進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0407201911134500
論文名稱(中文) 臺灣民用遙控無人機安全管理策略評估之研究
論文名稱(英文) The Evaluation of Civil Drone Safety Management Strategies in Taiwan
校院名稱 成功大學
系所名稱(中) 交通管理科學系
系所名稱(英) Department of Transportation & Communication Management Science
學年度 107
學期 2
出版年 108
研究生(中文) 林建宏
研究生(英文) Chien-Hung Lin
學號 R56064138
學位類別 碩士
語文別 英文
論文頁數 105頁
口試委員 指導教授-張有恆
口試委員-鄭永祥
口試委員-徐村和
口試委員-陳昭宏
口試委員-楊慧華
中文關鍵字 遙控無人機  模糊層級分析法  重要度可行性分  0-1目標規劃 
英文關鍵字 Drone  Fuzzy Analytic Hierarchy Process (FAHP)  Importance-Achievability Analysis (IAA)  Zero-One Goal Programming (ZOGP) 
學科別分類
中文摘要 近年來,由於民用遙控無人機的所帶來的經濟及社會效益越來越廣泛,加上其入手容易,使其於民間之使用日趨頻繁,然而無人機闖入禁航區或是墜落導致人員財產損害等飛行意外事故的頻傳也造成民眾的恐慌。為保障飛航及民眾安全,總統於2018年4月25日公布《民用航空法》修正案,正式將遙控無人機納入管理,預計於2019年7月1日正式實施,然而,由於執行上的困難,使民航局將實施日期延期至2020年。此外,2019年3月至4月期間,台北松山機場發生兩起遙控無人機闖入機場事件,造成許多旅客權益受損,更影響飛安。因此,遙控無人機的安全管理迫在眉睫,唯有透過妥善且有效的策略管理遙控無人機,才能讓政府與產業界達到雙贏的局面。
本研究係以提升民用遙控無人機之安全與可靠度水準為目標,希冀能降低無人機的違規事件及安全事故。透過蒐集文獻及專家問卷,結合模糊層級分析法,以及重要度可行性分析,以獲取當前須優先執行的策略,此外,本研究應用0-1目標規劃以進一步分析在時間、人力、經費等資源限制的情況下,對於策略選擇的影響,以更貼近實務上的考量。
研究結果顯示,本研究共篩選出13項策略,而整體專家認為各構面的重要度依序是「安全政策與目標」、「安全提升與教育」、「安全風險管理」及「安全保證」;而最須優先執行的四項策略分別是「設定安全績效目標」、「確保法規體系能與國際接軌」、「指派測驗及給證之權責單位」及「推廣安全教育課程」。而本研究透過情境模擬之分析結果發現,即便受到時間、人力與經費等資源限制,「設定安全績效目標」、「整合遙控無人機資訊管道」、「推廣安全教育課程」仍會被選擇執行,未來民航局可利用本研究之模型,依其資源限制之變動,而選擇最佳之管理策略。
英文摘要 With the economic and social benefits, the uses of drones have increased in recent years. However, the occurrences, involving prohibited area incursion or damage to personnel and property, have also increased. To guarantee the public safety, the Civil Aviation Act was amended on April 25, 2018, and policies were planned to be implemented on July 1, 2019. Nevertheless, with the difficulty of execution, the execution date is postponed to the year 2020. Furthermore, the Taipei Songshan airport was closed for a while because of the incursion of a drone in March and April in 2019. The measures of drone management must be taken as soon as possible.
The aim of this research is to improve the safety and reliability level of drones. The top priority strategies are obtained through literature review, experts’ questionnaire, the fuzzy analytic hierarchy process, and importance-achievability analysis. In addition, to be more practical, the zero-one goal programming is further applied to analyze the effects on the selection of strategies in the scenarios of resource constraints, such as time, manpower, and budgets.
There are four dimensions and thirteen strategies suggested for drone management. The strategies in the top priority implementation zone are “set safety performance targets”, “gear regulations to the international conventions”, “assign testing and certificating authorities”, and “promote drone education programs”. In addition, in scenario analysis, despite of the limitation on time, manpower, and budget, some strategies are still selected, including “set safety performance targets”, “integrate drone information system”, and “promote drone education programs”.
論文目次 摘要 i
Abstract ii
致謝 iii
Table of Contents iv
List of Tables vii
List of Figures ix
Chapter 1 Introduction 1
1.1 Research Background and Motivation 1
1.2 Research Objectives 5
1.3 Research Scope 6
1.4 Research Procedure 6
Chapter 2 Literature Review 8
2.1 Introduction to Drones 8
2.1.1 Drone 8
2.1.2 An Overview of the Development of Drones 10
2.1.3 An Overview of the Uses of Drones 10
2.1.4 An Overview of the Issues of Drones 13
2.2 Strategies Regarding Drone Management 18
2.2.1 Drone management strategies 18
2.2.2 Drone management in Taiwan 20
2.2.3 Drone management in the United States 22
2.2.4 Drone management in Europe Union 25
2.2.5 Drone management in Japan 27
2.2.6 Drone management in China 29
2.3 Summary 31
Chapter 3 Research Design and Methodology 33
3.1 Fuzzy Analytic Hierarchy Process (FAHP) 33
3.1.1 Analytic Hierarchy Process (AHP) 33
3.1.2 Evaluation steps 34
3.2 Importance-Achievability Analysis (IAA) 37
3.3 Zero-One Goal Programming (ZOGP) 39
3.4 Summary 41
Chapter 4 Empirical Analysis 43
4.1 Content Validity 43
4.1.1 Development of Drone Management Strategies 43
4.1.2 Revision of Drone Management Strategies 49
4.2 Measurement of Importance Value 53
4.3 Importance-Achievability Analysis 58
4.4 Resource Allocation in drone management strategies 64
4.4.1 Formulation of zero-one goal programming 64
4.4.2 Scenario Analysis of resource allocation 67
4.5 Sensitivity Analysis 71
4.6 Summary 74
Chapter 5 Conclusion 76
5.1 Summary of Key Findings 76
5.2 Suggestions 78
5.3 Research contributions 79
References 81
Appendix A 89
Appendix B 94
參考文獻 1. Altawy, R., & Youssef, A. M. (2017). Security, privacy, and safety aspects of civilian drones: A survey. ACM Transactions on Cyber-Physical Systems, 1(2), 7.
2. Anderson, C. (2012). Here come the drones!. Wired, 20(7), 100-111.
3. Baraniuk, C. (2017, April 27). Cash offered after drones disrupt flights in China. The British Broadcasting Corporation. Retrieved from https://www.bbc.com/news/technology-39732485
4. BBC (2018). Gatwick Airport: Drones ground flights. London: BBC. Retrieved from https://www.bbc.com/news/uk-england-sussex-46623754.
5. Bodin, L., & Gass, S. I. (2003). On teaching the analytic hierarchy process. Computers & operations research, 30(10), 1487-1497.
6. Brown, E. C., & Jarrell, J. A. (2016). Local Management of Small UAS Traffic: A Path to Efficient Drone Operations. The Air and Space Lawyer, 29(4), 9.
7. Chan, F. T. S., & Kumar, N. (2007). Global supplier development considering risk factors using fuzzy extended AHP-based approach. Omega, 35(4), 417–431.
8. Chang, D. Y. (1992). Extent analysis and synthetic decision. Optimization techniques and applications, 1(1), 352-355.
9. Chang, D. Y. (1996). Applications of the extent analysis method on fuzzy AHP. European journal of operational research, 95(3), 649-655.
10. Chang, I. S., Tsujimura, Y., Gen, M., & Tozawa, T. (1995). An efficient approach for large scale project planning based on fuzzy Delphi method. Fuzzy sets and systems, 76(3), 277-288.
11. Chang, Y. H., & Wong, K. M. (2012). Human risk factors associated with runway incursions. Journal of Air Transport Management, 24, 25-30.
12. Chang, Y. H., Yeh, C. H., & Wang, S. Y. (2007). A survey and optimization-based evaluation of development strategies for the air cargo industry. International Journal of Production Economics, 106(2), 550-562.
13. Charnes, A., & Cooper, W. W. (1957). Management models and industrial applications of linear programming. Management Science, 4(1), 38-91.
14. Charnes, A., Cooper, W. W., & Ferguson, R. O. (1955). Optimal estimation of executive compensation by linear programming. Management science, 1(2), 138-151.
15. Chen, Y. C. (2015). The Prospect and Vision of Unmanned Aerial Vehicles for Logistics (Unpublished master's thesis). National Taiwan University, Taipei.
16. Civil Aeronautics Administration (2018). Civil Aviation Act. Civil Aeronautics Administration, Taiwan.
17. Civil Aeronautics Administration (2019). Reported occurrences of releasing objects considered hazardous to flight safety around the airports statistics 108.03. Civil Aeronautics Administration, Taiwan.
18. Civil Aviation Administration of China (2018). Provisions on the Administration of Operators in the Civilian Unmanned Aircraft System. Civil Aviation Administration of China
19. Civil Aviation Safety Authority (2018). Part 101 (Unmanned aircraft and rockets) Manual of Standards 2018. Civil Aviation Safety Authority, Australia.
20. Clarke, R. (2016). Appropriate regulatory responses to the drone epidemic. Computer Law & Security Review, 32(1), 152-155.
21. Clothier, R. A., & Walker, R. A. (2015). Safety risk management of unmanned aircraft systems. Handbook of unmanned aerial vehicles (pp. 2229-2275). Springer, Dordrecht.
22. Csutora, R., & Buckley, J. J. (2001). Fuzzy hierarchical analysis: The Lambda-Max method. Fuzzy Sets and Systems, 120(2), 181–195.
23. Du, H., & Heldeweg, M. A. (2017). Responsible Design of Drones and Drone Services: Legal Perspective Synthetic Report. University of Twente.
24. European Aviation Safety Agency (2017a). Annual Safety Review 2017. European Aviation Safety Agency.
25. European Aviation Safety Agency (2017b). Introduction of a regulatory framework for the operation of drones: Unmanned aircraft system operations in the open and specific category. European Aviation Safety Agency.
26. European Aviation Safety Agency (2018). Introduction of a regulatory framework for the operation of unmanned aircraft systems in the ‘open’ and ‘specific’ categories. European Aviation Safety Agency.
27. European Commission (2015). proposal for a REGULATION OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on common rules in the field of civil aviation and establishing a European Union Aviation Safety Agency, and repealing Regulation (EC) No 216/2008 of the European Parliament and of the Council. Brussels.
28. European RPAS Steering Group. (2013). Roadmap for the integration of civil remotely-piloted aircraft systems into the European Aviation System. Final report from the European RPAS Steering Group.
29. Federal Aviation Administration (2018a). FAA Aerospace Forecast: Fiscal Years 2018-2038. Federal aviation Administration, Washington DC, USA.
30. Federal Aviation Administration. (2018b). Integration of civil unmanned aircraft systems (UAS) in the national airspace system (NAS) roadmap (2nd ed.). Federal aviation Administration, Washington DC, USA.
31. Finn, R., & Donovan, A. (2016). Big Data, Drone Data: Privacy and Ethical Impacts of the Intersection Between Big Data and Civil Drone Deployments. In The Future of Drone Use (pp. 47-67). TMC Asser Press, The Hague.
32. Finn, R. L., & Wright, D. (2016). Privacy, data protection and ethics for civil drone practice: A survey of industry, regulators and civil society organisations. Computer Law & Security Review, 32(4), 577-586.
33. Goldman Sachs Research. (2016) Drones: Reporting for Work. The Goldman Sachs Group, Inc. Retrieved from http://www.goldmansachs.com/our-thinking/technology-drivinginnovation/drones/
34. Hartmann, K., & Steup, C. (2013, June). The vulnerability of UAVs to cyber attacks-An approach to the risk assessment. In Cyber Conflict (CyCon), 2013 5th International Conference on (pp. 1-23). IEEE
35. International Civil Aviation Organization. (2015). Doc 10019, Manual on Remotely Piloted Aircraft Systems (RPAS). International Civil Aviation Organization.
36. International Civil Aviation Organization. (2018) UAS toolkit. Retrieved from https://www.icao.int/safety/UA/UASToolkit/Pages/Toolkit-Authorization.aspx. Accessed 28 October 2018.
37. Ishikawa, A., Amagasa, M., Shiga, T., Tomizawa, G., Tatsuta, R., & Mieno, H. (1993). The max-min Delphi method and fuzzy Delphi method via fuzzy integration. Fuzzy sets and systems, 55(3), 241-253.
38. Javanbarg, M. B., Scawthorn, C., Kiyono, J., & Shahbodaghkhan, B. (2012). Fuzzy AHP-based multicriteria decision making systems using particle swarm optimization. Expert Systems with Applications, 39(1), 960-966.
39. JONES IV, G. P., Pearlstine, L. G., & Percival, H. F. (2006). An assessment of small unmanned aerial vehicles for wildlife research. Wildlife Society Bulletin, 34(3), 750-758.
40. Kahraman, C., Cebeci, U., & Ruan, D. (2004). Multi-attribute comparison of catering service companies using fuzzy AHP: The case of Turkey. International Journal of Production Economics, 87(2), 171–184.
41. King, A. (2017). The future of agriculture. Nature, 544(7651), S21-S23.
42. Kreps, S., & Kaag, J. (2012). The use of unmanned aerial vehicles in contemporary conflict: A legal and ethical analysis. Polity, 44(2), 260-285.
43. Kwong, C. K., & Bai, H. (2003). Determining the important weights for the customer requirement in QFD using a fuzzy AHP with an extent analysis approach. IIE Transaction, 35, 619–626.
44. Lee, H. I., Chen, W. C., & Chang, C. J. (2008). A fuzzy AHP and BSC approach for evaluating performance of IT department in the manufacturing industry in Taiwan. Expert Systems with Applications, 34(1), 96–107.
45. Lee, H. T., Meyn, L. A., & Kim, S. (2013). Probabilistic safety assessment of unmanned aerial system operations. Journal of Guidance, Control, and Dynamics, 36(2), 610-617.
46. Lee, S., & Seo, K. K. (2016). A hybrid multi-criteria decision-making model for a cloud service selection problem using BSC, fuzzy Delphi method and fuzzy AHP. Wireless Personal Communications, 86(1), 57-75.
47. Levush, R. (2016). Regulation of Drones. Washington, DC: Law Library of Congress, Global Legal Research Center.
48. Lewis, J., & Nkuintchua, T. (2012). Accessible technologies and FPIC: independent monitoring with forest communities in Cameroon. Participatory Learning and Action, 65(13), 151-165.
49. Li, F., Dang, Y. G., & Fang, Z. G. (1992). Grey system theory and application. Scientific and Technological Document Press, Beijing (in Chinese).
50. Liao, C. N. (2009). A Zero-one Goal Programming Model for Marketing Project Selection. Journal of China Institute of Technology, 40.
51. Luo, C., Li, X., & Dai, Q. (2014). Biology's drones: New and improved. Science, 344(6190), 1351-1351.
52. Maddox, S., & Stuckenberg, D. (2015). Drones in the US national airspace system: A safety and security assessment. Harvard Law School National Security Journal.
53. March, J. G., & Simon. H.A. (1958). Organizations. New York: Wiley.
54. MarketsandMarkets (2015). UAV Drones Market by Type (Fixed wing, Rotary Blade, Nano, Hybrid), Application (Law Enforcement, Precision Agriculture, Media and Entertainment, Retail) & Geography (Americas, Europe, APAC, Row) — Analysis & Forecast to 2020. MarketsandMarkets.
55. Martilla, J. A., & James, J. C. (1977). Importance-performance analysis. Journal of marketing, 41(1), 77-79.
56. Meade, L., & Sarkis, J. (1998). Strategic analysis of logistics and supply chain management systems using analytic network process. Transportation Research Part E: Logistics and Transportation Review, 34(3), 201–215.
57. Marx, G. T. (2004). What’s new about the “new surveillance”?: Classifying for change and continuity. Knowledge, Technology & Policy, 17(1), 18-37.
58. Mo, C. (2018). Shenzhen pilot program regulates drones. China Daily. Retrieved from http://www.chinadaily.com.cn
59. Nakamura, H., & Kajikawa, Y. (2018). Regulation and innovation: How should small unmanned aerial vehicles be regulated?. Technological Forecasting and Social Change, 128, 262-274.
60. Nonami, K. (2007). Prospect and recent research & development for civil use autonomous unmanned aircraft as UAV and MAV. Journal of system Design and Dynamics, 1(2), 120-128.
61. Paneque-Gálvez, J., McCall, M. K., Napoletano, B. M., Wich, S. A., & Koh, L. P. (2014). Small drones for community-based forest monitoring: An assessment of their feasibility and potential in tropical areas. Forests, 5(6), 1481-1507.
62. Purdy, R. (2011). Attitudes of UK and Australian farmers towards monitoring activity with satellite technologies: Lessons to be learnt. Space Policy, 27(4), 202-212.
63. Saaty, T. L. (1980). The analytic hierarchy process. New York: McGraw-Hill.
64. Salter, M. (2014). Toys for the boys? Drones, pleasure and popular culture in the militarisation of policing. Critical Criminology, 22(2), 163-177.
65. Sandbrook, C. (2015). The social implications of using drones for biodiversity conservation. Ambio, 44(4), 636-647.
66. Santhanam, R., Muralidhar, K., & Schniederjans, M. (1989). A zero-one goal programming approach for information system project selection. Omega, 17(6), 583-593.
67. Schniederjans, M. J., & Wilson, R. L. (1991). Using the analytic hierarchy process and goal programming for information system project selection. Information & management, 20(5), 333-342.
68. Shelley, A. V. (2018). A Framework for Counter-Unmanned Aircraft System Regulation in New Zealand. Policy Quarterly, 14(3).
69. Sparrow, R. (2009). Building a better WarBot: Ethical issues in the design of unmanned systems for military applications. Science and Engineering Ethics, 15(2), 169-187.
70. Stöcker, C., Bennett, R., Nex, F., Gerke, M., & Zevenbergen, J. (2017). Review of the current state of UAV regulations. Remote sensing, 9(5), 459.
71. Tripathy, B. B., & Biswal, M. P. (2007). A zero-one goal programming approach for project selection. Journal of Information and Optimization Sciences, 28(4), 619-626.
72. Tzeng, G. H., & Teng, J. Y. (1993). Transportation investment project selection with fuzzy multiobjectives. Transportation planning and Technology, 17(2), 91-112.
73. Van Laarhoven, P. J., & Pedrycz, W. (1983). A fuzzy extension of Saaty's priority theory. Fuzzy sets and Systems, 11(1-3), 229-241.
74. Wackwitz, K., & Boedecker, H. (2015). Safety risk assessment for uav operation. Drone Industry Insights, Safe Airspace Integration Project, Part One, Hamburg, Germany.
75. Watts, A. C., Ambrosia, V. G., & Hinkley, E. A. (2012). Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use. Remote Sensing, 4(6), 1671-1692.
76. Wei, C. C., Chien, C. F., & Wang, M. J. (2005). An AHP-based approach to ERP system selection. International Journal of Production Economic, 96, 47–62.
77. Winkler, S., Zeadally, S., & Evans, K. (2018). Privacy and Civilian Drone Use: The Need for Further Regulation. IEEE Security & Privacy, 16(5), 72-80.
78. Yang, H. P. (2017). The Opportunity and Challenge of UAVs in Traffic Management. Law Enforcement Review, 14(1), 65-75.
79. Yeh, C. H., & Chang, Y. H. (2009). Modeling subjective evaluation for fuzzy group multicriteria decision making. European Journal of Operational Research, 194(2), 464-473.
80. Yen, T. H. (2016). Rules and Regulations for Unmanned Aircraft System Management (Master's thesis). Retrieved from http://etds.lib.ncku.edu.tw/
etdservice/view_metadata?etdun=U0026-0508201613284000
81. Zahedi, M. S., Spence, W. D., Solomonidis, S. E., & Paul, J. P. (1986). Alignment of l owe-limb prostheses. J Rehabil Res Dev, 23, 2-19.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw