進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0407201911182000
論文名稱(中文) 連續竹纖維預型與竹纖維複合材料研究
論文名稱(英文) Study on Preforming of Continuous Bamboo Fiber and Reinforced Epoxy Composite
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 107
學期 2
出版年 108
研究生(中文) 邱宣豪
研究生(英文) Hsuan-Hao Chiu
學號 P46064184
學位類別 碩士
語文別 中文
論文頁數 170頁
口試委員 指導教授-楊文彬
口試委員-陳介力
口試委員-胡潛濱
中文關鍵字 竹纖維  竹纖維複合材料  鹼處理  纖維體積含量  纖維預型 
英文關鍵字 bamboo fiber  bamboo fiber composite  fiber volume fraction  alkali treatment  bamboo fiber preform 
學科別分類
中文摘要 本論文主要在探討五個方向,第一個方向為研究不同鹼處理濃(0.5wt%、2.5wt%、5wt%)對於竹纖維物理特性、機械性質與界面剪應力的變化、第二個方向為不同鹼處理濃度的竹纖維製成單向竹纖維/環氧樹脂複合材料後,其機械性質變化、第三個方向為單向竹纖維/環氧樹脂複合材料在不同纖維體積含量(42%、50%、60%)下的機械性質,第四個方向為雙向竹纖維/環氧樹脂複合材料的製作與機械性質量測、最後一個方向為竹纖維預型製作與製程參數(含水量、加熱溫度、加熱時間、竹纖維尺寸)研究。首先,本論文將刺竹利用機械切削方式萃取竹纖維,並將等效直徑為400~600μm的竹纖維施以不同濃度鹼處理,最後利用樹脂轉注成形法將竹纖維製成單向或雙向的竹纖維/環氧樹脂複合材料。根據實驗結果顯示,5wt%鹼處理濃度的竹纖維等效直徑最小、密度最大、抗拉強度與楊氏係數最差、界面剪應力好,製成複合材料後其抗拉強度最佳、楊氏係數次之、補強效果最好,拉伸性質也會隨纖維體積含量增加而提升。在雙向竹纖維/環氧樹脂複合材料方面,[0/90/90/0]雙向竹纖維/環氧樹脂複合材料在0度方向與90度方向機械性質相近。在竹纖維預型方面,竹纖維在含水量58%的情況下,會產生竹纖維內部結構膨脹,當加熱溫度至140°C,能加速竹纖維變形,使竹纖維達到預型的效果。
英文摘要 The continuous bamboo fiber (BF) reinforced epoxy (EP) composites were fabricated using bamboo fibers treated in different alkali concentrations. Tensile and interfacial shear strength of these composites were compared to select the alkali concentration for the treatment process that results in a higher strength. The unidirectional and bidirectional BF/EP composites were fabricated using the selected BF alkali treatment process. Tensile properties were measured for the unidirectional and bidirectional BF/EP composites with different fiber volume fractions. The unidirectional BF/EP composite has good reinforcement effect in the fiber direction. However, the measured transverse strength is weaker than the epoxy. For bidirectional BF/EP composites, tensile strengths in both the longitudinal and transverse orientation all shows some improvement as compared to epoxy. In order to fabricate bamboo fiber reinforced composites with non-planar geometric shapes. The study investigated the deformation and spring back behaviors of the single BF and BF mat under a bending preforming test. The result shows that the [0/90] BF mats can be perfectly preformed without spring back after bending under the conditions of a moisture content of 58% and heating temperature of 140°C for 1 hour. The internal structure of BF with moisture will expand and soften that make the fibers to deform plastically under external stresses. The single BF preforming test and stress relaxation test was conducted to confirm the above result. Higher heating temperature and moisture content of BF during preforming process can reduce the spring back effect.
論文目次 中文摘要 I
ABSTRACT II
誌謝 VII
目錄 VIII
表目錄 XI
圖目錄 XIII
第一章、 緒論 1
1-1 前言 1
1-2 研究目的 3
1-3 研究方法 4
1-4 文獻回顧 5
1-4-1 單根竹纖維相關文獻 5
1-4-2 單向竹纖維複合材料相關文獻 9
1-4-3 雙向竹纖維複合材料相關文獻 11
1-4-4 隨機方向竹纖維複合材料相關文獻 12
1-4-5 竹纖維彎曲定型相關文獻 13
第二章、 研究簡介 15
2-1 刺竹介紹 15
2-2 竹纖維介紹 15
2-3 竹細胞結構介紹 16
2-4 環氧樹脂介紹 17
2-5 樹脂轉注成形法介紹 18
2-6 預型介紹 18
2-7 鹼處理介紹 19
2-8 竹纖維製造方法介紹 20
2-9 複合材料力學原理介紹 21
第三章、 研究規劃與製程設計 24
3-1 實驗材料 24
3-2 實驗模具 24
3-3 實驗設備 26
3-4 竹纖維製造與量測 29
3-4-1 竹纖維製造 29
3-4-2 竹纖維鹼處理 29
3-4-3 竹纖維性質量測 30
3-5 單向竹纖維複合材料製造與量測 32
3-5-1 單向竹纖維複合材料製程 32
3-5-2 單向竹纖維複合材料拉伸試片製作 33
3-5-3 單向竹纖維複合材料拉伸試驗 34
3-6 雙向竹纖維複合材料製造與量測 34
3-6-1 雙向竹纖維複合材料製程 35
3-6-2 雙向竹纖維複合材料拉伸試片製作 36
3-6-3 雙向竹纖維複合材料拉伸試驗 36
3-7 竹纖維預型製造與量測 37
3-7-1 竹纖維預型製程 37
3-7-2 濕竹纖維拉伸試驗 39
3-7-3 竹纖維彎曲定型試驗 39
3-7-4 竹纖維應力鬆弛實驗 41
第四章、 實驗結果與討論 43
4-1 竹纖維物理與機械性質量測結果 43
4-1-1 竹纖維物理性質 43
4-1-2 竹纖維拉伸性質 44
4-1-3 竹纖維吸濕與烘乾量測結果 45
4-1-4 界面剪應力量測結果 46
4-2 單向竹纖維複合材料拉伸量測結果 46
4-2-1 單向竹纖維複合材料成品 47
4-2-2 複合材料不同鹼處理濃度下之拉伸結果 47
4-2-3 複合材料不同纖維含量下之拉伸結果 50
4-2-4 複合材料軸向與側向拉伸結果 51
4-3 雙向竹纖維複合材料量測結果 52
4-3-1 雙向竹纖維複合材料成品 52
4-3-2 [0/90/90/0]複合材料拉伸結果 52
4-3-3 [0/90/0/90/0]複合材料拉伸結果 53
4-4 竹纖維預型量測結果 55
4-4-1 雙向竹纖維預型成品 56
4-4-2 濕竹纖維拉伸試驗結果 56
4-4-3 單根竹纖維彎曲定型試驗結果 57
4-4-4 竹纖維應力鬆弛實驗結果 58
第五章、 結論與展望 60
5-1 結論 60
5-2 未來展望 62
參考文獻 64
附錄 166
參考文獻 [1] 許明發, et al., 複合材料入門. 2005: 中華民國尖端材料科技協會.
[2] Hazell, J., Getting it right from the start: Developing a circular economy for novel materials. 2017, Green Alliance: London, UK.
[3] Joshi, S.V., et al., Are natural fiber composites environmentally superior to glass fiber reinforced composites? Composites Part A: Applied Science and Manufacturing, 2004. 35(3): p. 371-376.
[4] Yan, L., N. Chouw, and X. Yuan, Improving the mechanical properties of natural fibre fabric reinforced epoxy composites by alkali treatment. Journal of Reinforced Plastics and Composites, 2012. 31(6): p. 425-437.
[5] Liu, D., et al., Bamboo fiber and its reinforced composites: structure and properties. Cellulose, 2012. 19(5): p. 1449-1480.
[6] Phong, N.T., et al., Study on how to effectively extract bamboo fibers from raw bamboo and wastewater treatment. Journal of Materials Science Research, 2012. 1(1): p. 144.
[7] Zakikhani, P., et al., Extraction and preparation of bamboo fibre-reinforced composites. Materials & Design, 2014. 63: p. 820-828.
[8] Liu, Q., et al., Structural biocomposites from flax – Part II: The use of PEG and PVA as interfacial compatibilising agents. Composites Part A: Applied Science and Manufacturing, 2007. 38(5): p. 1403-1413.
[9] Yan, L., N. Chouw, and K. Jayaraman, Flax fibre and its composites – A review. Composites Part B: Engineering, 2014. 56: p. 296-317.
[10] HOBSON, J. and M. CARUS, Targets for bio-based composites and natural fibres. JEC composites, 2011(63): p. 31-32.
[11] Rwawiire, S., J. Okello, and G. Habbi, Comparative evaluation of dynamic mechanical properties of epoxy composites reinforced with woven fabrics from Sansevieria (Sansevieria trifasciata) fibres and banana (Musa sapientum) fibres. Tekstilec, 2014. 57(4).
[12] Wambua, P., J. Ivens, and I. Verpoest, Natural fibres: can they replace glass in fibre reinforced plastics? Composites Science and Technology, 2003. 63(9): p. 1259-1264.
[13] Wong, K.J., B.F. Yousif, and K.O. Low, The effects of alkali treatment on the interfacial adhesion of bamboo fibres. Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, 2010. 224(3): p. 139-148.
[14] Kalia, S., B.S. Kaith, and I. Kaur, Pretreatments of Natural Fibers and their Application as Reinforcing Material in Polymer Composites-A Review. Polymer Engineering and Science, 2009. 49(7): p. 1253-1272.
[15] Okubo, K., T. Fujii, and Y. Yamamoto, Development of bamboo-based polymer composites and their mechanical properties. Composites Part A: Applied Science and Manufacturing, 2004. 35(3): p. 377-383.
[16] Trujillo, E., et al., Bamboo fibres for reinforcement in composite materials: Strength Weibull analysis. Composites Part A: Applied Science and Manufacturing, 2014. 61: p. 115-125.
[17] Van Vuure, A., et al. Long bamboo fibre composites. in Proc. 18th International Conference on Composite Materials. 2009.
[18] Sukmawan, R., H. Takagi, and A.N. Nakagaito, Strength evaluation of cross-ply green composite laminates reinforced by bamboo fiber. Composites Part B: Engineering, 2016. 84: p. 9-16.
[19] Chen, H., et al., Effect of alkali treatment on microstructure and mechanical properties of individual bamboo fibers. Cellulose, 2017. 24(1): p. 333-347.
[20] Mbakop, R.S., G. Lebrun, and F. Brouillette, Experimental analysis of the planar compaction and preforming of unidirectional flax reinforcements using a thin paper or flax mat as binder for the UD fibers. Composites Part A: Applied Science and Manufacturing, 2018. 109: p. 604-614.
[21] Osorio, L., et al., Morphological aspects and mechanical properties of single bamboo fibers and flexural characterization of bamboo/ epoxy composites. Journal of Reinforced Plastics and Composites, 2011. 30(5): p. 396-408.
[22] Ochi, S., Tensile Properties of Bamboo Fiber Reinforced Biodegradable Plastics. International journal of composite materials, 2012. 2(1): p. 1-4.
[23] Kim, H., et al., Influence of fiber extraction and surface modification on mechanical properties of green composites with bamboo fiber. Journal of Adhesion Science and Technology, 2013. 27(12): p. 1348-1358.
[24] Zhang, K., et al., Thermal and mechanical properties of bamboo fiber reinforced epoxy composites. Polymers, 2018. 10(6): p. 608.
[25] Huang, J.-K. and W.-B. Young, The mechanical, hygral, and interfacial strength of continuous bamboo fiber reinforced epoxy composites. Composites Part B: Engineering, 2019. 166: p. 272-283.
[26] Verma, C.S. and V.M. Chariar, Stiffness and strength analysis of four layered laminate bamboo composite at macroscopic scale. Composites Part B: Engineering, 2013. 45(1): p. 369-376.
[27] Verma, C.S. and V.M. Chariar, Development of layered laminate bamboo composite and their mechanical properties. Composites Part B: Engineering, 2012. 43(3): p. 1063-1069.
[28] Manalo, A.C., et al., Effects of alkali treatment and elevated temperature on the mechanical properties of bamboo fibre–polyester composites. Composites Part B: Engineering, 2015. 80: p. 73-83.
[29] 張長傑, 藤竹工. 1980.
[30] Liu, Z. and G. Zhou, ?曲竹材集成材的初探. 木材工?, 2003. 17(003): p. 13.
[31] Hao, R. and W. Liu, 竹片?曲加工工?技?探?. 家具与室???, 2014(4): p. 28.
[32] 呂錦明, 台灣竹圖鑑. 2010: 晨星出版公司.
[33] 何振隆, 徐光平, and 陳財輝, 竹纖維的簡介及未來展望. 林業研究專訊, 2016. 23(3): p. 68-71.
[34] Youssefian, S. and N. Rahbar, Molecular Origin of Strength and Stiffness in Bamboo Fibrils. Scientific Reports (Nature Publisher Group), 2015. 5: p. 11116.
[35] Salvati, E., et al., Multiscale analysis of bamboo deformation mechanisms following NaOH treatment using X-ray and correlative microscopy. Acta Biomaterialia, 2018. 72: p. 329-341.
[36] Chen, G., et al., Water effects on the deformation and fracture behaviors of the multi-scaled cellular fibrous bamboo. Acta Biomaterialia, 2018. 65: p. 203-215.
[37] John, M.J. and S. Thomas, Biofibres and biocomposites. Carbohydrate Polymers, 2008. 71(3): p. 343-364.
[38] 馬振基, 高分子複合材料: 上? (修訂本). 2009: 國立編譯館出版.
[39] 垣內弘 and 賴耿陽, 環氧樹脂應用實務. 1998: 復漢.
[40] Frauenhofer, M., et al., Induction technique in manufacturing preforms. Mechanics of Composite Materials, 2008. 44(5): p. 523-530.
[41] Hashim, M.Y., et al., Mercerization treatment parameter effect on natural fiber reinforced polymer matrix composite: a brief review. World academy of science, engineering and technology, 2012. 68: p. 1638-1644.
[42] John, M.J. and R.D. Anandjiwala, Recent Developments in Chemical Modification and Characterization of Natural Fiber-Reinforced Composites. Polymer Composites, 2008. 29(2): p. 187-207.
[43] Deshpande, A.P., M. Bhaskar Rao, and C. Lakshmana Rao, Extraction of bamboo fibers and their use as reinforcement in polymeric composites. Journal of Applied Polymer Science, 2000. 76(1): p. 83-92.
[44] Gibson, R.F., Principles of Composite Material Mechanics (3rd Edition). 2011.
[45] 黃俊凱, 長纖竹纖維增強環氧樹脂複合材料製備及特性研究, in 航空太空工程研究所. 2018, 國立成功大學.
[46] 余鴻文, 樹脂轉注成形法中製程參數的設計與最佳化, in 航空太空工程研究所. 1995, 國立成功大學.
[47] 周紫濃, 竹纖維拉伸強度之研究, in 航空太空工程研究所. 2015, 國立成功大學.
[48] 林曉洪. 竹材之性質(3-2). 2018; Available from: http://www.bambootw.net/index03_0403.htm.
[49] Davoodi, M.M., et al., Concept selection of car bumper beam with developed hybrid bio-composite material. Materials & Design, 2011. 32(10): p. 4857-4865.
[50] Subcommittee, C.A., A.M. Association, and A.S. Committee, Cabin cruising altitudes for regular transport aircraft. Aviation, space, and environmental medicine, 2008. 79(4): p. 433-439.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw