進階搜尋


下載電子全文  
系統識別號 U0026-0407201721383000
論文名稱(中文) 製作覆蓋金奈米粒子的孔洞狀PDMS表面於表面增強拉曼散射之應用
論文名稱(英文) Arrays of hierarchical porous PDMS structures covered with Au nanoparticles for SERS application
校院名稱 成功大學
系所名稱(中) 化學系
系所名稱(英) Department of Chemistry
學年度 105
學期 2
出版年 106
研究生(中文) 李文琇
研究生(英文) Wen-Hsiu Lee
學號 L36044090
學位類別 碩士
語文別 中文
論文頁數 65頁
口試委員 指導教授-李介仁
口試委員-廖尉斯
口試委員-詹揚翔
中文關鍵字 奈米球微影  表面增強拉曼散射  多重檢測  原子力顯微鏡 
英文關鍵字 particle lithography  SERS  multiplex detection  AFM 
學科別分類
中文摘要 表面增強拉曼散射是一種靈敏且運用廣泛的一種分析技術,但是如何利用簡單不複雜與低成本的方法製作出高穩定的表面增強拉曼散射基板是一大挑戰。在本研究中,藉由緊密堆積的奈米球作為模板,提供PDMS在轉印過程後具有規則排列的奈米洞,接著與氯金酸反應,在PDMS孔洞表面形成金奈米粒子,此表面即可作為表面增強拉曼散射基板,並且對於4-胺基苯硫酚、4-硝基苯硫酚與4-甲氧基苯硫酚等硫醇分子具有訊號號增強的效果。此方法有許多優點:第一,在任何實驗室皆可操作,不須任何昂貴的大型儀器;第二,簡單地生產出表面增強拉曼散射基板;第三,由於從單一奈米球翻模,可以得到奈米等級的表面結構;第四,可以大面積的產出。吸附在基板上的分析物,其拉曼散射的訊號強度,對於帶有金奈米粒子的PDMS表面粗糙度有很強的關係,因此藉著改變奈米球的大小,發現表面粗糙度會隨著孔洞直徑變大而增加。最後利用此孔洞狀PDMS表面增強拉曼散射基板一次偵測到多種硫醇分子訊號,因此有潛力可以做為多重檢測的介面。
英文摘要 Surface-enhanced Raman scattering (SERS) has become a powerful and widely used analytical technique, due to its improved sensitivity. However, it is challenging to prepare highly stable SERS-active substrates using less complicated and low-cost fabrication processes. Here, we present a pattern transfer approach to fabricate PDMS-based SERS-active gold substrates with periodic nanopores. Arrays of close-packed nanospheres serve as templates to provide well-organized nanopores on PDMS substrates during the pattern transfer process. The surface of periodic nanostructured PDMS substrates can be further decorated with gold nanoparticle coating to serve as SERS substrates, which was demonstrated by significant enhancement in the 4-aminothiophenol (4-ATP), 4-nitrothiophenol (4-NTP) and 4-methoxythiophenol (4-MOTP) SERS reporter signals. This method has the following intrinsic advantages: (a) simplicity of use in any laboratory environment; (b) generic production of SERS substrates; (c) high nanostructure fidelity because of monodispersed nanoparticles used as templates; and (d) high throughput. The SERS intensities of reporters adsorbed on theses substrates strongly depend on surface roughness of hierarchical PDMS-AuNPs structures. The roughness of SERS surface increases with pore diameters. The porous PDMS covered with Au nanoparticles also have the capability of multiplex detection.
論文目次 圖目錄 1
第一章、緒論 5
1.1拉曼光譜 5
1.2表面增強拉曼散射(Surface-Enhanced Raman Scattering,SERS) 6
1.3表面增強拉曼散射之基板(SERS substrate) 7
1.4原子力顯微鏡(Atomic Force Microscopy,AFM) 11
第二章、製作鑲嵌金奈米粒子的孔洞狀PDMS表面於表面增強拉曼散射之應用 13
2.1前言 13
2.2實驗部分 15
2.2.1儀器 15
2.2.2藥品 15
2.2.3步驟 17
2.3結果與討論 20
2.3.1聚苯乙烯奈米粒子模板 20
2.3.2具規則奈米結構之孔洞狀PDMS 23
2.3.3鑲嵌金奈米粒子之孔洞狀PDMS 26
2.3.4沉積金奈米粒子之孔洞狀PDMS的UV-Vis光譜 28
2.3.5偵測硫醇分子之拉曼光譜 28
2.4結論 49
第三章、合成具螢光之單層硫醇修飾金奈米粒子 50
3.1前言 50
3.2實驗部分 51
3.2.1儀器 51
3.2.2藥品 51
3.2.3步驟 52
3.3結果與討論 53
3.3.1 UV-Vis光譜 53
3.3.2螢光光譜 55
3.3.3 IR光譜 57
3.3.4 TEM圖 58
3.4結論 62
參考資料 63

參考文獻 1. Raman spectroscopy - Wikipedia. https://en.wikipedia.org/wiki/Raman_spectroscopy.
2. Spectroscopy Facilities - The Prashant Kamat lab at the University of Notre Dame. https://www3.nd.edu/~kamatlab/facilities_spectroscopy.html.
3. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters 1974, 26, 163-166.
4. Jeanmaire, D. L.; Van Duyne, R. P., Surface raman spectroelectrochemistry. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1977, 84, 1-20.
5. Albrecht, M. G.; Creighton, J. A., Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the American Chemical Society 1977, 99, 5215-5217.
6. Stiles, P. L.; Dieringer, J. A.; Shah, N. C.; Van Duyne, R. P., Surface-enhanced Raman spectroscopy. Annu Rev Anal Chem (Palo Alto Calif) 2008, 1, 601-26.
7. BIG Physics for small Science — FromTheLabBench. http://www.scilogs.com/from_the_lab_bench/big-physics-for-small-science/.
8. Campion, A.; Kambhampati, P., Surface-enhanced Raman scattering. Chemical Society Reviews 1998, 27, 241.
9. Lee, H. K.; Lee, Y. H.; Zhang, Q.; Phang, I. Y.; Tan, J. M.; Cui, Y.; Ling, X. Y., Superhydrophobic surface-enhanced Raman scattering platform fabricated by assembly of Ag nanocubes for trace molecular sensing. ACS Appl Mater Interfaces 2013, 5, 11409-18.
10. Langmuir, Langmuir-Blodgett, Langmuir-Schaefer Technique - Biolin Scientific. http://www.biolinscientific.com/technology/l-lb-ls-technique/.
11. Hu, X.; Meng, G.; Huang, Q.; Xu, W.; Han, F.; Sun, K.; Xu, Q.; Wang, Z., Large-scale homogeneously distributed Ag-NPs with sub-10 nm gaps assembled on a two-layered honeycomb-like TiO2 film as sensitive and reproducible SERS substrates. Nanotechnology 2012, 23, 385705.
12. Yu, Q.; Guan, P.; Qin, D.; Golden, G.; Wallace, P. M., Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Lett 2008, 8, 1923-8.
13. Kahl, M.; Voges, E.; Kostrewa, S.; Viets, C.; Hill, W., Periodically structured metallic substrates for SERS. Sensors and Actuators B: Chemical 1998, 51, 285-291.
14. Hu, M.; Ou, F. S.; Wu, W.; Naumov, I.; Li, X.; Bratkovsky, A. M.; Williams, R. S.; Li, Z., Gold nanofingers for molecule trapping and detection. J Am Chem Soc 2010, 132, 12820-2.
15. Ou, F. S.; Hu, M.; Naumov, I.; Kim, A.; Wu, W.; Bratkovsky, A. M.; Li, X.; Williams, R. S.; Li, Z., Hot-spot engineering in polygonal nanofinger assemblies for surface enhanced Raman spectroscopy. Nano Lett 2011, 11, 2538-42.
16. Marquestaut, N.; Martin, A.; Talaga, D.; Servant, L.; Ravaine, S.; Reculusa, S.; Bassani, D. M.; Gillies, E.; Lagugne-Labarthet, F., Raman enhancement of azobenzene monolayers on substrates prepared by Langmuir-Blodgett deposition and electron-beam lithography techniques. Langmuir 2008, 24, 11313-21.
17. Haynes, C. L.; Van Duyne, R. P., Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics. The Journal of Physical Chemistry B 2001, 105, 5599-5611.
18. Maver, U.; Velnar, T.; Gaberscek, M.; Planinsek, O.; Finsgar, M., Recent progressive use of atomic force microscopy in biomedical applications. TrAC Trends in Analytical Chemistry 2016, 80, 96-111.
19. Bone Biology and Mechanics Lab_ BBML. http://www.iupui.edu/~bbml/afmintro.html.
20. AFM_contact_ICM_and_NCM. https://en.wikibooks.org/wiki/Nanotechnology/AFM#/media/File:AFM_contact_ICM_and_NCM.jpg.
21. Lisensky, G. C.; Campbell, D. J.; Beckman, K. J.; Calderon, C. E.; Doolan, P. W.; Rebecca, M. O.; Ellis, A. B., Replication and Compression of Surface Structures with Polydimethylsiloxane Elastomer. Journal of Chemical Education 1999, 76, 537.
22. Zhang, Q.; Xu, J. J.; Liu, Y.; Chen, H. Y., In-situ synthesis of poly(dimethylsiloxane)-gold nanoparticles composite films and its application in microfluidic systems. Lab Chip 2008, 8, 352-7.
23. Lee, C.; Robertson, C. S.; Nguyen, A. H.; Kahraman, M.; Wachsmann-Hogiu, S., Thickness of a metallic film, in addition to its roughness, plays a significant role in SERS activity. Sci Rep 2015, 5, 11644.
24. He, L.; Chen, X.; Mu, Y.; Song, F.; Han, M., Two-dimensional gradient Ag nanoparticle assemblies: multiscale fabrication and SERS applications. Nanotechnology 2010, 21, 495601.
25. Li, P.; Ma, B.; Yang, L.; Liu, J., Hybrid single nanoreactor for in situ SERS monitoring of plasmon-driven and small Au nanoparticles catalyzed reactions. Chem Commun (Camb) 2015, 51, 11394-7.
26. Sun, M.; Xu, H., A novel application of plasmonics: plasmon-driven surface-catalyzed reactions. Small 2012, 8, 2777-86.
27. Qian, D.-J.; Nakamura, C.; Ishida, T.; Wenk, S.-O.; Wakayama, T.; Takeda, S.; Miyake, J., Palladium-Mediated Stepwise Assembly of Three-Dimensional Organized Multiporphyrin Arrays Directly on Solid Substrates. Langmuir 2002, 18, 10237-10242.
28. Hostetler, M. J.; Wingate, J. E.; Zhong, C.-J.; Harris, J. E.; Vachet, R. W.; Clark, M. R.; Londono, J. D.; Green, S. J.; Stokes, J. J.; Wignall, G. D.; Glish, G. L.; Porter, M. D.; Evans, N. D.; Murray, R. W., Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm: Core and Monolayer Properties as a Function of Core Size. Langmuir 1998, 14, 17-30.
29. Hostetler, M. J.; Stokes, J. J.; Murray, R. W., Infrared Spectroscopy of Three-Dimensional Self-Assembled Monolayers: N-Alkanethiolate Monolayers on Gold Cluster Compounds. Langmuir 1996, 12, 3604-3612.
30. Lusker, K. L.; Li, J. R.; Garno, J. C., Nanostructures of functionalized gold nanoparticles prepared by particle lithography with organosilanes. Langmuir 2011, 27, 13269-75.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw