進階搜尋


下載電子全文  
系統識別號 U0026-0407201813405900
論文名稱(中文) 觀測與模擬研究電離層與大氣波動耦合
論文名稱(英文) Observations and Simulations of Atmosphere-Ionosphere Wave Coupling
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 106
學期 2
出版年 107
研究生(中文) 周敏揚
研究生(英文) Min-Yang Chou
學號 L48031029
學位類別 博士
語文別 英文
論文頁數 196頁
口試委員 指導教授-林建宏
口試委員-劉正彥
口試委員-陳佳宏
口試委員-樂加
口試委員-林其彥
口試委員-Nicholas Pedatella
中文關鍵字 大氣重力波  電離層擾動  全球導航衛星系統  SAMI3模式  颱風  火箭  電離層電動力學  全電子含量 
英文關鍵字 Atmospheric gravity wave  Traveling ionospheric disturbances  Global Navigation Satellite System  SAMI3 model  Typhoon  Rocket  electrodynamic coupling  Total Electron Content 
學科別分類
中文摘要 劇烈的氣象天氣系統常伴隨著旺盛發展的對流,不穩定的對流系統可以在低層大氣產生波動並向上傳至高層大氣,影響地球的太空環境。大氣波動在低層與高層大氣之間的垂直耦合扮演著重要的角色,他們可以改變高層大氣結構引發電離層變異性與不穩定現象,進一步影響全球定位、導航、偵察系統與無線電波通訊。除了天氣系統之外,隨著科技的進步與發展,自1960年代以來已經有許多研究指出人類發射火箭太空船引發的大氣波動亦對電離層造成嚴重的影響,了解自然災害與人為因素如何影響高層大氣變成一個非常重要的議題。因此本論文利用全球導航衛星系統(Global Navigation Satellite System, GNSS)與美國海軍研究實驗室(Naval Research Laboratory, NRL) SAMI3/ESF電離層模式研究自然災害與人類太空活動兩種不同的來源對電離層的影響。
在自然災害方面,我們研究2016年七月與九月襲擊台灣的超級強颱尼伯特與莫蘭蒂造成的電離層擾動現象。莫蘭蒂颱風是2016年最強颱風,我們利用GNSS全電子含量觀測到莫蘭蒂颱風引發之同心圓移行電離層擾動。此同心圓擾動展現不同的時間與空間特徵尺度符合重力波理論,證實此擾動為颱風產生之同心圓重力波,這也是史上首次在太空中觀測到颱風產生的同心圓擾動。而尼伯特颱風事件,也首次在低緯度地區觀測到夜間中尺度移行電離層擾動現象。夜間中尺度電離層擾動主要發生在中緯度地區,我們推論此夜間中尺度移行電離層擾動為颱風引發之同心圓重力波與電離層Perkins不穩定機制耦合產生之電離層不穩定現象。同時也利用SAMI3/ESF模式去模擬與驗證同心圓重力波與夜間中尺度移行電離層擾動現象之間的耦合關係。本研究證實了颱風產生的同心圓重力波除了可以向上傳至電離層造成電離層擾動外,也會影響電離層電動力學,進一步造成赤道地區夜間電離層不穩定現象。
在人類太空活動方面,我們針對SpaceX獵鷹九號JASON-3任務、福衛五號 (FORMOSAT-5)任務與獵鷹重型火箭任務這三個案例去探討火箭發射對太空環境造成的影響。利用GNSS全電子含量觀測到火箭在低熱氣層與電離層中產生大氣重力波與聲震波。研究發現火箭產生的電離層擾動相對於天氣對流系統引發的電離層擾動特徵頻譜比較單調ㄧ致。JASON-3任務中,我們首次在電離層中觀測到火箭產生的V形聲震波與同心圓移行電離層擾動。此同心圓移行電離層擾動特徵符合重力波理論,推測此擾動為火箭引發的同心圓重力波。利用波源分析法與重力波射線追蹤法推測此同心圓重力波可能為第二節火箭在中氣層頂區域產生並向上傳至電離層。在福衛五號任務中,火箭在加州上方產生了巨大的圓形聲震波與電離層洞。由於火箭近垂直發射運送衛星至720公里高的任務軌道,在飛行過程中產生了圓型衝擊波,也間接證實了電離層擾動波形與火箭姿態幾何有相當大關係。在獵鷹重型火箭任務中,我們觀測到火箭產生的電離層擾動往北傳達上千公里,此電離層擾動展現短周期特徵尺度與ㄧ致的傳播速度。利用重力波理論推測此海潮波形的電離層擾動可能是低熱氣層中水平傳播的導管重力波(Ducted gravity wave)。由於短周期重力波難以向上傳至電離層,利用SAMI3/ESF模式模擬結果顯示,電動力學耦合(electrodynamic coupling)效應可能為導管重力波引發短周期電離層擾動的主要機制。隨著科技的持續進展,未來將會有越來越多火箭發射任務,本研究有助於深入了解人類活動如何影響大氣與太空環境。
英文摘要 The Earth’s ionosphere is strongly influenced by meteorological processes originating from the lower atmosphere, they can affect the ionosphere through the upward propagating atmospheric waves. Atmospheric waves play a crucial role in coupling the lower and upper atmosphere, they can modify and modulate the ionospheric electrodynamics, driving ionospheric variability and instabilities to make considerable impacts on the performances of positioning, navigation, reconnaissance systems and radio communication applications. Since the 1960s, several studies have reported that rocket launches also contribute to the ionospheric variability. In this dissertation, we study the ionospheric responses to natural and anthropogenic sources using the ground-based Global Navigation Satellite Systems networks (GNSS) and Naval Research Laboratory (NRL) SAMI3/ESF (Sami 3 is Also a Model of the Ionosphere) model.
For natural sources, two Category 5 Super Typhoon Meranti and Nepartak triggered traveling ionospheric disturbances (TIDs) are studied when they swept toward Taiwan in 2016. Super Typhoon Meranti excited evident concentric waves in GNSS total electron content (TEC) are first observed. These concentric waves with various scales agree well with the internal Boussinesq dispersion relation suggesting that they are associated with the primary gravity waves instead of secondary waves. Additionally, Perkins-type ionospheric instabilities related to Super Typhoon Nepartak are first investigated in the equatorial ionosphere. Nighttime ionospheric instabilities are triggered following the concentric gravity waves, it is suggested that the electrodynamic coupling between concentric gravity waves and Perkins instability may play an important role in seeding the instability. SAMI3/ESF model is further used to confirm the interconnection between concentric gravity waves and ionospheric instabilities. These studies provide new evidence that typhoon-induced concentric gravity waves can directly penetrate into the ionosphere, modifying the ionospheric electrodynamics to trigger instabilities and disturbances in the equatorial ionosphere region.
For anthropogenic sources, ionospheric responses to three SpaceX rocket launches comprising JASON-3, FORMOSAT-5, and Falcon Heavy missions are investigated. GNSS TEC Observations show that these rocket launches can excite gravity waves and shock acoustic waves in the lower thermosphere and ionosphere, causing ionospheric perturbations. The rocket-induced TIDs display nearly a monochromatic spectrum that is very different from those waves generated by deep convection. We report two remarkable patterns of V-shape shock acoustic waves and concentric TIDs (CTIDs) in the ionosphere during with the JASON-3 launch. The characteristics of CTIDs agree well with the gravity wave dispersion relation, suggesting that the CTIDs are related to the atmospheric gravity waves. The optimal wave source searching and gravity wave raytracing technique suggests that the CTIDs were originated from the mesopause region after the ignition of the second-stage rocket. The FORMOSAT-5 launch-induced gigantic circular shock waves and ionospheric plasma hole are studied. This is the largest rocket-induced circular shock acoustic waves on record and is due to the unique, nearly vertical attitude of the rocket during orbit insertion. The Falcon Heavy launch-induced short-period and long-propagating TIDs are presented. These short-period TIDs are most likely associated with ducted gravity waves trapping in a thermal duct. Numerical simulations suggest that thermal ducted gravity waves can trigger TIDs through the electrodynamic coupling processes. These studies provide a new insight into how the human activities affect our atmosphere and space environment as these anthropogenic space weather events are expected to increase at an enormous rate in the future.
論文目次 摘要 i
Abstract iii
Acknowledgment vi
Table of Contents viii
List of Tables xi
List of Figures xii
Chapter 1 Introduction 1
1.1. Ionosphere 1
1.2. Atmospheric gravity waves 6
1.2.1. The Buoyant Force 6
1.2.2. Linear Theory 10
1.2.3. Ducted Gravity Wave 14
1.3. Linear Theory for the Perkins instability 18
1.4. Traveling Ionospheric Disturbances 21
1.5. Motivation and Objective 27
Chapter 2 Global Navigation Satellite Systems and SAMI3/ESF Model 29
2.1. Ground-based GNSS ionospheric sounding 29
2.1.1. GNSS TEC estimation 29
2.1.2. Differential Code Bias Estimation 35
2.2. Ionosphere Model 37
2.2.1. Naval Research Laboratory SAMI3/ESF Model 38
2.2.2. Gravity wave simulation in the SAMI3/ESF model 41
Chapter 3 Ionospheric Disturbances Triggered by Super Typhoons 43
3.1. Concentric Traveling Ionospheric Disturbances Triggered by Super Typhoon Meranti (2016) 44
3.1.1. Introduction 45
3.1.2. Dataset 46
3.1.3. Suomi NPP Satellite Observations 47
3.1.4. GNSS TEC Observations 49
3.1.5. Discussion 55
3.1.6. Conclusions 59
3.2. Medium-Scale Traveling Ionospheric Disturbances Triggered By Super Typhoon Nepartak (2016) 60
3.2.1. Introduction 60
3.2.2. Suomi NPP Satellite Observations 63
3.2.3. GNSS TEC Observations 64
3.2.4. Discussion 71
3.2.5. Conclusions 77
3.3. Numerical modeling of the Concentric Gravity Wave Seeding of Low-Latitude Nighttime Medium-scale Traveling Ionospheric Disturbances 78
3.3.1. Introduction 78
3.3.2. The SAMI3/ESF Model Configuration 81
3.3.3. Results and Discussion 83
3.3.4. Conclusions 95
Chapter 4 Ionospheric Disturbances Triggered by Rocket Launches 96
4.1. Concentric Traveling Ionospheric Disturbances Triggered by a SpaceX Falcon 9 Rocket 97
4.1.1. Introduction 97
4.1.2. GNSS TEC Observations 99
4.1.3. Discussion 106
4.1.4. Conclusions 114
4.2. Gigantic Circular Shock Acoustic Waves in the Ionosphere Triggered by the Launch of FORMOSAT-5 Satellite 115
4.2.1. Introduction 116
4.2.2. FORMOSAT-5 Induced Circular Shock Acoustic Waves 118
4.2.3. Comparison of Rocket-induced Ionospheric Disturbances in Other Events 126
4.2.4. FORMOSAT-5 Launch-induced Ionospheric Plasma Hole 135
4.2.5. Summary 142
4.3. Ionospheric Disturbances triggered by SpaceX Falcon Heavy 144
4.3.1. Introduction 145
4.3.2. Methodology 146
4.3.3. Falcon Heavy Triggered Traveling Ionospheric Disturbances 147
4.3.4. Analyses of TIDs Using the Dispersion Relation 156
4.3.5. SAMI3/ESF Model Simulations 160
4.3.6. Summary 163
Chapter 5 Conclusion 165
References 173
Appendix 196
參考文獻 Akiya, Y., A. Saito, T. Sakanoi, Y. Hozumi, A. Yamazaki, Y. Otsuka, M. Nishioka, and T. Tsugawa (2014), First spaceborne observation of the entire concentric airglow structure caused by tropospheric disturbance, Geophys. Res. Lett., 41, 6943–6948, doi: 10.1002/2014GL061403.
Arendt, P. R. (1971), Ionospheric undulations following Apollo 14 launching, Nature, 231(438), 1971.
Afraimovich, E. L., Palamartchouk, K. S., Perevalova, N. P., & Chernukhov, V. V. (1998). Ionospheric effects of the solar eclipse of March 9 (1997), as deduced from GPS data. Geophysical Research Letters, 25(4), 465–468. https://doi.org/10.1029/98GL00186
Afraimovich, E. L., E. A. Kosogorov, and A. V. Plotnikov (2002), Shock–acoustic waves generated during rocket launches and earthquakes, Cosm. Res., 40(3), 241–254.
Astafyeva, E., S. Shalimov, E. Olshanskaya, and P. Lognonné (2013), Ionospheric response to earthquakes of different magnitudes: Larger quakes perturb the ionosphere stronger and longer, Geophys. Res. Lett., 40, 1675–1681, doi:10.1002/grl.50398.
Appleton, E. V. (1946), Two anomalies in the ionosphere, Nature, 157, 691.
Azeem, I., J. Yue, L. Hoffmann, S. D. Miller, W. C. Straka, and G. Crowley (2015), Multisensor profiling of a concentric gravity wave event propagating from the troposphere to the ionosphere, Geophys. Res. Lett.,42, 7874–7880, doi:10.1002/2015GL065903.
Azeem, I., S. L. Vadas, G. Crowley, and J. J. Makela (2017), Traveling ionospheric disturbances over the United States induced by gravity waves from the 2011 Tohoku tsunami and comparison with gravity wave dissipative theory, J. Geophys. Res. Space Physics, 122, 3430–3447, doi:10.1002/2016JA023659.
Alexander, M. J., J. R. Holton, and D. R. Durran (1995), The gravity wave response above deep convection in a squall line simulation, J. Atmos. Sci., 52(12), 2212–2226, doi:10.1175/1520‐0469(1995)052<2212:TGWRAD>2.0.CO;2.
Anderson, D. N. (1973), A theoretical study of the ionospheric F‐region equatorial anomaly. I: Theory, Planet. Space Sci., 21, 409–419.
Balan, N., and G. J. Bailey (1995), Equatorial plasma fountain and its effects: Possibility of an additional layer, J. Geophys. Res., 100(A11), 21,421–21,432.
Bowling, T., E. Calais, and J. S. Haase (2013), Detection and modeling of the ionospheric perturbation caused by a space shuttle launch using a network of ground-based Global Positioning System stations, Geophys. J. Int., 192(3), 1324–1331, doi:10.1093/gji/ggs101.
Bilitza, D., and B. W. Reinisch (2008), International Reference Ionosphere 2007: Improvements and new parameters, Adv. Space Res., 42(599), 599–609, doi:10.1016/j.asr.2007.07.048.
Behnke, R. (1979), F layer height bands in the nocturnal ionosphere over Arecibo, J. Geophys. Res., 84, 974–978, doi:10.1029/JA084iA03p00974.
Bernhardt, P. A., Park, C. G., & Banks, P. M. (1975). Depletion of the F2 region ionosphere and the protonsphere by the release of molecular hydrogen. Geophysical Research Letters, 2(8), 341–344. https://doi.org/10.1029/GL002i008p00341
Beres, J. H. (2004), Gravity wave generation by a three‐dimensional thermal forcing, J. Atmos. Sci., 61, 1805–1815, doi:10.1175/1520‐0469(2004)061<1805:GWGBAT>2.0.CO;2.
Blanc, M., & Richmond, A. D. (1980). The ionospheric disturbance dynamo. Journal of Geophysical Research, 85(A4), 1669–1686. htt ps://doi.org/10.1029/JA085iA04p01669.
Booker, H. G. (1961). A local reduction of F-region ionization due to missile transit. Journal of Geophysical Research, 66(4), 1073–1079. https://doi.org/10.1029/JZ066i004p01073.
Calais, E., & Minste r, J. B. (1995). GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake. Geophysical Research Letters, 22(9), 1045–1048. https://doi.org/10.1029/95GL00168.
Calais, E., and J. N. Minster (1996), GPS detection of ionospheric perturbations following a space shuttle ascent, Geophys. Res. Lett., 23,1897–1900.
Chou, M. Y., C. C. H. Lin, J. Yue, H. F. Tsai, Y. Y. Sun, J. Y. Liu, and C. H. Chen (2017a), Concentric traveling ionosphere disturbances triggered by Super Typhoon Meranti (2016), Geophys. Res. Lett., 44, 1219–1226, doi:10.1002/2016GL072205.
Chou, M. Y., C. H. Lin, J. Yue, L. C. Chang, H.F. Tsai , and C. H. Chen (2017b), Medium-scale traveling ionospheric disturbances triggered by Super Typhoon Nepartak (2016), Geophys. Res. Lett., 44 , 7569–7577, doi:10.1002/2017GL073961.
Chou, M. Y., C. C. H. Lin, H. F. Tsai, and C. Y. Lin (2017c), Ionospheric electron density inversion for Global Navigation Satellite Systems radio occultation using aided Abel inversions, J. Geophys. Res. Space Physics, 122, 1386–1399, doi: 10.1002/2016JA023027.
Chou, M.-Y., Shen, M.-H., Lin, C. C. H., Yue, J., Chen, C.-H., Liu, J.-Y., & Lin, J.-T. (2018a). Gigantic circular shock acoustic waves in the ionosphere triggered by the launch of FORMOSAT-5 satellite. Space Weather, 16, 172–184. https://doi.org/10.1002/2017SW001738
Chou, M. Y., C. H. Lin, J. D. Huba, C. P. Lien, C. H. Chen, J. Yue, L. C. Chang, & P. K. Rajesh (2018b), Numerical modeling of the concentric gravity wave seeding of low-latitude nighttime medium-scale traveling ionospheric disturbances. Geophys. Res. Lett., in press.
Chou, M.‐Y., Lin, C. C. H., Shen, M.‐H., Yue, J., Huba, J. D., & Chen, C.‐H. (2018c). Ionospheric disturbances triggered by SpaceX Falcon Heavy. Geophysical Research Letters, 45. https://doi.org/10.1029/2018GL078088
Chen, C. H., Lin, C. C. H., Liu, J. Y., Matsuo, T., & Chen, W. H. (2017). The impact of FORMOSAT-5/AIP observations on the ionospheric space weather. Terrestrial, Atmospheric and Oceanic Sciences, 28(2), 129–137. https://doi.org/10.3319/TAO.2016.09.30.01(EOF5)
Chen, C. H., Saito, A., Lin, C. H., Liu, J. Y., Tsai, H. F., Tsugawa, T., et al. (2011). Long-distance propagation of ionospheric disturbance generated by the 2011 off the Pacific coast of Tohoku Earthquake. Earth, Planets and Space, 63, 881–884. https://doi.org/10.5047/eps.2011.06.026
Chimonas, G., & Hines, C. O. (1970). Atmospheric gravity waves induced by a solar eclipse. Journal of Geophysic al Research, 75(4), 875. https://doi.org/10.1029/JA075i004p00875
Choi, B. K., & Kil, H. (2017). Large ionospheric TEC depletion induced by the 2016 North Korea rocket. Advances in Space Research, 59(2),532–541.
Cosgrove, R. B., and R. T. Tsunoda (2004), Instability of the E-F coupled nighttime midlatitude ionosphere, J. Geophys.Res., 109, A04305, doi:10.1029/2003JA010243.
Candido, C. M. N., A. A. Pimenta, J. A. Bittencourt, and F. Becker-Guedes (2008), Statistical analysis of the occurrence of medium-scale traveling ionospheric disturbances over Brazilian low latitudes using OI 630.0 nm emission all-sky images, Geophys. Res. Lett., 35, L17105, doi:10.1029/2008GL035043.
Dautermann, T., Calais, E., & Mattioli, G. (2009). Global Positioning System detection and energy estimation of the ionospheric wave caused by the 13 July 2003 explosion of the Soufriere Hills Volcano, Montserrat. Journal of Geophysical Research,114, B02202. https://doi.org/10.1029/2008JB005722
Ding, F., W. Wan, T. Mao, M. Wang, B. Ning, B. Zhao, and B. Xiong (2014), Ionospheric response to the shock and acoustic waves excited by the launch of the Shenzhou 10 spacecraft, Geophys. Res. Lett., 41, 3351–3358, doi: 10.1002/2014GL060107.
Donn, W. L., Posmentier, E., Fehr, U., & Balachandran, N. K. (1968). Infrasound at long range from Saturn V, 1967. Science, 162(3858),1116–1120. https://doi.org/10.1126/science.162.3858.1116
Drob, D. P., et al. (2015), An update to the horizontal wind model (HWM): The quiet time thermosphere, Earth Space Sci., 2, 301–319, doi:10.1002/2014EA000089.
Dewan, E. M., et al. (1998), MSX satellite observations of thunderstorm-generated gravity waves in mid-wave infrared images of the upper stratosphere, Geophys. Res. Lett.,25, 939–942, doi:10.1029/98GL00640.
Duly, T. M., J. D. Huba, and J. J. Makela (2014), Self-consistent generation of MSTIDs within the SAMI3 numerical model, J. Geophys. Res. Space Physics, 119, 6745–6757, doi:10.1002/2014JA020146.
Duncan, R. A. (1960), The equatorial F region of the ionosphere, J. Atmos. Terr. Phys., 18, 89–100.
Ebbing, D. and Gammon SD 2007. General chemistry. Cengage Learning, Boston, MA. pp. 251. ISBN 978-1-111-80895-2.
Furuya, T., & Heki, K. (2008). Ionospheric hole behind an ascending rocket observed with a dense GPS array. Earth, Planets and Space, 60(3),235–239. https://doi.org/10.1186/BF03352786
Francis, S. H. (1973), Acoustic‐gravity modes and large‐scale traveling ionospheric disturbances of a realistic, dissipative atmosphere, J. Geophys. Res., 78(13), 2278–2301, doi:10.1029/JA078i013p02278.
Fritts, D. C., and M. J. Alexander (2003), Gravity wave dynamics and effects in the middle atmosphere, Rev. Geophys.,41(1), 1003, doi:10.1029/2001RG000106.
Gong, J., J. Yue, and D. L. Wu (2015), Global survey of concentric gravity waves in AIRS images and ECMWF analysis, J. Geophys. Res. Atmos.,120, 2210–2228, doi:10.1002/2014JD022527.
Goncharenko, L. P., Chau, J. L., Liu, H.-L., & Coster, A. J. (2010). Unexpected connections between the stratosphere and ionosphere. Geophysical Research Letters, 37, L10101. https://doi.org/10.1029/2010GL043125
Hanson, W. B., and R. J. Moffett (1966), Ionization transport effects in the equatorial F region, J. Geophys. Res., 71(23), 5559–5572.
Hernández-Pajares, M., J. M. Juan, J. Sanz, and A. Aragón-Àngel (2012), Propagation of medium scale traveling ionospheric disturbances at different latitudes and solar cycle conditions, Radio Sci., 47, RS0K05, doi:10.1029/2011RS004951.
Hines, C. O. (1960), Internal atmospheric gravity waves at ionospheric heights, Can. J. Phys.,38, 1441–1481.
Huang, C. S., C. A. Miller, and M. C. Kelley (1994), Basic properties and gravity wave initiation of the midlatitude F region instability, Radio Sci., 29(l), 395–405, doi:10.1029/93RS01669.
Huang, C.-S. (2016), Plasma drifts and polarization electric fields associated with TID-like disturbances in the low-latitude ionosphere: C/NOFS observations, J. Geophys. Res. Space Physics, 121, 1802–1812, doi:10. 1002/2015JA022201.
Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N.-C. Yen, C. C. Tung, and H. H. Liu (1998), The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis, Proc. R. Soc. London, Ser. A, 454, 903–993.
Hung, R. J., and J. P. Kuo (1978), Ionospheric observation of gravity-waves associated with Hurricane Eloise, J. Geophys.,45,67–80.
Hunsucker, R. D. (1982), Atmospheric gravity waves generated in the high‐latitude ionosphere: A review, Rev. Geophys., 20, 293–315.
Huba, J. D., G. Joyce, and J. A. Fedder (2000), SAMI2 (Sami2 is another model of the ionosphere): A new low-latitude ionosphere model, J. Geophys. Res., 105, 23,035–23,053.
Huba, J. D., G. Joyce, and J. Krall (2008), Three-dimensional equatorial spread F modeling, Geophys. Res. Lett., 35, L10102, doi:10.1029/2008GL033509.
Huba, J. D., G. Joyce, J. Krall, and J. Fedder (2009), Ion and electron temperature evolution during equatorial spread-F, Geophys. Res. Lett., 36, L15102, doi:10.1029/2009GL038872.
Huba, J. D., and G. Joyce (2010), Global modeling of equatorial plasma bubbles, Geophys. Res. Lett., 37, L17104, doi:10.1029/2010GL044281.
Huba, J. D., D. P. Drob, T.-W. Wu, andJ. J. Makela (2015), Modeling the ionospheric impact of tsunami-driven gravity waves with SAMI3: Conjugate effects, Geophys. Res. Lett., 42, 5719–5726,doi:10.1002/2015GL064871.
Immel, T. J., Sagawa, E., England, S. L., Henderson, S. B., Hagan, M. E., Mende, S. B., et al. (2006). Control of equatorial ionospheric morphology by atmospheric tides. Geophysical Research Letters, 33, L15108. https://doi.org/10.1029/2006GL026161
Isler, J. R., M. J. Taylor, and D. C. Fritts (1997), Observational evidence of wave ducting and evanescence in the mesosphere, J. Geophys. Res., 102(D22), 26,301 – 26,313.
Kakinami, Y., M. Yamamoto, C.-H. Chen, S. Watanabe, C. Lin, J.-Y. Liu, and H. Habu (2013), Ionospheric disturbances induced by a missile launched from North Korea on 12 December 2012, J. Geophys. Res. Space Physics, 118, 5184 –5189, doi:10.1002/jgra.50508.
Kelley, M. C. (2009), The Earth's Ionosphere: Plasma Physics and Electrodynamics, 2nd ed., Int. Geophys. Ser., vol. 96, Elsevier, London.
Kelley, M. C., and S. Fukao (1991), Turbulent upwelling of the midlatitude ionosphere: 2. Theoretical framework, J. Geophys. Res., 96, 3747–3753.
Kelley, M. C., J. J. Makela, A. Saito, N. Aponte, M. Sulzer, and S. A. González (2000), On the electrical structure of airglow depletion/height layer bands over Arecibo, Geophys. Res. Lett., 27(18), 2837–2840.
Kelley, M., J. Makela, and A. Saito (2002), The mid-latitude F region at the mesoscale: Some progress at last, J. Atmos. Sol.-Terr. Phys., 64(12–14), 1525–1529, doi:10.1016/S1364-6826(02)00090-1.
Kotake, N., Y. Otsuka, T. Tsugawa, T. Ogawa, and A. Saito (2006), Climatological study of GPS total electron content variations caused by medium-scale traveling ionospheric disturbances, J. Geophys. Res., 111, A04306, doi:10.1029/2005JA011418.
Kotake, N., Y. Otsuka, T. Ogawa, T. Tsugawa, and A. Saito (2007), Statistical study of medium-scale traveling ionospheric disturbances observed with the GPS networks in Southern California, Earth Planets Space, 59, 95–102.
Kotake, N., Otsuka, Y., Ogawa, T., Tsugawa, T., & Saito, A. (2007). Statistical study of medium-scale traveling ionospheric disturbances observed with the GPS networks in southern California. Earth, Planets and Space, 59, 95–102. https://doi.org/10.1186/BF03352681
Kubota, M., M. Conde, M. Ishii, Y. Murayama, and H. Jin (2011), Characteristics of nighttime medium-scale traveling ionospheric disturbances observed over Alaska, J. Geophys. Res., 116, A05307, doi:10.1029/2010JA016212.
Komjathy, A., Galvan, D. A., Stephens, P., Butala, M. D., Akopian, V., Wilson, B. D., et al. (2012). Detecting ionospheric TEC perturbations caused by natural hazards using a global network of GPS receivers: The Tohoku case study. Earth, Planets and Space, 64,1–8.
Krall, J., J. D. Huba, G. Joyce, and M. Hei (2013a), Simulation of the seeding of equatorial spread F by circular gravity waves, Geophys. Res. Lett., 40, 1–5, doi:10.1029/2012GL054022.
Krall, J., J. D. Huba, and D. C. Fritts (2013b), On the seeding of equatorial spread F by gravity waves, Geophys. Res. Lett., 40, 661–664, doi:10.1002/grl.50144.
Kuester, M. A., M. J. Alexander, and E. A. Ray (2008), A model study of gravity waves over Hurricane Humberto (2001),J. Atmos. Sci.,65,3231–3246.Lin, C. H., et al. (2014), Ionospheric shock waves triggered by rockets, Ann. Geophys.,32, 1145–1152, doi:10.5194/angeo-32-1145-2014.
Lane, T. P., M. J. Reeder, and T. L. Clark (2001), Numerical modeling of gravity waves generated by deep tropical convection, J. Atmos. Sci., 58, 1249–1274, doi:10.1175/1520-0469(2001)058<1249:NMOGWG>2.0.CO;2.
Lane, T. P., and R. D. Sharman (2006), Gravity wave breaking, secondary wave generation, and mixing above deep convection in a three-dimensional cloud model, Geophys. Res. Lett., 33, L23813, doi:10.1029/2006GL027988.
Li, Y. Q., A. R. Jacobson, R. C. Carlos, R. S. Massey, Y. N. Taranenko, and G. Wu (1994), The blast wave of the shuttle plume at ionospheric heights, Geophys. Res. Lett., 21, 2723 –2740.
Lin, C. H., Chen, C.-H., Matsumura, M., Lin, J.-T., & Kakinami, Y. (2017). Observation and simu lation of the ionosphere disturbance waves
triggered by rocket exhausts. Journal of Geophysical Research: Space Physics, 122, 8868–8882. https://doi.org/10.1002/2017JA023951
Lin, C. H., Lin, J. T., Chen, C. H., Liu, J. Y., Sun, Y. Y., Kakinami, Y., et al. (2014). Ionospheric shock waves triggered by rockets. Annales de
Geophysique, 32 (9), 1145–1152. https://doi.org/10.5194/angeo-32-1145-2014
Lin, C. H., Richmond, A. D., Heelis, R. A., Bailey, G. J., Lu, G., Liu, J. Y., et al. (2005). Theoretical study of the low- and midlatitude ionospheric
electron density enhancement during the October 2003 superstorm: Relative importance of the neutral wind and the electric field.
Journal of Geophysical Research, 110, A12312. https://doi.org/10.1029/2005JA011304
Lin, C. H., Richmond, A. D., Liu, J. Y., Yeh, H. C., Paxton, L. J., Lu, G., et al. (2005). Large-scale variations of the low-latitude ionosphere during the
October–November 2003 superstorm: Observational results. Journal of Geophysical Research, 110. A09S28. https://doi.org/10.1029/
2004JA010900
Lin, C. H., Shen, M.-H., Chou, M.-Y., Chen, C.-H., Yue, J., Chen, P.-C., & Matsumura, M. (2017). Concentric traveling ionospheric disturbances
triggered by the launch of a SpaceX Falcon 9 rocket. Geophysical Research Letters, 44,7578–7586. https://doi.org/10.1002/2017GL074192
Lin, C. Y., Liu, J. Y., Lin, C. H., Sun, Y. Y., Araujo-Pradere, E. A., & Kakinami, Y. (2012). Using the IRI, the MAGIC model, and the co-located
ground-based GPS receivers to study ionospheric solar eclipse and storm signatures on July 22, 2009. Earth, Planets and Space, 64(6),
513–520. https://doi.org/10.5047/eps.2011.08.016
Lin, J. T., Lin, C. H., Chang, L. C., Huang, H. H., Liu, J. Y., Chen, A. B., et al. (2012). Observational evidence of ionospheric migrating tide
modification during the 2009 stratospheric sudden warming. Geophysical Research Letters, 39, L02101. https://doi.org/10.1029/
2011GL050248
Lin, C. H., Shen, M.-H., Chou, M.-Y., Chen, C.-H., Yue, J., Chen, P.-C., & Matsumura, M. (2017a). Concentric traveling ionospheric disturbances triggered by the launch of a SpaceX Falcon 9 rocket. Geophysical Research Letters, 44, 7578–7586. https://doi.org/10.1002/2017GL074192
Lin, C. H., Chen, C.-H., Matsumura, M., Lin, J.-T., & Kakinami, Y. (2017b). Observation and simulation of the ionosphere disturbance waves triggered by rocket exhausts. Journal of Geophysical Research: Space Physics, 122, 8868–8882. https://doi.org/10.1002/2017JA023951
Lin, C. H., Lin, J. T., Chen, C. H., Liu, J. Y., Sun, Y. Y., Kakinami, Y., et al. (2014). Ionospheric shock waves triggered by rockets. Annales de Geophysique, 32 (9), 1145–1152. https://doi.org/10.5194/angeo-32-1145-2014
Lin, C. H., W. Wang, M. E. Hagan, C. C. Hsiao, T. J. Immel, M. L. Hsu, J. Y. Liu, L. J. Paxton, T. W. Fang, and C. H. Liu (2007), Plausible effect of atmospheric tides on the equatorial ionosphere observed by the FORMOSAT‐3/COSMIC: Three‐dimensional electron density structures, Geophys. Res. Lett., 34, L11112, doi: 10.1029/2007GL029265.
Lin, C. H., Richmond, A. D., Heelis, R. A., Bailey, G. J., Lu, G., Liu, J. Y., et al. (2005). Theoretical study of the low- and midlatitude ionospheric electron density enhancement during the October 2003 superstorm: Relative importance of the neutral wind and the electric field. Journal of Geophysical Research, 110, A12312. https://doi.org/10.1029/2005JA011304
Lin, C. H., Richmond, A. D., Liu, J. Y., Yeh, H. C., Paxton, L. J., Lu, G., et al. (2005). Large-scale variations of the low-latitude ionosphere during the October–November 2003 superstorm: Observational results. Journal of Geophysical Research, 110. A09S28. https://doi.org/10.1029/2004JA010900
Lin, C. Y., Liu, J. Y., Lin, C. H., Sun, Y. Y., Araujo-Pradere, E. A., & Kakinami, Y. (2012). Using the IRI, the MAGIC model, and the co-located ground-based GPS receivers to study ionospheric solar eclipse and storm signatures on July 22, 2009. Earth, Planets and Space, 64(6), 513–520. https://doi.org/10.5047/eps.2011.08.016
Lin, J. T., Lin, C. H., Chang, L. C., Huang, H. H., Liu, J. Y., Chen, A. B., et al. (2012). Observational evidence of ionospheric migrating tide modification during the 2009 stratospheric sudden warming. Geophysical Research Letters, 39, L02101. https://doi.org/10.1029/2011GL050248
Liu, J. Y., & Chao, C. K. (2017). An observing system simulation experiment for FORMOSAT-5/AIP detecting seismo-ionospheric precursors. Terrestrial, Atmospheric and Oceanic Sciences, 28(2), 117–127. https://doi.org/10.3319/TAO.2016.07.18.01(EOF5)
Liu, J. Y., Lin, C. H., Chen, Y. I., Lin, Y. C., Fang, T. W., Chen, C. H., et al. (2006). Solar flare signatures of the ionospheric GPS total electron content. Journal of Geophysical Research, 111, A05308. https://doi.org/10.1029/2005JA011306
Liu, J. Y., Tsai, Y. B., Chen, S. W., Lee, C. P., Chen, Y. C., Yen, H. Y., et al. (2006). Giant ionospheric disturbances excited by the M9.3 Sumatra earthquake of 26 December 2004. Geophysical Research Letters, 33, L02103. https://doi.org/10.1029/2005GL023963
Liu, J. Y., Lin, C. H., Tsai, H. F., & Liou, Y. A. (2004). Ionospheric solar flare effects monitored by the ground-based GPS receivers: Theory and observation. Journal of Geophysical Research, 109, A01307. https://doi.org/10.1029/2003JA009931
Liu, J. Y., H. F. Tsai, C. H. Lin, M. Kamogawa, Y. I. Chen, C. H. Lin, B. S. Huang, S. B. Yu, and Y. H. Yeh (2010a), Coseismic ionospheric disturbances triggered by the Chi-Chi earthquake, J. Geophys. Res., 115, A08303, doi:10.1029/2009JA014943.
Liu, J. Y., C. Y. Lin, C. H. Lin, H. F. Tsai, S. C. Solomon, et al. (2010b), Artificial plasma cave in the low‐latitude ionosphere results from the radio occultation inversion of the FORMOSAT‐3/COSMIC, J. Geophys. Res., 115, A07319, doi:10.1029/2009JA015079.
Liu, J. Y., C. H. Chen, C. H. Lin, H. F. Tsai, C. H. Chen, and M. Kamogawa (2011a), Ionospheric disturbances triggered by the 11 March 2011 M9.0Tohoku earthquake, J. Geophys. Res.,116, A06319, doi:10.1029/2011JA016761.
Liu, J. Y., Y. Y. Sun, Y. Kakinami, C. H. Chen, C. H. Lin, and H. F. Tsai (2011b), Bow and stern waves triggered by the Moon’s shadow boat, Geophys. Res. Lett.,38, L17109, doi:10.1029/2011GL048805.
Liu, J. Y., & Sun, Y. Y. (2011c). Seismo-traveling ionospheric disturbances of ionograms observed during the 2011 Mw9.0 Tohoku Earthquake. Earth Planets Space, 63, 897–902.
Liu, J. Y., Y. Y. Sun, H. F. Tsai, and C. H. Lin (2012), Seismo-traveling ionospheric disturbances triggered by the 12 May 2008 M8.0 Wenchuan earthquake, Terr. Atmos. Ocean. Sci.,23,9–15, doi:10.3319/TAO.2011.08.03.01(T).
Liu, J. Y., Yang, W. H., Lin, C. H., Chen, Y. I., & Lee, I. T. (2013). A statistical study on the characteristics of ionospheric storms in the equatorial ionization anomaly region: GPS-TEC observed over Taiwan. Journal of Geophysical Research: Space Physics, 118, 3856–3865. https://doi.org/10.1002/jgra.50366
Liu, J. Y., Tsai, H. F., & Jung, T. K. (1996). Total electron content obtained by using the Global Positioning System. Terrestrial, Atmospheric and Oceanic Sciences, 7(1), 107–117. https://doi.org/10.3319/TAO.1996.7.1.107(A)
Liu, H.-L., J. M. McInerney, S. Santos, P. H. Lauritzen, M. A. Taylor, and N. M. Pedatella (2014), Gravity waves simulated by high-resolution Whole Atmosphere Community Climate Model, Geophys. Res. Lett., 41, 9106–9112,doi:10.1002/2014GL062468.
Mannucci, A. J., Tsurutani, B. T., Iijima, B. A., Komjathy, A., Saito, A., Gonzalez, W. D., et al. (2005). Dayside global ionospheric response to the major interplanetary events of October 29–30, 2003 “Halloween Storm s”. Geophysical Research Letters, 32. L12S02. https://doi.org/10.1029/2004GL021467
Matsumura, M., H. Shinagawa, and T. Iyemori (2012), Horizontal extension of acoustic resonance between the ground and the lower thermosphere, J. Atmos. Sol. Terr. Phys. , 75-76, 127–132.
Makela, J. J., E. S. Miller, and E. R. Talaat (2010), Nighttime medium-scale traveling ionospheric disturbances at low geomagnetic latitudes, Geophys. Res. Lett., 37, L24104, doi:10.1029/2010GL045922.
Makela, J. J., et al. (2011), Imaging and modeling the ionospheric airglow response over Hawaii to the tsunami generated by the Tohoku earthquake of 11 March 2011, Geophys. Res. Lett., 38, L13305, doi:10.1029/2011GL047860.
Mendillo, M., & Forbes, J. (1978). Artificially created holes in the ionosphere. Journal of Geophysical Research, 83(A1), 151–163. https://doi.org/10.1029/JA083iA01p00151
Mendillo, M., Hawkins, G. S., & Klobuchar, J. A. (1975). A sudden vanishing of the ionospheric F region due to the launch of Skylab. Journal of Geophysical Research, 80(16), 2217–2228. https://doi.org/10.1029/JA080i016p02217
Mendillo, M., Smith, S., Coster, A., Erickson, P., Baumgardner, J., & Martinis, C. (2008). Man-made space weather. Space Weather, 6. S09001.https://doi.org/10.1029/2008SW000406
Miller, S. D., W. C. Straka, J. Yue, S. M. Smith, M. J. Alexander, L. Hoffmann, M. Setvák, and P. T. Partain (2015), Upper atmospheric gravity wave details revealed in nightglow satellite imagery, Proc. Natl. Acad. Sci.,112(49), E6728–E6735, doi:10.1073/pnas.1508084112.
Narayanan, V. L., K. Shiokawa, Y. Otsuka, and S. Saito (2014), Airglow observations of nighttime medium‐scale traveling ionospheric disturbances from Yonaguni: Statistical characteristics and low‐latitude limit, J. Geophys. Res. Space Physics, 119, 9268–9282, doi: 10.1002/2014JA020368.
Namba, S., and K.‐I. Maeda (1939), Radio Wave Propagation, 86 pp., Corona, Tokyo.
Nappo, C. J. (2012). An introduction to atmospheric gravity waves, 2nd ed., 400 pp., Acad. Press.
Nakashima, Y., & Heki, K. (2014). Ionospheric hole made by the 2012 North Korean rocket observed with a dense GNSS array in Japan. Radio Science, 49, 497– 505. https://doi.org/10.1002/2014RS005413
Nishioka, M., T. Tsugawa, M. Kubota, and M. Ishii (2013), Concentric waves and short-period oscillations observed in the ionosphere after the2013 Moore EF5 tornado, Geophys. Res. Lett.,40, 5581–5586, doi:10.1002/2013GL057963.
Nicolls, M. J., and M. C. Kelley (2005), Strong evidence for gravity wave seeding of an ionospheric plasma instability, Geophys. Res. Lett., 32, L05108, doi:10.1029/2004GL020737.
Noble, S. T. (1990), A large-amplitude traveling ionospheric disturbance excited by the space shuttle during launch, J. Geophys. Res., 95,19,037–19,044.
Otsuka, Y., K. Shiokawa, T. Ogawa, and P. Wilkinson (2004), Geomagnetic conjugate observations of medium-scale traveling ionospheric disturbances at midlatitude using all-sky airglow imagers, Geophys. Res. Lett., 31, L15803, doi:10.1029/2004GL020262.
Otsuka, Y., K. Suzuki, S. Nakagawa, M. Nishioka, K. Shiokawa, and T. Tsugawa (2013), GPS observations of medium-scale traveling ionospheric disturbances over Europe, Ann. Geophys., 31, 163–172, doi:10.5194/angeo-31-163-2013.
Ozeki, M., and K. Heki (2010), Ionospheric holes made by ballistic missiles from North Korea detected with a Japanese dense GPS array, J. Geophys. Res.,115, A09314, doi:10.1029/2010JA015531.
Park, J., Kil, H., Stolle, C., Lühr, H., Coley, W. R., Coster, A., & Kwak, Y.-S. (2016). Daytime midlatitude plasma depletions observed by Swarm: Topside signatures of the rocket exhaust. Geophysical Research Letters, 43, 1802–1809. https://doi.org/10.1002/2016GL067810
Perkins, F. (1973), Spread F and ionospheric currents, J. Geophys. Res., 78, 218, doi:10.1029/JA078i001p00218.
Pierce, A. D., and S. C. Coroniti (1966), A mechanism for the generation of acoustic‐gravity waves during thunderstorm formation, Nature, 210, 1209–1210, doi:10.1038/2101209a0.
Picone, J. M., A. E. Hedin, D. P. Drob, and A. C. Aikin (2002), NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, J. Geophys. Res., 107(A12), 1468, doi:10.1029/2002JA009430.
Rishbeth, H. (2000), The equatorial F‐layer: Progress and puzzles, Ann. Geophys., 18, 730–739.
Rajesh, P. K., J. Y. Liu, C. H. Lin, A. B. Chen, R. R. Hsu, C. H. Chen, and J. D. Huba (2016), Space-based imaging of nighttime medium-scale traveling ionospheric disturbances using FORMOSAT-2/ISUAL 630.0 nm airglow observations, J. Geophys. Res. Space Physics, 121, 4769–4781, doi:10.1002/2015JA022334.
Richmond, A. D. (1978). Gravity wave generation, propagation, and dissipation in the thermosphere. Journal of Geophysical Research, 83 (A9),4131–4145. https://doi.org/10.1029/JA083iA09p04131
Schaer S, Beutler G, Rothacher M (1996) Daily global ionosphere maps based on GPS carrier phase data routinely produced by the CODE analysis center. In: Proceedings of the IGS analysis center workshop, Silver Spring, MD, USA, 181–192
Saito, A., T. Iyemori, M. Sugiura, N. C. Maynard, T. L. Aggson, L. H. Brace, M. Takeda, and M. Yamamoto (1995), Conjugate occurrence of the electric field fluctuations in the nighttime midlatitude ionosphere, J. Geophys. Res., 100(A11), 21,439–21,451, doi:10.1029/95JA01505.
Saito, A., T. Iyemori, L. G. Blomberg, M. Yamamoto, and M. Takeda (1998), Conjugate observations of the mid-latitude electric field fluctuations with the MU radar and the Freja satellite, J. Atmos. Sol.-Terr. Phys., 60, 129–140.
Saito, S., M. Yamamoto, H. Hashiguchi, A. Maegawa, and A. Saito (2007), Observational evidence of coupling between quasi-periodic echoes and medium scale traveling ionospheric disturbances, Ann. Geophys., 25, 2185–2194.
Schunk, R. W., and A. F. Nagy (2000), Ionospheres, Cambridge Univ. Press, New York.
Shiokawa, K., Y. Otsuka, M. K. Ejiri, Y. Sahai, T. Kadota, C. Ihara, T. Ogawa, K. Igarashi, S. Miyazaki, and A. Saito (2002), Imaging observations of the equatorward limit of midlatitude traveling ionospheric disturbances, Earth Planets Space, 54, 57–62, doi:10.1186/BF03352421.
Shiokawa, K., C. Ihara, Y. Otsuka, and T. Ogawa (2003a), Statistical study of nighttime medium-scale traveling ionospheric disturbances using midlatitude airglow images, J. Geophys. Res., 108(A1), 1052, doi:10.1029/2002JA009491.
Shiokawa, K., Y. Otsuka, C. Ihara, T. Ogawa, and F. J. Rich (2003b), Ground and satellite observations of nighttime medium-scale traveling ionospheric disturbance at midlatitude, J. Geophys. Res., 108(A4), 1145, doi:10.1029/2002JA009639.
Shiokawa, K., Y. Otsuka, and T. Ogawa (2009), Propagation characteristics of nighttime mesospheric and thermospheric waves observed by optical mesosphere thermosphere imagers at middle and low latitudes, Earth Planets Space, 61, 479–491.
Sentman, D. D., et al. (2003), Simultaneous observations of mesospheric gravity waves and sprites generated by a midwestern thunder storm, J. Atmos. Sol. Terr. Phys.,65, 537–550.
Su, S.-Y., H. C. Yeh, and R. A. Heelis (2001), ROCSAT-1 ionospheric plasma and electrodynamics instrument observations of equatorial spread F: An early transitional scale result, J. Geophys. Res., 106, 29,153–29,159, doi:10.1029/2001JA900109.
Shin, T. C., K. W. Kuo, P. L. Leu, C. H. Tsai, and J. S. Jiang (2011), Continuous CWB GPS array in Taiwan and applications to monitoring seismic activity, Terr. Atmos. Ocean. Sci., 22, 521–533, doi:10.3319/TAO.2011.05.18.01(T).
Suzuki, S., K. Shiokawa, Y. Otsuka, T. Ogawa, K. Nakamura, and T. Nakamura (2007), A concentric gravity wave structure in the mesospheric airglow images, J. Geophys. Res.,112, D02102, doi:10.1029/2005JD006558.
Suzuki, S., K. Shiokawa, Y. Otsuka, S. Kawamura, and Y. Murayama (2013), Evidence of gravity wave ducting in the mesopause region from airglow network observations, Geophys. Res. Lett., 40, 601–60 5, doi:1 0.1029/20 12GL054605.
Suzuki, S., S. L. Vadas, K. Shiokawa, Y. Otsuka, S. Karwamura, and Y. Murayama (2013), Typhoon-induced concentric airglow structures in the mesopause region, Geophys. Res. Lett., 40, 5983–5987, doi:10.1002/2013GL058087.
Siskind, D. E., Stevens, M. H., Emmert, J. T., Drob, D. P., Kochenash, A. J., Russell, J. M. III, et al. (2003). Signatures of shuttle and rocket exhaust plumes in TIMED/SABER radiance data. Geophysical Research Letters, 30(15), 1819. https://doi.org/10.1029/2003GL017627
Sun, Y.-Y., Liu, J.-Y., Lin, C.-H., Lin, C.-Y., Shen, M.-H., Chen, C.-H., et al. (2018). Ionospheric bow wave induced by the moon shadow ship over the continent of United States on 21 August 2017. Geophysical Research Letters, 45. https://doi.org/10.1002/2017GL075926
Sun, Y.-Y., Liu, J.-Y., Lin, C.-Y., Tsai, H.-F., Chang, L. C., Chen, C.-Y., & Chen, C.-H. (2016). Ionospheric F2region perturbed by the 25 April 2015Nepal earthquake. Journal of Geophysical Research : Space Physics, 121, 5778–5784. https://doi.org/10.1002/2015JA022280
Taylor, M. J., and M. A. Hapgood (1988), Identification of a thunderstorm as a source of short period gravity waves in the upper atmospheric nightglow emissions, Planet. Space Sci.,36, 975–985.
Tanaka, T. (1986). Low-latitude ionospheric disturbances: Results for March 22, 1979, and their general characteristics. Geophysical Research Letters, 13(13), 1399–1402. https://doi.org/10.1029/GL013i013p01399
Tsai, H. F., & Liu, J. Y. (1999). Ionospheric total electron content response to solar eclipses. Journal of Geophysical Research, 104(A6),12,657–12,668. https://doi.org/10.1029/1999JA900001
Thébault, E., Finlay, C. C., Beggan, C. D., Alken, P., Aubert, J., Barrois, O., et al. (2015). International geomagnetic reference field: The 12th generation. Earth, Planets and Space, 67. https://doi.org/10.1186/s40623-015-0228-9
Tsugawa, T., Y. Otsuka, A. J. Coster, and A. Saito (2007), Medium-scale traveling ionospheric disturbances detected with dense and wide TEC maps over North America, Geophys. Res. Lett., 34, L22101, doi:10.1029/2007GL031663.
Tsugawa, T., A. Saito, Y. Otsuka, M. Nishioka, T. Maru yama, H. Kato, T. Nagatsuma, and K. T. Murata (2011), Ionospheric disturbances detected by GPS total electron content observation after the 2011 off the Pacific coast of Tohoku earthquake, Earth Planets Space, 63, 875–879.
Tsunoda, R. T., R. B. Cosgrove, and T. Ogawa (2004), Azimuth-dependent Es layer instability: A missing link found, J. Geophys. Res., 109, A12303, doi:10.1029/2004JA010597.
Tsunoda, R. T. (2006), On the coupling of layer instabilities in the nighttime midlatitude ionosphere, J. Geophys. Res., 111, A11304, doi:10.1029/2006JA011630.
Tsunoda, R. T. (2010), On seeding equatorial spread F: Circular gravity waves, Geophys. Res. Lett., 37, L10104, doi:10.1029/2010GL043422.
Vadas, S. L., & Fritts, D. C. (2005). Thermospheric responses to gravity waves : Influences of increasing viscosity and thermal diffusivity. Journalof Geophysical Research, 110, D15103. https://doi.org/10.1029/2004JD005574
Vadas, S. L. (2007), Horizontal and vertical propagation and dissipation of gravity waves in the thermosphere from lower atmospheric and thermospheric sources, J. Geophys. Res.,112, A06305, doi:10.1029/2006JA011845.
Vadas, S. L., J. Yue, C.-Y. She, P. A. Stamus, and A. Z. Liu (2009), A model study of the effects of winds on concentric rings of gravity waves from a convective plume near Fort Collins on 11 May 2004, J. Geophys. Res., 114, D06103, doi:10.1029/2008JD010753.
Vadas, S. L., and H.-L. Liu (2011), Neutral winds and densities at the bottomside of the F layer from primary and secondary gravity waves from deep convection, in Aeronomy of the Earth’s Atmosphere and Ionosphere, pp. 131–139, Springer, New York.
Vadas, S., J. Yue, and T. Nakamura (2012), Mesospheric concentric gravity waves generated by multiple convective storms over the North American Great Plain, J. Geophys. Res., 117, D07113, doi:10.1029/2011JD017025.
Varney, R. H., M. C. Kelley, and E. Kudeki (2009), Observations of electric fields associated with internal gravity waves, J. Geophys. Res., 114, A02304, doi:10.1029/2008JA013733.
Wu, T.-W., J. D. Huba, J. Krall, D. C. Fritts, and B. Laughman (2015),Seeding equatorial spread F with turbulent gravity waves: Phasing effects, Geophys. Res. Lett., 42, 15–21,doi:10.1002/2014GL062348.
Wang, T.-S. (2001). Thermophysics characterization of kerosene combustion. Journal of Thermophysics and Heat Transfer, 15(2).
Walterscheid, R. L., and G. Schubert (1990), Nonlinear evolution of an upward propagating gravity wave: Overturning, convection, transience and turbulence, J. Atmos. Sci., 47(1), 101 – 125.
Walterscheid, R. L., J. H. Hecht, R. A. Vincent, I. M. Reid, J. Woithe, and M. P. Hickey (1999), Analysis and interpretation of airglow and radar observations of quasi-monochromatic gravity waves in the upper mesosphere and lower thermosphere over Adelaide, Australia, J. Atmos. Sol. Terr. Phys., 61, 461 – 478.
Xiao, Z., S.-G. Xiao, Y.-Q. Hao, and D.-H. Zhang (2007), Morphological features of ionospheric response to typhoon, J. Geophys. Res., 112,A04304, doi:10.1029/2006JA011671.
Yang, Y.-M., Garrison, J. L., & Lee, S.-C. (2012). Ionospheric disturbances observed coincident with the 2006 and 2009 North Korean underground nuclear tests. Geophysical Research Letters, 39, L02103. https://doi.org/10.1029/2011GL050428
Yeh, K. C., & Liu, C. H. (1974). Acoustic gravity waves in the upper atmosphere. Reviews of Geophysics , 12(2), 193– 216. https://doi.org/10.1029/RG012i002p00193
Yokoyama, T., D. L. Hysell, Y. Otsuka, and M. Yamamoto (2009), Three-dimensional simulation of the coupled Perkins and Es-layer instabilities in the nighttime midlatitude ionosphere, J. Geophys. Res., 114, A03308, doi:10.1029/2008JA013789.
Yue, J., S. L. Vadas, C.‐Y. She, T. Nakamura, S. C. Reising, H.‐L. Liu, P. Stamus, D. A. Krueger,W. Lyons, and T. Li (2009), Concentric gravity waves in the mesosphere generated by deep convective plumes in the lower atmosphere near Fort Collins, Colorado, J. Geophys. Res., 114, D06104, doi: 10.1029/2008JD011244.
Yue, J., She, C.‐Y., Nakamura, T., Harrell, S., & Yuan, T. (2010). Mesospheric bore formation from large‐scale gravity wave perturbations observed by collocated all‐sky OH imager and sodium lidar. Journal of Atmospheric and Solar‐Terrestrial Physics, 72, 7–18.
Yue, J., L. Hoffmann, and M. Joan Alexander (2013), Simultaneous observations of convective gravity waves from a ground-based airglow imager and the AIRS satellite experiment, J. Geophys. Res. Atmos.,118, 3178–3191, doi:10.1002/jgrd.50341.
Yue, J., S. D. Miller, L. Hoffmann, and W. C. Straka (2014), Stratospheric and mesospheric concentric gravity waves over Tropical Cyclone Mahasen: Joint AIRS and VIIRS satellite observations, J. Atmos. Sol. Terr. Phys.,119,83–90
Zhang, S.-R., Erickson, P. J., Goncharenko, L. P., Coster , A. J., Rideout, W., & Vierinen, J. (2017). Ionospheric bow waves and perturbations induced by the 21 August 2017 solar eclipse. Geophysical Research Letters, 44, 12,067–12,073. https://doi.org/10.1002/2017GL076054
Zettergren, M. D., J. B. Snively, A. Komjathy, and O. P. Verkhoglyadova (2017), Nonlinear ionospheric responses to large‐amplitude infrasonic‐acoustic waves generated by undersea earthquakes, J. Geophys. Res. Space Physics, 122, 2272–2291, doi:10.1002/2016JA023159.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-07-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-07-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw