y
42. Ma L, Zhang J, Liu Y (2016) Roles and Mechanisms of Obstructive Sleep Apnea-Hypopnea Syndrome and Chronic Intermittent Hypoxia in Atherosclerosis: Evidence and Prospective. Oxid Med Cell Longev 2016:8215082. https://doi.org/10.1155/2016/8215082
43. Ryan S, Taylor CT, McNicholas WT (2005) Selective activation of inflammatory pathways by intermittent hypoxia in obstructive sleep apnea syndrome. Circulation 112:2660-2667. https://doi.org/10.1161/circulationaha.105.556746
44. Yamauchi M, Tamaki S, Tomoda K et al (2006) Evidence for activation of nuclear factor kappaB in obstructive sleep apnea. Sleep Breath 10:189-193. https://doi.org/10.1007/s11325-006-0074-x
45. Pak VM, Grandner MA, Pack AI (2014) Circulating adhesion molecules in obstructive sleep apnea and cardiovascular disease. Sleep Med Rev 18:25-34. https://doi.org/10.1016/j.smrv.2013.01.002
46. Song D, Fang G, Mao SZ et al (2012) Chronic intermittent hypoxia induces atherosclerosis by NF-κB-dependent mechanisms. Biochim Biophys Acta 1822:1650-1659. https://doi.org/10.1016/j.bbadis.2012.07.010
47. Sun H, Zhang H, Li K et al (2019) ESM-1 promotes adhesion between monocytes and endothelial cells under intermittent hypoxia 234:1512-1521. https://doi.org/10.1002/jcp.27016
48. Ramar K, Caples SM (2011) Vascular changes, cardiovascular disease and obstructive sleep apnea. Future Cardiol 7:241-249. https://doi.org/10.2217/fca.10.123
49. Ursavas A, Karadag M, Rodoplu E, Yilmaztepe A, Oral HB, Gozu RO (2007) Circulating ICAM-1 and VCAM-1 levels in patients with obstructive sleep apnea syndrome. Respiration 74:525-532. https://doi.org/10.1159/000097770
50. Pak VM, Keenan BT, Jackson N et al (2015) Adhesion molecule increases in sleep apnea: beneficial effect of positive airway pressure and moderation by obesity. Int J Obes (Lond) 39:472-479. https://doi.org/10.1038/ijo.2014.123
51. Eckert DJ (2018) Phenotypic approaches to obstructive sleep apnoea - New pathways for targeted therapy. Sleep Med Rev 37:45-59. https://doi.org/10.1016/j.smrv.2016.12.003
52. Chi L, Comyn FL, Mitra N et al (2011) Identification of craniofacial risk factors for obstructive sleep apnoea using three-dimensional MRI. Eur Respir J 38:348-358. https://doi.org/10.1183/09031936.00119210
53. Choi JH, Cho SH, Kim SN, Suh JD, Cho JH (2016) Predicting Outcomes after Uvulopalatopharyngoplasty for Adult Obstructive Sleep Apnea: A Meta-analysis. Otolaryngol Head Neck Surg 155:904-913. https://doi.org/10.1177/0194599816661481
54. Rotenberg BW, Murariu D, Pang KP (2016) Trends in CPAP adherence over twenty years of data collection: a flattened curve. J Otolaryngol Head Neck Surg 45:43. https://doi.org/10.1186/s40463-016-0156-0
55. Edwards BA, Redline S, Sands SA, Owens RL (2019) More Than the Sum of the Respiratory Events: Personalized Medicine Approaches for Obstructive Sleep Apnea. Am J Respir Crit Care Med 200:691-703. https://doi.org/10.1164/rccm.201901-0014TR
56. Horner RL (2008) Neuromodulation of hypoglossal motoneurons during sleep. Respir Physiol Neurobiol 164:179-196. https://doi.org/10.1016/j.resp.2008.06.012
57. Wellman A, Edwards BA, Sands SA et al (2013) A simplified method for determining phenotypic traits in patients with obstructive sleep apnea. J Appl Physiol (1985) 114:911-922. https://doi.org/10.1152/japplphysiol.00747.2012
58. Younes M (2008) Role of respiratory control mechanisms in the pathogenesis of obstructive sleep disorders. J Appl Physiol (1985) 105:1389-1405. https://doi.org/10.1152/japplphysiol.90408.2008
59. Schwab RJ, Pasirstein M, Pierson R et al (2003) Identification of upper airway anatomic risk factors for obstructive sleep apnea with volumetric magnetic resonance imaging. Am J Respir Crit Care Med 168:522-530. https://doi.org/10.1164/rccm.200208-866OC
60. Ryan CM, Bradley TD (2005) Pathogenesis of obstructive sleep apnea. J Appl Physiol (1985) 99:2440-2450. https://doi.org/10.1152/japplphysiol.00772.2005
61. Sahara Y, Hashimoto N, Nakamura Y (1996) Hypoglossal premotor neurons in the rostral medullary parvocellular reticular formation participate in cortically-induced rhythmical tongue movements. Neurosci Res 26:119-131
62. Horner RL, Hughes SW, Malhotra A (2014) State-dependent and reflex drives to the upper airway: basic physiology with clinical implications. J Appl Physiol (1985) 116:325-336. https://doi.org/10.1152/japplphysiol.00531.2013
63. Saboisky JP, Butler JE, Luu BL, Gandevia SC (2015) Neurogenic changes in the upper airway of obstructive sleep apnoea. Current Neurology & Neuroscience Reports 15:12
64. Dempsey JA, Xie A, Patz DS, Wang D (2014) Physiology in medicine: obstructive sleep apnea pathogenesis and treatment--considerations beyond airway anatomy. J Appl Physiol (1985) 116:3-12. https://doi.org/10.1152/japplphysiol.01054.2013
65. Horner RL (2017) Respiratory Physiology: Central Neural Control of Respiratory Neurons and Motoneurons During Sleep. In: Kryger M, Roth T, Dement WC (ed) Principles and Practice of Sleep Medicine 6th edn. Elsevier, Philadelphia, PA, pp 155-166.e155
66. Series FJ, Simoneau SA, St Pierre S, Marc I (1996) Characteristics of the genioglossus and musculus uvulae in sleep apnea hypopnea syndrome and in snorers. Am J Respir Crit Care Med 153:1870-1874. https://doi.org/10.1164/ajrccm.153.6.8665048
67. Lindman R, Stal PS (2002) Abnormal palatopharyngeal muscle morphology in sleep-disordered breathing. J Neurol Sci 195:11-23. https://doi.org/10.1016/s0022-510x(01)00676-1
68. Vroegop AV, Vanderveken OM, Boudewyns AN et al (2014) Drug-induced sleep endoscopy in sleep-disordered breathing: report on 1,249 cases. Laryngoscope 124:797-802. https://doi.org/10.1002/lary.24479
69. Oliven R, Cohen G, Somri M, Schwartz AR, Oliven A (2018) Peri-pharyngeal muscle response to inspiratory loading: comparison of patients with OSA and healthy subjects. J Sleep Res:e12756. https://doi.org/10.1111/jsr.12756
70. Eckert DJ, White DP, Jordan AS, Malhotra A, Wellman A (2013) Defining phenotypic causes of obstructive sleep apnea. Identification of novel therapeutic targets. Am J Respir Crit Care Med 188:996-1004. https://doi.org/10.1164/rccm.201303-0448OC
71. Cooper VL, Pearson SB, Bowker CM, Elliott MW, Hainsworth R (2005) Interaction of chemoreceptor and baroreceptor reflexes by hypoxia and hypercapnia - a mechanism for promoting hypertension in obstructive sleep apnoea. J Physiol 568:677-687. https://doi.org/10.1113/jphysiol.2005.094151
72. Freet CS, Stoner JF, Tang X (2013) Baroreflex and chemoreflex controls of sympathetic activity following intermittent hypoxia. Auton Neurosci 174:8-14. https://doi.org/10.1016/j.autneu.2012.12.005
73. Deacon NL, Catcheside PG (2015) The role of high loop gain induced by intermittent hypoxia in the pathophysiology of obstructive sleep apnoea. Sleep Med Rev 22:3-14. https://doi.org/10.1016/j.smrv.2014.10.003
74. Eckert DJ, McEvoy RD, George KE, Thomson KJ, Catcheside PG (2007) Genioglossus reflex inhibition to upper-airway negative-pressure stimuli during wakefulness and sleep in healthy males. J Physiol 581:1193-1205. https://doi.org/10.1113/jphysiol.2007.132332
75. Landry SA, Andara C, Terrill PI et al (2018) Ventilatory control sensitivity in patients with obstructive sleep apnea is sleep stage dependent. Sleep 41. https://doi.org/10.1093/sleep/zsy040
76. Deacon-Diaz N, Malhotra A (2018) Inherent vs. Induced Loop Gain Abnormalities in Obstructive Sleep Apnea. Front Neurol 9:896. https://doi.org/10.3389/fneur.2018.00896
77. Younes M, Ostrowski M, Thompson W, Leslie C, Shewchuk W (2001) Chemical control stability in patients with obstructive sleep apnea. Am J Respir Crit Care Med 163:1181-1190. https://doi.org/10.1164/ajrccm.163.5.2007013
78. Younes M, Ostrowski M, Atkar R, Laprairie J, Siemens A, Hanly P (2007) Mechanisms of breathing instability in patients with obstructive sleep apnea. J Appl Physiol (1985) 103:1929-1941. https://doi.org/10.1152/japplphysiol.00561.2007
79. Weaver TE, Grunstein RR (2008) Adherence to continuous positive airway pressure therapy: the challenge to effective treatment. Proc Am Thorac Soc 5:173-178. https://doi.org/10.1513/pats.200708-119MG
80. Strollo PJ, Jr., Soose RJ, Maurer JT et al (2014) Upper-airway stimulation for obstructive sleep apnea. N Engl J Med 370:139-149. https://doi.org/10.1056/NEJMoa1308659
81. Strollo PJ, Jr., Gillespie MB, Soose RJ et al (2015) Upper Airway Stimulation for Obstructive Sleep Apnea: Durability of the Treatment Effect at 18 Months. Sleep 38:1593-1598. https://doi.org/10.5665/sleep.5054
82. Woodson BT, Soose RJ, Gillespie MB et al (2016) Three-Year Outcomes of Cranial Nerve Stimulation for Obstructive Sleep Apnea: The STAR Trial. Otolaryngol Head Neck Surg 154:181-188. https://doi.org/10.1177/0194599815616618
83. Saboisky JP, Chamberlin NL, Malhotra A (2009) Potential therapeutic targets in obstructive sleep apnoea. Expert Opin Ther Targets 13:795-809. https://doi.org/10.1517/14728220903005608
84. Carberry JC, Amatoury J, Eckert DJ (2018) Personalized Management Approach for OSA. Chest 153:744-755. https://doi.org/10.1016/j.chest.2017.06.011
85. Lai V, Carberry J, Eckert D (2019) Sleep Apnea Phenotyping: Implications for Dental Sleep Medicine. Journal of Dental Sleep Medicine 6. https://doi.org/10.15331/jdsm.7072
86. Oliven R, Cohen G, Dotan Y, Somri M, Schwartz AR, Oliven A (2018) Alteration in upper airway dilator muscle coactivation during sleep: comparison of patients with obstructive sleep apnea and healthy subjects. J Appl Physiol (1985) 124:421-429. https://doi.org/10.1152/japplphysiol.01067.2016
87. Younes M (2004) Role of arousals in the pathogenesis of obstructive sleep apnea. Am J Respir Crit Care Med 169:623-633. https://doi.org/10.1164/rccm.200307-1023OC
88. Lin HY, Su PL, Lin CY, Hung CH (2019) Models of anatomically based oropharyngeal rehabilitation with a multilevel approach for patients with obstructive sleep apnea: a meta-synthesis and meta-analysis. https://doi.org/10.1007/s11325-019-01971-8
89. Zaidi FN, Meadows P, Jacobowitz O, Davidson TM (2013) Tongue anatomy and physiology, the scientific basis for a novel targeted neurostimulation system designed for the treatment of obstructive sleep apnea. Neuromodulation 16:376-386; discussion 386. https://doi.org/10.1111/j.1525-1403.2012.00514.x
90. Sessle BJ (2011) Chapter 5--face sensorimotor cortex: its role and neuroplasticity in the control of orofacial movements. Prog Brain Res 188:71-82. https://doi.org/10.1016/B978-0-444-53825-3.00010-3
91. Horst R (2007) Neuromusculoskeletal Plasticity of the Craniomandibular Region: Basic Principles and Recommendations for Optimal Rehabilitation:339-356. https://doi.org/10.1016/B978-0-7506-8774-4.50019-8
92. Saboisky JP, Butler JE, Fogel RB et al (2006) Tonic and phasic respiratory drives to human genioglossus motoneurons during breathing. J Neurophysiol 95:2213-2221. https://doi.org/10.1152/jn.00940.2005
93. Classen J, Liepert J, Wise SP, Hallett M, Cohen LG (1998) Rapid plasticity of human cortical movement representation induced by practice. J Neurophysiol 79:1117-1123. https://doi.org/10.1152/jn.1998.79.2.1117
94. Ziemann U, Ilic TV, Pauli C, Meintzschel F, Ruge D (2004) Learning modifies subsequent induction of long-term potentiation-like and long-term depression-like plasticity in human motor cortex. J Neurosci 24:1666-1672. https://doi.org/10.1523/jneurosci.5016-03.2004
95. Mouthon A, Ruffieux J, Wälchli M, Keller M, Taube W (2015) Task-dependent changes of corticospinal excitability during observation and motor imagery of balance tasks. Neuroscience 303:535-543. https://doi.org/10.1016/j.neuroscience.2015.07.031
96. Certal VF, Pratas R, Guimaraes L et al (2016) Awake examination versus DISE for surgical decision making in patients with OSA: A systematic review. Laryngoscope 126:768-774. https://doi.org/10.1002/lary.25722
97. Lin HY, Chang CJ, Chiang CC, Su PL, Lin CY, Hung CH (2020) Effects of a comprehensive physical therapy on moderate and severe obstructive sleep apnea- a preliminary randomized controlled trial. J Formos Med Assoc. https://doi.org/10.1016/j.jfma.2020.01.011
98. Vranish JR, Bailey EF (2016) Inspiratory Muscle Training Improves Sleep and Mitigates Cardiovascular Dysfunction in Obstructive Sleep Apnea. Sleep 39:1179-1185. https://doi.org/10.5665/sleep.5826
99. Kuo YC, Song TT, Bernard JR, Liao YH (2017) Short-term expiratory muscle strength training attenuates sleep apnea and improves sleep quality in patients with obstructive sleep apnea. Respir Physiol Neurobiol 243:86-91. https://doi.org/10.1016/j.resp.2017.05.007
100. Miller AJ, Sauder CL, Cauffman AE, Blaha CA, Leuenberger UA (2017) Endurance training attenuates the increase in peripheral chemoreflex sensitivity with intermittent hypoxia. Am J Physiol Regul Integr Comp Physiol 312:R223-r228. https://doi.org/10.1152/ajpregu.00105.2016
101. Maki-Nunes C, Toschi-Dias E, Cepeda FX et al (2015) Diet and exercise improve chemoreflex sensitivity in patients with metabolic syndrome and obstructive sleep apnea. Obesity (Silver Spring) 23:1582-1590. https://doi.org/10.1002/oby.21126
102. Zaghi S, Holty JE, Certal V et al (2016) Maxillomandibular Advancement for Treatment of Obstructive Sleep Apnea: A Meta-analysis. JAMA Otolaryngol Head Neck Surg 142:58-66. https://doi.org/10.1001/jamaoto.2015.2678
103. Talge NM, Tudor BM, Kileny PR (2018) Click-evoked auditory brainstem responses and autism spectrum disorder: A meta-analytic review. Autism Res 11:916-927. https://doi.org/10.1002/aur.1946
104. McRae G, Payne A, Zelt JG et al (2012) Extremely low volume, whole-body aerobic-resistance training improves aerobic fitness and muscular endurance in females. Appl Physiol Nutr Metab 37:1124-1131. https://doi.org/10.1139/h2012-093
105. Myers TR, Schneider MG, Schmale MS, Hazell TJ (2015) Whole-body aerobic resistance training circuit improves aerobic fitness and muscle strength in sedentary young females. J Strength Cond Res 29:1592-1600. https://doi.org/10.1519/jsc.0000000000000790
106. Schmidt D, Anderson K, Graff M, Strutz V (2016) The effect of high-intensity circuit training on physical fitness. J Sports Med Phys Fitness 56:534-540
107. Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377-381
108. Scherr J, Wolfarth B, Christle JW, Pressler A, Wagenpfeil S, Halle M (2013) Associations between Borg's rating of perceived exertion and physiological measures of exercise intensity. Eur J Appl Physiol 113:147-155. https://doi.org/10.1007/s00421-012-2421-x
109. de Felicio CM, Folha GA, Ferreira CL, Medeiros AP (2010) Expanded protocol of orofacial myofunctional evaluation with scores: Validity and reliability. Int J Pediatr Otorhinolaryngol 74:1230-1239. https://doi.org/10.1016/j.ijporl.2010.07.021
110. Wang CM, Li HY, Lee LA, Shieh WY, Lin SW (2016) Non-invasive Assessment of Swallowing and Respiration Coordination for the OSA Patient. Dysphagia 31:771-780. https://doi.org/10.1007/s00455-016-9740-8
111. Ciftci F, Sen E, Akkoca Yildiz O, Saryal S (2014) A comparison of cardiopulmonary exercise test and 6 minute walking test in determination of exercise capacity in chronic obstructive pulmonary disease. Tuberk Toraks 62:259-266. https://doi.org/10.5578/tt.8516
112. Barreto D, Pitta S, Farias Pessoa A et al (2007) Oral Myofunctional Therapy Applied on Two Cases of Severe Obstructive Sleep Apnea Syndrome. Intl Arch Otorhinolaryngol 11:350-354
113. Hockenbury D (2016) Using Myofunctional Therapy as an Adjunct Treatment Approach to Obstructive Sleep Apnea (OSA). International Journal of Dentistry and Oral Health 2:69-70. https://doi.org/10.25141/2471-657X-2016-3.0069
114. Tamburi ACdP, Risério ACF, Sandes BS, Assunção LL, Pereira LRMeC, Benevides SD (2014) Speech Intervention in OSAS: Case Report. Int Arch Otorhinolaryngol 18:a2527. https://doi.org/10.1055/s-0034-1389064
115. Bellur N, Arikan H, Caliskan H, Calik E, Vardar-Yagli N, Saglam M (2012) Effects of oropharyngeal exercises on antropometric measures and symptoms in patients with obstructive sleep apnea syndrome. European respiratory journal 40:69s [P492]
116. Bousata J, Desuter G, Rombaux P, Rodenstein D, Mwenge G (2016) Effects of oropharyngeal exercises on maximum anterior and posterior tongue strength and endurance in patients with severe OSA: apnelog study. Journal of sleep research Conference: 23rd Congress of the European Sleep Research Society, ESRS 2016. :270‐271. https://doi.org/10.1111/jsr.12446
117. Dharamsi A, Kandasamy G, Arumugam V, Aiyalu R (2012) Impact of oropharyngeal exercises on patients with moderate obstructive sleep apnea. Pharmacoepidemiology and Drug Safety 21:245-246. https://doi.org/10.1002/pds.3324
118. Erturk N, Arikan H, Savci S, Saglam M, Calik E, Vardar-Yagli N (2013) Comparison of the effects of inspiratory muscle training and oropharyngeal exercise training in patient with obstructive sleep apnea syndrome. European respiratory society annual congress 42:281s
119. Nemati S, Gerami H, Soltanipour S, Saberi A, Moghadam SK, Setva F (2015) The effects of oropharyngeal–lingual exercises in patients with primary snoring. European Archives of Oto-Rhino-Laryngology 272:1027-1031. https://doi.org/10.1007/s00405-014-3382-y
120. Correa Cde C, Berretin-Felix G (2015) Myofunctional therapy applied to upper airway resistance syndrome: a case report. Codas 27:604-609
121. Lequeux T, Chantrain G, Bonnand M, Chelle AJ, Thill MP (2005) Physiotherapy in obstructive sleep apnea syndrome: preliminary results. Eur Arch Otorhinolaryngol 262:501-503. https://doi.org/10.1007/s00405-004-0806-0
122. Cheng SY, Kwong SHW, Pang WM, Wan LY (2017) Effects of an oral-pharyngeal motor training programme on children with obstructive sleep apnea syndrome in Hong Kong: A retrospective pilot study. Hong Kong Journal of Occupational Therapy 30:1-5. https://doi.org/10.1016/j.hkjot.2017.09.001
123. Guilleminault C, Huang YS, Monteyrol PJ, Sato R, Quo S, Lin CH (2013) Critical role of myofascial reeducation in pediatric sleep-disordered breathing. Sleep Medicine 14:518-525
124. Luca B, Martella S, Vitelli O et al (2013) Myofunctional treatment of sleep disordered breathing in children. European Respiratory Journal 42
125. Villa MP, Brasili L, Ferretti A et al (2015) Oropharyngeal exercises to reduce symptoms of OSA after AT. Sleep & Breathing 19:281-289
126. Berry RB, Skinner H, Dondapati C (2014) Training facial muscles reduces snoring. Sleep 37:A147
127. Cortes M, Gomez M (2018) Non-surgical osseous remodeling and myofunctional therapy for skeletal class iii malocclusion with severe OSA. Sleep 41:A206-A207
128. Suzuki H, Yoshimiura M, Iwata Y, Oguchi S, Kawara M, Chow CM (2017) Lip muscle training improves obstructive sleep apnea and objective sleep: A case report. Sleep Science 10:128-131. https://doi.org/10.5935/1984-0063.20170022
129. Arikan H, Bellur N, Caliskan H et al (2012) Inspiratory muscle training in obstructive sleep apnea syndrome. European Respiratory Journal 40
130. Krakhmalova O, Kharchenko Y, Izmailova O (2016) The effect of physical rehabilitation (PR) on the severity of symptoms of OSAS in patients with chronic obstructive pulmonary disease (COPD) and obstructive sleep apnoea syndrome (OSA). European Respiratory Journal 48. https://doi.org/10.1183/13993003.congress-2016.PA3588
131. Neumannova K, Hobzova M, Kovacikova Z et al (2015) Pulmonary rehabilitation treatment as an adjunct therapy in obstructive sleep apnoea syndrome: A randomized controlled trial. American Journal of Respiratory and Critical Care Medicine 191
132. Torres-Castro R, Garmendia O, Vilaró J, Marti JD, Roman Andreoni B, Rodríguez J (2016) Effects of a comprehensive program of physical training and oropharyngeal exercises in patients with obstructive sleep apnea syndrome: a randomized clinical trial. European respiratory journal 48:PA528
133. Baz H, Elshafey M, Elmorsy S, Abu-Samra M (2012) The role of oral myofunctional therapy in managing patients with mild to moderate obstructive sleep apnea. PAN Arab J Rhinol 2:17-22
134. Bussi MT, Tessitore A, Zancanella E (2016) Myofunctional therapy for OSA treatment. Sleep 39:A143
135. Diaferia G, Santos-Silva R, Truksinas E et al (2017) Myofunctional therapy improves adherence to continuous positive airway pressure treatment. Sleep & Breathing 21:387-395
136. Guimaraes KC, Drager LF, Genta PR, Marcondes BF, Lorenzi-Filho G (2009) Effects of oropharyngeal exercises on patients with moderate obstructive sleep apnea syndrome. Am J Respir Crit Care Med 179:962-966
137. Ieto V, Kayamori F, Montes MI et al (2015) Effects of Oropharyngeal Exercises on Snoring: A Randomized Trial. Chest 148:683-691. https://doi.org/10.1378/chest.14-2953
138. Mohamed AS, Sharshar RS, Elkolaly RM, Serageldin SM (2017) Upper airway muscle exercises outcome in patients with obstructive sleep apnea syndrome. Egyptian Journal of Chest Diseases and Tuberculosis 66:121-125. https://doi.org/10.1016/j.ejcdt.2016.08.014
139. Qing J, Tang S, Chai L et al (2015) Clinical Evaluation of exercising pharyngeal musculature to treat obstructive sleep apnoea and hypopnoea syndrome: a preliminary report. Otorhinolaryngologist 8:135‐141
140. Verma RK, Johnson JJ, Goyal M, Banumathy N, Goswami U, Panda NK (2016) Oropharyngeal exercises in the treatment of obstructive sleep apnoea: our experience. Sleep & Breathing 20:1193-1201. https://doi.org/10.1007/s11325-016-1332-1
141. Shaw SM, Martino R (2013) The normal swallow: muscular and neurophysiological control. Otolaryngol Clin North Am 46:937-956. https://doi.org/10.1016/j.otc.2013.09.006
142. Amis TC, O'Neill N, Somma ED, Wheatley JR (1998) Epiglottic movements during breathing in humans. J Physiol 512 ( Pt 1):307-314
143. Phillips EM, Kennedy MA (2012) The exercise prescription: a tool to improve physical activity. Pm r 4:818-825. https://doi.org/10.1016/j.pmrj.2012.09.582
144. Yamauchi M, Fujita Y, Kumamoto M et al (2015) Nonrapid Eye Movement-Predominant Obstructive Sleep Apnea: Detection and Mechanism. J Clin Sleep Med 11:987-993. https://doi.org/10.5664/jcsm.5010
145. Jelic S, Padeletti M, Kawut SM et al (2008) Inflammation, oxidative stress, and repair capacity of the vascular endothelium in obstructive sleep apnea. Circulation 117:2270-2278. https://doi.org/10.1161/circulationaha.107.741512
146. Campos-Rodriguez F, Asensio-Cruz MI, Cordero-Guevara J et al (2019) Effect of continuous positive airway pressure on inflammatory, antioxidant, and depression biomarkers in women with obstructive sleep apnea: a randomized controlled trial. Sleep 42. https://doi.org/10.1093/sleep/zsz145
147. Williams A, Scharf SM (2007) Obstructive sleep apnea, cardiovascular disease, and inflammation--is NF-kappaB the key? Sleep Breath 11:69-76. https://doi.org/10.1007/s11325-007-0106-1
148. Fotis L, Agrogiannis G, Vlachos IS et al (2012) Intercellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 at the early stages of atherosclerosis in a rat model. In Vivo 26:243-250
149. Malik I, Danesh J, Whincup P et al (2001) Soluble adhesion molecules and prediction of coronary heart disease: a prospective study and meta-analysis. Lancet 358:971-976. https://doi.org/10.1016/s0140-6736(01)06104-9
150. Osman AM, Carter SG, Carberry JC, Eckert DJ (2018) Obstructive sleep apnea: current perspectives. Nature and science of sleep 10:21-34. https://doi.org/10.2147/NSS.S124657
151. Trudo FJ, Gefter WB, Welch KC, Gupta KB, Maislin G, Schwab RJ (1998) State-related changes in upper airway caliber and surrounding soft-tissue structures in normal subjects. Am J Respir Crit Care Med 158:1259-1270. https://doi.org/10.1164/ajrccm.158.4.9712063
152. Schwab RJ, Gupta KB, Gefter WB, Metzger LJ, Hoffman EA, Pack AI (1995) Upper airway and soft tissue anatomy in normal subjects and patients with sleep-disordered breathing. Significance of the lateral pharyngeal walls. Am J Respir Crit Care Med 152:1673-1689. https://doi.org/10.1164/ajrccm.152.5.7582313
153. Dotan Y, Pillar G, Schwartz AR, Oliven A (2015) Asynchrony of lingual muscle recruitment during sleep in obstructive sleep apnea. J Appl Physiol (1985) 118:1516-1524. https://doi.org/10.1152/japplphysiol.00937.2014
154. Liu SY, Huon LK, Lo MT et al (2016) Static craniofacial measurements and dynamic airway collapse patterns associated with severe obstructive sleep apnoea: a sleep MRI study. Clin Otolaryngol 41:700-706. https://doi.org/10.1111/coa.12598
155. Brooks M, McLaughlin E, Shields N (2019) Expiratory muscle strength training improves swallowing and respiratory outcomes in people with dysphagia: A systematic review 21:89-100. https://doi.org/10.1080/17549507.2017.1387285
156. Kuna ST (2000) Respiratory-related activation and mechanical effects of the pharyngeal constrictor muscles. Respir Physiol 119:155-161
157. Hargens TA, Aron A, Newsome LJ, Austin JL, Shafer BM (2015) Effects of obstructive sleep apnea on hemodynamic parameters in patients entering cardiac rehabilitation. J Cardiopulm Rehabil Prev 35:181-185. https://doi.org/10.1097/hcr.0000000000000102
158. Hupin D, Pichot V, Berger M et al (2018) Obstructive Sleep Apnea in Cardiac Rehabilitation Patients. J Clin Sleep Med 14:1119-1126. https://doi.org/10.5664/jcsm.7206
159. Desplan M, Brun JF, Pillard F et al (2012) Decreased fat oxidation during exercise in severe obstructive sleep apnoea syndrome. Diabetes Metab 38:236-242. https://doi.org/10.1016/j.diabet.2011.12.002
160. Gao X, Sanderson SM, Dai Z et al (2019) Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature 572:397-401. https://doi.org/10.1038/s41586-019-1437-3
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw