
系統識別號 
U00260407201022103200 
論文名稱(中文) 
應用於Ku 至 Ka 頻段之寬頻、微小化平衡式頻率轉換電路之研製 
論文名稱(英文) 
Broadband Miniaturized Balancedtype Frequency Conversion Circuits for Ku to Kaband Applications 
校院名稱 
成功大學 
系所名稱(中) 
微電子工程研究所碩博士班 
系所名稱(英) 
Institute of Microelectronics 
學年度 
98 
學期 
2 
出版年 
99 
研究生(中文) 
賴昱安 
研究生(英文) 
YuAnn Lai 
學號 
q1895135 
學位類別 
博士 
語文別 
英文 
論文頁數 
177頁 
口試委員 
口試委員荊鳳德 口試委員王是琦 指導教授王永和 口試委員盧春林 口試委員邱煥凱 口試委員孟慶宗 口試委員洪茂峰 口試委員蔡俊輝 口試委員張全生

中文關鍵字 
頻率轉換電路
平衡式
90度混成器
混頻器
次諧波混頻器
倍頻器
馬遜巴倫
三路功率分配器
雙180度混成器

英文關鍵字 
Frequency conversion circuits
Balancedtype
Quadrature hybrid
Mixer
Subharmonic mixer (SHM)
Doubler
Marchand Balun
Threeway power divider
Dual 180° hybrid

學科別分類 

中文摘要 
本論文主要是探討平衡式頻率轉換電路，含括混頻器、次諧波混頻器與倍頻器，其研究方向著重於發展寬頻、微小化之新穎電路架構。
在混頻器方面，電路設計包含單平衡式與雙平衡式混頻器。在單平衡混頻器的研究中，本論文提出新型90度的混成器，並藉此來縮小單平衡混頻器之面積。在雙平衡式混頻器的研究中，本論文設計出三個新型180度混成器，應用於製作雙平衡式混頻器;而上述之雙平衡式混頻器皆具寬頻、面積微小化與中頻訊號取出容易之特性。
由於高頻高輸出功率的本地振盪器製作困難，以致混頻器常採用兩種頻率轉換電路來解決之。第一種解決方式是採用次諧波混頻器，第二種解決方式是採用倍頻器。在次諧波混頻器的研究上，採用一方向耦合器將射頻訊號與本地訊號結合輸入至反並聯式配對二極體，除了其本身寬頻特性以外，也具有阻抗轉換功能，使得射頻訊號、本地訊號與二極體匹配容易，利於電路設計上更加彈性。另外，亦有次諧波混頻器使用補償電容方式來縮小馬遜巴倫(Marchand Balun)面積，並結合平衡式架構，此一設計不僅提高埠際隔離度，並可達到微小化的目的。
第二種方式為採用倍頻器。首先設計一個新的180度混成器來實現平衡式主動倍頻器，其特點是利用多重耦合線來改善插入損失與頻寬。另一方面，為了改善增益擾動與諧波抑制能力，本論文亦使用微小化巴倫電路整合帶拒濾波器與偏壓電路來實現雙平衡式被動倍頻器。亦有單平衡式被動倍頻器採用補償電容方式來縮小巴倫面積，此一設計具有良好的基頻抑制能力與精簡尺寸。
最後，本論文亦討論新式混頻器與被動電路。混頻器方面，本論文提出兩個利用新穎混頻機制來設計的混頻器，利用特定的相位機制可產生所需的中頻電流並可以簡化電路佈局。被動電路方面，本論文提出運用多重耦合線來設計雙180度混成器與三路功率分配器，結合多重耦合線特性即可解決傳統三路功率分配器需要立體結構之缺點；而多重耦合線特性亦可解決傳統雙馬遜巴倫應用於電路時的不便性。由實作的成果可知多重耦合線的應用促使雙180度混成器與三路功率分配器具有良好的反射損失及等功率分配，並提供靈活的佈局性，有助於射頻電路的製作與整合。

英文摘要 
This research focuses on the development of miniaturized balancedtype frequency conversion circuits, which include mixers, subharmonic mixers, and doublers.
In studies on mixers, several novel design concepts were proposed to improve operation bandwidth and circuit structure. In the singlebalanced configuration, a novel quadrature hybrid is developed to reduce chip size. Three novel configurations were applied to simplify the circuit structure and reduce the chip area, using the conventional double balanced mixer as basis. These configurations are also suitable for extracting IF signals more conveniently, as well as maintaining superior porttoport isolations.
Realizing high output power oscillators that operate at a high frequency band is difficult; thus, two methods are used to avoid fundamental mixers using a high frequency and high power oscillator. The first method adopts a subharmonic mixer (SHM). In studies on SHM, a novel SHM with an antiparallel diode pair was developed. This mixer employs a directional coupler to provide impedance transformation among the diode and RF/LO ports; hence, the SHM becomes more compact and flexible. Based on the advantages of balanced topology and the compensative capacitor method, a single balanced SHM is also proposed. The compact chip size demonstrates satisfactory porttoport isolation.
The other method adopts s frequency doubler. In research on balanced doublers, a novel active doubler was developed. This doubler employs a new 180° hybrid, which adopts the multicoupler line structure to reduce insertion/return loss and chip size. To solve the problem of gain swing, the doubler adopts a bias circuit to improve conversion efficiency, and uses two bandreject filters to enhance the harmonics rejection performance, as well. In addition, a single balanced doubler is proposed, which adopts the coupler line to compensate the capacitor to reduce the chip size, and demonstrates the good performance.
Finally, two novel mixers and passive circuits are discussed in this dissertation. Based on the new phase relationships, these mixers can obtain the desirable IF current and miniature chip area. In research on passive circuits, the proposed threeway power divider was realized using multicoupled line technology, which is applied to avoid the 3dimentional structure in the conventional threeway power divider. Moreover, a dual 180° hybrid adopts the multicoupled line for the flexibility of output ports; hence, the complex layout is eliminated while the dual Marchand balun is applied to the balanced RF circuits.

論文目次 
ABSTRACT (Chinese)....................................I
ABSTRACT (English)....................................III
ACKNOWLEDGMENT.................................V
CONTENTS.........................................VII
FIGURE CAPTIONS......................................XI
TABLE CAPTIONS......................................XVI
CHAPTER 1 Introduction
1.1 Background and Motivation.......................1
1.2 Literature Survey..............................2
1.3 Contributions...................................5
1.4 Organization of the Dissertation.....................7
1.5 References.....................................10
CHAPTER 2 Broadband Miniaturized Singleand DoubleBalanced Mixers
2.1 Introduction.................................15
2.1.1 Fundamental Principles and Parameters of Diode Mixers...15
2.1.2 Motivation....................................20
2.2 2840 GHz Single Balanced Mixer with Novel Quadrature Hybrid...22
2.2.1 Design Purpose for Single Balanced Mixer.........22
2.2.2 Mixer Design Concept............................24
2.2.3 Circuit Implementation and Results.................26
2.3 2940 GHz Double Balanced Star Mixer...................29
2.3.1 Design Purpose of the Star DBM....................29
2.3.2 Circuit Configuration and Analysis..................30
2.3.3 Circuit Implementation...........................32
2.3.4 Circuit Performance...............................33
2.4 1334 GHz Compact Double Balanced Star Mixer............35
2.4.1 The Purpose of the Compact Star DBM..................35
2.4.2 Design of the Compact Star DBM Configuration.........35
2.4.3 Circuit Implementation...........................37
2.4.4 Circuit Performance...............................38
2.5 1734 GHz Broadband Miniaturized Star Double Balanced Mixer...................40
2.5.1 The Purpose of the Broadband Miniaturized Star DBM........40
2.5.2 Design of the Broadband Miniaturized Star DBM.........40
2.5.3 Circuit Implementation...........................55
2.5.4 Circuit Performance...............................55
2.6 Comparison with Reported Balancedtype Mixers.........57
2.7 Summary......................................58
2.8 References.....................................60
CHAPTER 3 Subharmonic Mixers
3.1 Introduction......................................63
3.1.1 Fundamental Principles of the AntiParallel Diode Pair......63
3.1.2 Motivation....................................65
3.2 2337 GHz Miniature Subharmonic Mixer...............66
3.2.1 Circuit Design................................66
3.2.2 Circuit Implementation and Measured Results.........67
3.3 3040 GHz Miniature Single Balanced Subharmonic Mixer......72
3.3.1 Circuit Design and Analysis........................72
3.3.2 Single Balanced SHM Measured Results...............79
3.4 Summary....................................81
3.5 References....................................82
CHAPTER 4 Miniaturized Singleand DoubleBalanced Doubler
4.1 Introduction....................................85
4.1.1 Fundamental Principles and Parameters of Balanced Doublers......86
4.1.2 Motivation....................................89
4.2 2326 GHz Active Balanced Doubler.................91
4.2.1 Circuit Design................................91
4.2.2 Circuit Implementation and Measured Results.........95
4.3 2537 GHz Compact Double Balanced Doubler............97
4.3.1 Circuit Design and Implementation...............97
4.3.2 Experimental Results............................101
4.4 2044 GHz Compact Single Balanced Doubler............104
4.4.1 Circuit Design and Analysis........................104
4.4.2 2044 GHz Single Balanced Doubler Results.........110
4.5 Summary......................................113
4.6 References.....................................114
CHAPTER 5 Conclusions and Future Works
5.1 Conclusions....................................118
5.2 Future Works.......................................120
APPENDIX Balancedlike Mixer & Passive Circuits
A Introduction to Balancedlike Mixer..................122
A.1 2638 GHz Balancedlike Mixer Based on Lange Couplers........124
A.1.1 Circuit Design and Configuration.................124
A.1.2 Circuit Implementation.....................127
A.1.3 Mixer Performance.................................127
A.2 A New Type of Compact and Wideband Balancedlike Mixer based on Quadrature Hybrids................130
A.2.1 New Phase Relationship for the Balancedlike Mixers......130
A.2.2 Mixer Design Methodology and Implementation.........142
A.2.3 Mixer Performance................................142
A.3 Comparison with Microwave and Millimeterwave Mixers.........150
B Introduction to Threeway Power Divider..................151
B.1 Design of the Threeway Power Divider...............152
B.2 Implementation and Results.....................156
C Introduction to Dual 180° Hybrid........................158
C.1 Design of the Dual 180° Hybrid.......................160
C.2 Dual 180° Hybrid Implementation and Results............162
D Summary.........................................166
E References......................................168
PUBLICATION LIST....................................174
VITA...............................................177

參考文獻 
CHAPTER 1
[1] I. D. Robertson, and S. Lucyszyn, RFIC and MMIC Design and Technology. The Institute of Electrical Engineers, London, United Kingdom, 2001.
[2] I. Bahl, and P. Bhartia, Microwave solid state circuit design, WileyInterscience, 2003.
[3] S. E. Gunnarsson, C. Kärnfelt, H. Zirath, R. Kozhuharov, D. Kuylenstierna, A. Alping, and C. Fager, “Highly integrated 60 GHz transmitter and receiver MMICs in a GaAs pHEMT technology,” IEEE J. SolidState Circuits, vol. 40, no. 11, pp. 21742186, Nov. 2005.
[4] M. T. Faber, J. Chramiec, and M. E. Adamski, Microwave and MillimeterWave Diode Frequency Multipliers. Boston, MA: Artech House, 1995.
[5] K. W. Hamed, A. P. Freundorfer and Y. M. M. Antar, “A monolithic doublebalanced direct conversion mixer with an integrated wideband passive balun,” IEEE J. SolidState Circuits, vol. 40, pp. 622, Mar. 2005.
[6] S. A. Maas, Microwave Mixers, 2nd ed. Norwood, MA: Artech House, 1993.
[7] C. M. Lin, C. H. Lin, J. C. Chiu and Y. H. Wang “An ultrabroadband doubly balanced monolithic ring mixer for Ku to Kaband applications,” IEEE Microw. Wireless Compon. Lett., vol. 17, pp. 733, Oct. 2007.
[8] C. H. Lin, J. C. Chiu, C. M Lin, Y. A. Lai and Y. H. Wang, “A variable conversion gain star mixer for KaBand applications,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 11, pp. 802804, Nov. 2007.
[9] K. W. Kobayashi, R. Kasody, A. K. Oki, S. Dow, B. Allen, and D. C. Streit, “KBand double balanced mixer using GaAs HBT THz Schottky diodes,” in IEEE MTTS Int. Microw. Symp.Dig, 1994, pp. 1163 1166.
[10] S. S. Kim, J. H. Lee and K. W. Yeom, “A novel planar dual balun for doubly balanced star mixer,” IEEE Microw. Wireless Compon. Lett., vol. 14, no.9, pp. 440442, Sep. 2004.
[11] M. Yu, and R. H. Walden, A. E. Schmitz, and M. Lui, “Ka/Qband doubly balanced MMIC mixers with low LO power,” IEEE Microw. Guided Wave Lett., vol. 10, no. 10, pp.424426, Oct. 2000.
[12] T. Y. Yang, W. R. Lien, C. C. Yang and H. K. Chiou, “A compact VBand star mixer using compensated overlay capacitors in dual baluns,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 537539, July. 2007.
[13] K. W. Yeom and D. H. Ko, “A novel 60GHz monolithic star mixer using gatedrainconnected pHEMT diodes,” IEEE Trans. Microw. Theory Tech., vol. MTT53, no. 7, pp. 24352440, July. 2005.
[14] C. M. Lin, H. K. Lin, C. F. Lin, Y. A. Lai, C. H. Lin and Y. H. Wang, “A 1644 GHz Compact Doubly Balanced Monolithic Ring Mixer,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 620622, Sep. 2008.
[15] C. J. Trantanella, “Ultrasmall MMIC mixers for K and Kaband communications,” in IEEE MTTS Int. Microw. Symp. Dig., vol. 2, pp. 647650, 2000.
[16] M. Cohn, J. E. Degenford, and B. A. Newman, “Harmonic mixing with an antiparallel diode pair,” IEEE Trans. Microwave Theory Tech., vol. MTT23, no.8, pp. 667673, Aug. 1975.
[17] K. Itoh, A. Iida, Y. Sasaki, and S. Urasaki, “A 40 GHz band monolithic even harmonic mixer with an antiparallel diode pair,’’ in IEEE MTTS Int. Microw. Symp. Dig., vol. 2, 1991, p. 879882.
[18] S. Raman, F. Rucky, and G. M. Rebeiz, “A highperformance WBand uniplanar subharmonic mixer,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 6, pp. 955–962, Jun. 1997.
[19] M. W. Chapman and S. Raman, “A 60GHz uniplanar MMIC 4X subharmonic mixer,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 11, pp. 2580–2588, Nov. 2002.
[20] K. Kanaya, K. Kawakami, T. Hisaka, T. Ishikawa, and S. Sakamoto, “A 94 GHz high performance quadruple subharmonic mixer MMIC,” in IEEE MTTS Int. Microw. Symp. Dig., Jun. 2002, vol. 2, pp. 1249–1252.
[21] W. Y. Uhm, W. S. Sul, H. J. Han, S. C. Kim, H. S. Lee, D. An, S. D. Kim, D. H. Shin, H. M. Park, and J. K. Rhee, “A high performance vband monolithic quadruple subharmonic mixer,” in IEEE MTTS Int. Microw. Symp. Dig., Jun. 2003, vol. 2, pp. 1319–1322.
[22] S. Sarkar, P. Sen, S. Pinel, C. H. Lee, and J. Laskar, “Sibased 60GHz 2X subharmonic mixer for multigigabit wireless personal area network application,” in IEEE MTTS Int. Microw. Symp. Dig., Jun. 2006, pp. 1830–1833.
[23] C. H. Lin, Y. A. Lai, J. C. Chiu, and Y. H. Wang, “A 23–37 GHz miniature MMIC subharmonic mixer,” IEEE Microw. Wireless Compon. Lett., vol.17, no.9, pp. 679681, Sep. 2007.
[24] C. M. Lin, H. K. Lin, Y. A. Lai, C. P. Chang, and Y. H. Wang, “A 10–40 GHz broadband subharmonic monolithic mixer in 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 9597,Feb. 2009.
[25] H. Zirath, I. Angelov, and N. Rorsman, “A millimeterwave subharmonically pumped resistive mixer based on a heterostructure field effect transistor technology,” in IEEE MTTS Int. Microw. Symp. Dig., 1992, pp. 599–602.
[26] K. S. Ang, A. H. Baree, S. Nam, and I. D. Robertson, “A millimeterwave monolithic subharmonically pumped resistive mixer,” in Proc. Asia Pacific Microw. Conf., 1999, pp. 222–225
[27] M. F. Lei, P. S. Wu, T. W. Huang, and H. Wang, “Design and analysis of miniature Wband MMIC subharmonically pumped resistive mixer,” in IEEE MTTS Int. Microw. Symp. Dig., 2004, pp. 235–238.
[28] J. J. Hung, T. M. Hancock, and G. M. Rebeiz, “A 77 GHz SiGe subharmonic balanced mixer,” IEEE J. SolidState Circuits, vol. 40, no. 11, pp. 2167–2173, Nov. 2005.
[29] M. Bao, H. Jacobsson, L. Aspemyr, G. Carchon, and X. Sun, “A 931GHz subharmonic passive mixer in 90nm CMOS technology,” IEEE J. SolidState Circuits, vol. 41, no. 10, pp. 2257–2264, Oct. 2006.
[30] B. R. Jackson and C. E. Saavedra, “A CMOS Kuband 4x subharmonic mixer,” IEEE J. SolidState Circuits, vol. 43, no. 6, pp. 1351–1359, Jun. 2008.
[31] J. J. Hung, Timothy M. Hancock and Gabriel M. Rebeiz, “HighPower HighEfficiency SiGe Ku and KaBand Balanced Frequency Doublers,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 754761, Feb. 2005.
[32] C. C. Weng, Z. M. Tsai, and H. Wang, “A Kband miniature, broadband, high output power HBT MMIC balanced doubler with integrated balun,” in IEEE Euro. Microw. Conf. Dig., vol. 3, pp. 13, Oct. 2005.
[33] D. W. Kang, D. H. Baek, S. H. Jeon, J. W. Park, and Songcheol Hong, “A miniaturized Kband balanced frequency doubler using InGaP HBT technology,” in IEEE MTTS Int. Microwave Symp. Dig., vol.1, pp. 107110, Jun. 2003.
[34] Rizwan Murji and M. Jamal Deen, “A LowPower Wideband Frequency Doubler in 0.18μm CMOS,” in IEEE Int. Symposium on Circuits and Systems ISCAS., vol.5, pp. 43534356, May 2005.
[35] V. Puyal, A. Konczykowska, P. Nouet, S. Bernard, S. Blayac, F. Jorge, M. Riet, and J. Godin, “DC–100GHz frequency doublers in InP DHBT technology,” IEEE Trans. Microwave Theory Tech., vol.53, no. 4, pp. 13381344, Apr. 2005.
[36] S. Hackl and J. Bock, “42 GHz active frequency doubler in SiGe Bipolar technology,” in IEEE Int. Conference on Microwave and Millimeter Wave Technology Proceedings ICMMT., pp. 5457, Aug. 2002.
[37] T. Y. Yang, and H. K. Chiou, “A 2575 GHz miniature doubler balanced frequency doubler in 0.18μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 275277, Apr. 2008.
[38] C. S. Lin, P. S. Wu, M. C. Yeh, J. S. Fu, H. Y. Chang, K. Y. Lin, and H. Wang, “Analysis of multiconductor coupledline Marchand baluns for miniature MMIC design,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 6, pp. 1190–1199, Jun. 2007.
[39] S. A. Maas and Y. Ryu, “A broadband, planar, monolithic resistive frequency doubler,” in IEEE MTTS Int. Dig., pp. 443–446, 1994.
[40] B. Piernas, H. Hayashi, K. Nishikawa, K. Kamogawa, and T. Nakagawa, “A broadband and miniatures Vband PHEMT frequency doubler,” IEEE Microw. Guided Wave Lett., vol.10, pp. 276278, July 2000.
[41] Y. CamposRoca, L. Verweyen, M. FernandezBarciela, W. Bischof, M.C. CurrasFrancos, E. Sanchez, A. Hulsmann, and M. Schlechtweg, “38/76 GHz PHEMT MMIC balance frequency doublers in coplanar technology,” IEEE Microw. Guided Wave Lett., vol. 10, no. 11, pp. 484487, Nov. 2000.
[42] K. Nishikawa, B. Piernas, T. Nakagawa, and K. Araki, “Miniaturized and broadband Vband balanced frequency doubler for highly integrated 3D MMIC,” in IEEE MTTS Int. Dig., vol. 1, pp.351–354, Jun. 2002.
CHAPTER 2
[1] S. E. Gunnarsson, C. Kärnfelt, H. Zirath, R. Kozhuharov, D. Kuylenstierna, A. Alping, and C. Fager, “Highly integrated 60 GHz transmitter and receiver MMICs in a GaAs pHEMT technology,” IEEE J. SolidState Circuits, vol. 40, no. 11, pp. 21742186, Nov. 2005.
[2] K. W. Hamed , A. P. Freundorfer and Y. M. M. Antar, “A monolithic doublebalanced direct conversion mixer with an integrated wideband passive balun,” IEEE J. SolidState Circuits, vol. 40, no. 3, pp. 622629, Mar. 2005.
[3] C. M. Lin, C. H. Lin, J. C. Chiu and Y. H. Wang, “An ultrabroadband doubly balanced monolithic ring mixer for Ku to Kaband applications,” IEEE Microw. Wireless Compon. Lett., vol. 17, pp. 733735, Oct. 2007.
[4] C. H. Lin, J. C. Chiu, C. M Lin, Y. A. Lai and Y. H. Wang, “A variable conversion gain star mixer for KaBand applications,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 11, pp. 802804, Nov. 2007.
[5] S. A. Maas and K.W Chang, “A broadband, planar, doubly balanced monolithic Kaband diode mixer,” IEEE Trans. Microw. Theory Tech., vol. MTT41, no. 12, pp. 23302335, Dec. 1993.
[6] S. S. Kim, J. H. Lee and K. W. Yeom, “A novel planar dual balun for doubly balanced star mixer,” IEEE Microw. Wireless Compon. Lett., vol. 14, no.9, pp. 440442, Sep. 2004.
[7] T. Y. Yang, W. R. Lien, C. C. Yang and H. K. Chiou, “A compact VBand star mixer using compensated overlay capacitors in dual baluns,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 537539, July. 2007.
[8] K. W. Yeom and D. H. Ko, “A novel 60GHz monolithic star mixer using gatedrainconnected pHEMT diodes,” IEEE Trans. Microw. Theory Tech., vol. MTT53, no. 7, pp. 24352440, July. 2005.
[9] C. M. Lin, H. K. Lin, C. F. Lin, Y. A. Lai, C. H. Lin and Y. H. Wang, “A 1644 GHz Compact Doubly Balanced Monolithic Ring Mixer,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 620622, Sep. 2008.
[10] C. J. Trantanella, “Ultrasmall MMIC mixers for K and Kaband communications,” in IEEE MTTS Int. Microw. Symp. Dig., vol. 2, pp. 647650, 2000.
[11] D. Kuylenstierna, S. E. Gunnarsson, and H. Zirath, “Lumped element quadrature power splitters using mixed right/lefthanded transmission lines,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 8, pp. 26162621, Aug. 2005.
[12] W. S. Tung, H. H. Wu, and Y. C. Chiang, “Design of microwave wideband quadrature hybrid using planar transformer coupling method,” IEEE Trans. Microw. Theory Tech., vol. MTT51, no. 7, pp. 18521856, Jul. 2003.
[13] A. P. M. Maas and J. A. Hoogland, “60 GHz GaAs MMIC mixers with integrated LO buffer,” in European Gallium Arsenide and Other Semiconductor Application Symposium, Paris, pp. 465468, Oct. 2005.
[14] J. A. Hou and Y. H. Wang, “A compact quadrature hybrid based on highpass and lowpass lumped elements,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 8, pp. 595597, Aug. 2007.
[15] M. Yu, and R. H. Walden, A. E. Schmitz, and M. Lui, “Ka/Qband doubly balanced MMIC mixers with low LO power,” IEEE Microw. Guided Wave Lett., vol. 10, no. 10, pp.424426, Oct. 2000.
[16] T. Y. Yang, W. R. Lien, C. C. Yang and H. K. Chiou, “A compact VBand star mixer using compensated overlay capacitors in dual baluns,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 537539, July. 2007.
[17] K. W. Yeom and D. H. Ko, “A novel 60GHz monolithic star mixer using gatedrainconnected pHEMT diodes,” IEEE Trans. Microw. Theory Tech., vol. MTT53, no. 7, pp. 24352440, July. 2005.
[18] C. M. Lin, H. K. Lin, C. F. Lin, Y. A. Lai, C. H. Lin and Y. H. Wang, “A 1644 GHz Compact Doubly Balanced Monolithic Ring Mixer,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 620622, Sep. 2008.
[19] L. Verweyen, H. Massler, M. Neumann, U. Schaper, and W. H. Haydl, “Coplanar integrated mixers for 77GHz automotive applications,” IEEE Microw. Guided Wave Lett., vol. 8, pp. 3840, Jan. 1998.
CHAPTER 3
[1] M. Cohn, James E. Degenford, Burton A. Newman, “Harmonic mixing with an antiparallel diode pair,” IEEE Trans. Microw. Theory and Tech., vol. 2, pp. 7176, May 1978.
[2] S. A. Maas, Microwave Mixers, 2nd ed. Norwood, MA: Artech House, 1993.
[3] A. Madjar, “A novel general approach for the optimum design of microwave and millimeter wave subharmonic mixers,” IEEE Trans. Microw. Theory and Tech., vol. 44, pp. 19971999, Nov. 1996.
[4] R. G. Hicks and P. J. Khan, “Numerical Analysis of Subharmonic Mixers Using Accurate and Approximate Models,” IEEE Trans. Microw. Theory and Tech., vol. 30, pp. 21132120, Dec. 1982.
[5] S. Raman, F. Rucky, and G. M. Rebeiz, “A highperformance WBand uniplanar subharmonic mixer,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 6, pp. 955–962, Jun. 1997.
[6] S. Sarkar, P. Sen, S. Pinel, C. H. Lee, and J. Laskar, “Sibased 60GHz 2X subharmonic mixer for multigigabit wireless personal area network application,” in IEEE MTTS Int. Microw. Symp. Dig., pp. 1830–1833, Jun. 2006
[7] H. Zirath, I. Angelov, and N. Rorsman, “A millimeterwave subharmonically pumped resistive mixer based on a heterostructure field effect transistor technology,” in IEEE MTTS Int. Microw. Symp. Dig., pp. 599–602, 1992.
[8] K. S. Ang, A. H. Baree, S. Nam, and I. D. Robertson, “A millimeterwave monolithic subharmonically pumped resistive mixer,” in Proc. Asia Pacific Microw. Conf., pp. 222–225, 1999.
[9] M. Bao, H. Jacobsson, L. Aspemyr, G. Carchon, and X. Sun, “A 931GHz subharmonic passive mixer in 90nm CMOS technology,” IEEE J. SolidState Circuits, vol. 41, no. 10, pp. 2257–2264, Oct. 2006.
[10] K. Itoh, A. Iida, Y. Sasaki, and S. Urasaki, “A 40 GHz band monolithic even harmonic mixer with an antiparallel diode pair,’’ in IEEE MTTS Int. Dig., vol. 2, pp. 879882, 1991.
[11] K. L. Deng, Y. B. Wu, Y. L. Tang, H. Wang, and C. H. Chen, “Broadband monolithic GaAsbased HEMT diode mixers,” in AsiaPacific Microw. Conf., pp. 11351138, 2000.
[12] W. C. Chen, S. Y. Chen, J. H. Tsai, T. W. Huang, and H. Wang, “A 3848GHz miniature MMIC subharmonic mixer,’’ in Gallium Arsenide and Other Semiconductor Application Symp., European, pp. 437440, 2005.
[13] H. I. Fujishiro, Y. Ogawa, T. Hamada, and T. Kimura, “SSB MMIC mixer with subharmonic LO and CPW circuits for 38 GHz band applications,” Electronic Lett., vol. 37, pp. 435436, 2001.
[14] H. R. Ahn, and B. Kim, “Transmissionline directional couplers for impedance transforming,” IEEE Microw. Wireless Compon. Lett., vol. 16, pp. 537539, Oct. 2006.
[15] Z. Liu, and R. M. Weikle, “A 180° hybrid based on interdigitally coupled asymmetrical artificial transmission lines,” in IEEE MTTS Int. Microw. Symp. Dig., June 2006, pp. 15551558.
[16] T. Fujii and I. Ohta, “Sizereduction of coupledmicrostrip 3 dB forward couplers by loading with periodic shunt capacitive stubs.” in IEEE MTTS Int. Microwave Symp. Dig., pp. 12351238, 1217 June 2005.
[17] R. Mongia, I. Bahl, and P. Bhartia, RF and Microwave CoupledLine Circuits, Norwood, MA: Artech House, 1999.
[18] M. F. Lei, P. S. Wu, T. W. Huang, and H. Wang, “Design and analysis of miniature Wband MMIC subharmonically pumped resistive mixer,” in IEEE MTTS Int. Microw. Symp. Dig., 2004, pp. 235–238.
[19] H. K. Chiou, W. R. Lian, and T. Y Yang, “A miniature Qband balanced subharmonically pumped image rejection mixer,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 6, pp.463465, June 2007
[20] C. M. Lin, H. K. Lin, Y. A. Lai, C. P. Chang, and Y. H. Wang, “A 10–40 GHz broadband subharmonic monolithic mixer in 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 9597, Feb. 2009.
CHAPTER 4
[1] Y. A. Lai, C. M. Lin, C. P. Chang and Y. H. Wang, “A MMIC doubler based on novel open/short stub hybrids,” IEEE Microwave and Wireless Components Letters, vol. 19, no.4, pp242244, Apr. 2009.
[2] M. T. Faber, J. Chramiec, and M. E. Adamski, Microwave and MillimeterWave Diode Frequency Multipliers. Boston, MA: Artech House, 1995.
[3] S. A. Maas, Nonlinear Microwave and RF circuits 2nd ed., Artech House, 2003.
[4] S. A. Maas, The RF and Microwave Circuit Design Cookbook, Artech House, 1998.
[5] C. C. Weng, Z. M. Tsai, and H. Wang, “A Kband miniature, broadband, high output power HBT MMIC balanced doubler with integrated balun,” in IEEE Euro. Microw. Conf. Dig., vol. 3, pp. 1–3, Oct. 4–6, 2005.
[6] K. L. Deng and H. Wang, “A miniature broadband PHEMT MMIC balanced distributed doubler,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 1257–1261, Apr. 2003.
[7] B. Piernas, H. Hayashi, K. Nishikawa, K. Kamogawa, and T. Nakagawa, "A broadband and miniatures Vband PHEMT frequency doubler," IEEE Microw. Guided Wave Lett., vol.10, pp. 276278, July 2000.
[8] J. J. Hung, T. M. Hancock, and G. M. Rebeiz, “A highefficiency miniaturized SiGe Kuband balanced frequency doubler,” in IEEE RFIC Symp. Digest, pp. 219222, June 2004.
[9] H. Y. Chang, G. Y. Chen, and Y. M. Hsin, “A broadband high efficiency high output power frequency doubler,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 4, pp. 226228, Apr. 2010.
[10] C. H. Lin, J. C. Chiu, C. M Lin, Y. A. Lai and Y. H. Wang, “A variable conversion gain star mixer for KaBand applications,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 11, pp. 802804, Nov. 2007.
[11] L. Boglione and R. Pavio, “Temperature and process insensitive circuit design of a voltage variable attenuator IC for cellular band applications,” IEEE Microw. Guided Wave Lett., vol. 10, pp. 279281, Jul. 2000.
[12] S. M. Daoud, and P. N. Shastry, “A novel wideband MMIC voltage controlled attenuator with a bandpass filter topology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, part. 2, pp. 2576–2583, Jun. 2006.
[13] D. Coffing, E. Main, M. Randol and G. Szklarz, “A variable gain amplifier with 50dB control range for 900MHz applications,” IEEE J. SolidState Circuits, vol. 37, no. 9, pp.11691175, Sept. 2002.
[14] C. S. Lin, P. S. Wu, M. C. Yeh, J. S. Fu, H. Y. Chang, K. Y. Lin, and H. Wang, “Analysis of multiconductor coupledline Marchand baluns for miniature MMIC design,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 6, pp. 1190–1199, Jun. 2007.
[15] Y. CamposRoca, L. Verweyen, M. FernandezBarciela, W. Bischof, M.C. CurrasFrancos, E. Sanchez, A. Hulsmann, and M. Schlechtweg, ”38/76 GHz PHEMT MMIC balance frequency doublers in coplanar technology,” IEEE Microw. Guided Wave Lett., vol. 10, no. 11, pp. 484487, Nov. 2000.
[16] K. Nishikawa, B. Piernas, T. Nakagawa, and K. Araki, “Miniaturized and broadband Vband balanced frequency doubler for highly integrated 3D MMIC,” in IEEE MTTS Int. Dig., vol. 1, pp.351–354, Jun. 2002.
[17] M. C. Tsai, “A new compact wideband balun,” in IEEE MTTS Int. Microw. Symp. Digest, vol. 1, pp. 141–143, Jun. 1993.
[18] R. Mongia, I. Bahl, and P. Bhartia, RF and Microwave CoupledLine Circuits, Norwood, MA: Artech House, 1999.
[19] I. D. Robertson, and S. Lucyszyn, RFIC and MMIC Design and Technology. The Institute of Electrical Engineers, London, United Kingdom, 2001.
[20] N. Marchand, “Transmission line conversion transformers,” Electronics, vol. 17, no. 12, pp.142145, Dec. 1944.
[21] Z. Liu, and R. M. Weikle, “A 180° hybrid based on interdigitally coupled asymmetrical artificial transmission lines,” in IEEE MTTS Int. Microw. Symp. Dig., pp. 15551558, June 2006.
[22] T. Fujii, and I. Ohta, “Sizereduction of coupledmicrostrip 3 dB forward couplers by loading with periodic shunt capacitive stubs.” in IEEE MTTS Int. Microw. Symp. Dig., pp. 12351238, June 2005.
[23] Z. Liu, and R. M. Weikle, “A 180° hybrid based on interdigitally coupled asymmetrical artificial transmission lines,” in IEEE MTTS Int. Microw. Symp. Dig., pp. 15551558, June 2006.
[24] T. Fujii and I. Ohta, “Sizereduction of coupledmicrostrip 3 dB forward couplers by loading with periodic shunt capacitive stubs.” in IEEE MTTS Int. Microwave Symp. Dig., pp. 12351238, 1217 June 2005.
[25] S. A. Maas and Y. Ryu, “A broadband, planar, monolithic resistive frequency doubler,” in IEEE MTTS Int. Dig., pp. 443–446, 1994.
[26] M. Ferndahl, B. Motlagh, and H. Zirath, “40 and 60 GHz frequency doublers in 90nm CMOS,” in IEEE MTTS Int. Dig., vol. 1, pp. 179182., Jun. 2004.
[27] A. Y. K. Chen, Y. Baeyens, Y. K. Chen, and J. Lin, “A 3680 GHz high gain millimeterwave doublebalanced active frequency doubler in SiGe BiCMOS,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 9, pp. 572574, Sept. 2009.
APPENDIX
[1] K. W. Hamed , A. P. Freundorfer and Y. M. M. Antar “A monolithic doublebalanced direct conversion mixer with an integrated wideband passive balun,” IEEE J. SolidState Circuits, vol. 40, no. 3, pp. 622629, Mar. 2005.
[2] C. H. Lien, K. L. Deng, C. C. Liu, H. S. Chou, and H. Wang, “Kaband monolithic GaAs pHEMT circuits for transceiver applications,” in Proc. AsiaPacific Microwave Conf., pp. 11711174, Dec, 2000.
[3] L. Verweyen, H. Massler, M. Neumann, U. Schaper, and W. H. Haydl, “Coplanar integrated mixers for 77GHz automotive applications,” IEEE Microw. Guided Wave Lett., vol. 8, pp. 3840, Jan. 1998.
[4] P. S. Wu, C. H. Wang, T. W. Huang and H. Wang, “Compact and broadband millimeterwave monolithic transformer balanced mixers,” IEEE Trans. Microw. Theory Tech., vol. MTT53, no. 10, pp. 31063114, Oct. 2005.
[5] S. A. Maas, F. M. Yamada, A. K. Oki, N. Matovelle, and C. Hochuli, “An 1840 GHz monolithic ring mixer,” in IEEE WIC Symp. Dig., 1998, pp. 2932.
[6] C. H. Lin, J. C. Chiu, C. M. Lin, Y. A. Lai and Y. H. Wang, “A variable conversion gain star mixer for KaBand applications,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 11, pp. 802804, Nov. 2007.
[7] S. S. Kim, J. H. Lee and K. W. Yeom, “A novel planar dual balun for doubly balanced star mixer,” IEEE Microw. Wireless Compon. Lett., vol. 14, no.9, pp. 440442, Sep. 2004.
[8] T. Y. Yang, W. R. Lien, C. C. Yang and H. K. Chiou, “A compact VBand star mixer using compensated overlay capacitors in dual baluns,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 537539, July. 2007.
[9] K. W. Yeom and D. H. Ko, “A novel 60GHz monolithic star mixer using gatedrainconnected pHEMT diodes,” IEEE Trans. Microw. Theory Tech., vol. MTT53, no. 7, pp. 24352440, July. 2005.
[10] C. M. Lin, H. K. Lin, C. F. Lin, Y. A. Lai, C. H. Lin and Y. H. Wang, “A 1644 GHz Compact Doubly Balanced Monolithic Ring Mixer,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 620622, Sep. 2008.
[11] C. J. Trantanella, “Ultrasmall MMIC mixers for K and Kaband communications,” in IEEE MTTS Int. Microw. Symp. Dig., vol. 2, pp. 647650, 2000.
[12] C. C. Kuo, C. L. Kuo, C. J. Kuo, S. A. Maas and H. Wang, “Novel Miniature and Broadband MillimeterWave Monolithic Star Mixers,” IEEE Trans. Microw. Theory Tech., vol. MTT56, no. 4, pp. 793802, April 2008.
[13] C. H. Lin, C. M. Lin, Y. A. Lai and Y. H. Wang, “A 2638 GHz Monolithic Doubly Balanced Mixer,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 623625, Sep. 2008.
[14] S. A. Maas and K.W. Chang, “A broadband, planar, doubly balanced monolithic Kaband diode mixer,” IEEE Trans. Microw. Theory Tech., vol. MTT41, no. 12, pp. 23302335, Dec. 1993.
[15] M. Yu, and R. H. Walden, A. E. Schmitz, and M. Lui, “Ka/Qband doubly balanced MMIC mixers with low LO power,” IEEE Microw. Guided Wave Lett., vol. 10, no. 10, pp.424426, Oct. 2000.
[16] C. Nguyen and D. Smith, “Novel miniaturized wideband baluns for MIC and MMIC applications,” Electron. Lett., vol. 29, no. 12, pp. 10601061, June 1993.
[17] K.W. Chang, T.H. Chen, H. Wang, S.A. Maas, “Frequency upconversion behavior of singly balanced diode mixers,” in IEEE APS Symp. Digest, vol. 1, pp. 222225, Jun. 2428, 1991.
[18] S. A. Maas, Microwave Mixers, 2nd ed. Norwood, MA: Artech House, 1993.
[19] M. Madihian, L. Desclos, K. Muruhashi, K. Onda, and M. Kuzuhara, “A monolithic AlGaAs/InGaAs upconverter IC for Kband wireless networks,” IEEE Trans. Microwave Theory Tech., vol. 43, pp. 27732778, Dec. 1995.
[20] H. Ogawa, M. Aikawa and K. Morita, “KBand integrated doublebalanced mixer,” IEEE Trans. Microw. Theory Tech., vol. MTT28, no.3, pp. 180185, Mar. 1980.
[21] D. Regev, “Characterization of spuriousresponse suppression in doublebalanced mixers,” IEEE Trans. Microw. Theory Tech., vol. MTT38, no.2, pp. 123128, Feb. 1990.
[22] J. A. Hou and Y. H. Wang, “A compact quadrature hybrid based on highpass and lowpass lumped elements,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 8, pp. 595597, Aug. 2007.
[23] I. Ohta, X. P. Li, T. Kawai, and Y. Kokubo, “A design of lumpedelement 3 dB quadrature hybrids,” AsiaPacific Microw. Conf. Proceedings, vol. 3, pp. 11411144, Dec 1997.
[24] D. M. Pozar, Microwave engineering, 2nd Ed. New York: Wiley 1998.
[25] M. Madihian, L. Desclos, K. Muruhashi, K. Onda, and M. Kuzuhara, “A monolithic AlGaAs/InGaAs upconverter IC for Kband wireless networks,” IEEE Trans. Microwave Theory Tech., vol. 43, pp. 27732778, Dec. 1995.
[26] P. J. Sullivan, B. A. Xavier, and W. H. Ku, “Low voltage performance of a microwave CMOS Gilbert cell mixer,” IEEE J. SolidState Circuits, vol. 32, pp. 11511155, July. 1997.
[27] J. P. Comeau and J. D. Cressler, “A 28GHz SiGe upconversion mixer using a seriesconnected triplet for higher dynamic range and improved IF port return loss,” IEEE J. SolidState Circuits, vol. 41, no. 3, pp. 560–565, Mar. 2006.
[28] E. J. Wilkinson, “An Nway power divider,” IEEE Trans. Microw. Theory Tech., vol. MTT8, pp. 116118, Jan. 1960.
[29] M. E. Goldfarb, “A recombinant, inphase power divider,” IEEE Trans. Microw. Theory Tech., vol. MTT39, no. 8, pp. 14381440, Aug. 1991.
[30] J. C. Chiu, J. M. Lin, and Y. H. Wang, “A novel planar threeway power divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 8, pp. 449451, Aug. 2006.
[31] Y. Sun, and A. P. Freundorfer, “Broadband folded Wilkinson power combiner/splitter,” IEEE Microw. Wireless Compon. Lett., vol.14, no.6, pp. 295297, June., 2004
[32] J. M. Rebollar, J. Esteban and J. E. Page, “Design of a compact Kaband threeway power divider,” IEEE Antennas and Propagation Society International Symp, Dig., vol. 2, pp. 10741077, June 2024, 1994.
[33] J. Reed and G. H. Wheeler, “A method of analysis of symmetrical fourport networks,” IRE Trans. Microw. Theory Tech., vol. MTT4, no. 10, pp. 246252, Oct. 1956.
[34] S. B. Cohn, “A class of broadband threeport TEM mode hybrids,” IEEE Trans. Microw. Theory Tech., vol. MTT16, pp. 110116, Feb. 1968.
[35] H.R. Ahn, K. Lee, and N.H. Myung, “General design equations of Nway arbitrary power dividers,” IEEE MTTS Int. Microwave Symp. Dig., vol. 1, pp.6568, June. 2004.
[36] Gustavo López Risueño, J. I. Alonso, “Simulation of Interdigitated Structures using TwoCoupled Line Models,” Microwave Journal, Vol. 43, No. 6, pp. 7082, June 2000.
[37] G. Mazzarela, “CAD Modeling of Interdigital Structures,” IEEE Trans. on Education, vol. 42, no. 1, pp. 8187, Feb. 1999.
[38] Y. J. Ko, J. Y. Park, and J. U. Bu, “Fully integrated unequal Wilkinson power divider with EBG CPW,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 7, pp. 276278, July. 2003.
[39] M. Catoiu, “A novel 3way hybrid combiner/divider for high power Cclass microwave amplifiers,” IEEE MTTS Int. Microwave Symp. Dig., vol. 1, pp. 3134, May. 2001.
[40] M. B. Bazdar, A. R. Djordjevic, R. F. Harrington, and T. K. Sarkar, “Evaluation of quasistatic matrix parameters for multiconductor transmission lines using Galerkin's method,” IEEE Trans. Microwave Theory Tech., vol. MTT42, no.7, pp. 12231228, July 1994.
[41] D. E. Meharry, J. E. Sanctuary, and B. A. Golja, “Broad bandwidth transformer coupled differential amplifiers for high dynamic range,” IEEE J. SolidState Circuits, vol. 34, pp. 12331238, Sept. 1999.
[42] C. H. Lin, J. C. Chiu, C. M. Lin, Y. A. Lai and Y. H. Wang, “A variable conversion gain star mixer for KaBand applications,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 11, pp. 802804, Nov. 2007.
[43] K. S. Ang and Y. C. Leong, “Converting baluns into broadband impedancetransforming 180° hybrids,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 19901995, Aug. 2002.
[44] M. Chongcheawchamnan, C. Y. Ng, K. Bandudej, A. Worapishet and I. D. Robertson, “On miniaturization isolation network of an allports matched impedancetransforming Marchand balun,” IEEE Microw. Wireless Compon. Lett., vol. 13, no.7, pp. 281283, July. 2003.
[45] H. K. Chiou and H. H. Lin, “A miniature MMIC double doubly balanced mixer using lumped dual balun for high dynamic receiver application,” IEEE Microw. Wireless Compon. Lett., vol. 7, no. 8, pp. 227–229, Aug. 1997.
[46] Z. Y. Zhang, Y. X. Guo, L. C. Ong, and M. Y. W. Chia, “A new wideband planar balun on a singlelayer PCB,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 6, pp. 416418, Jun. 2005.
[47] M. A. Antoniades and G. V. Eleftheriades, “A broadband Wilkinson balun using microstrip metamaterial lines,” IEEE Antennas Wireless Propag. Lett., vol. 4, no. 8, pp. 209212, Aug. 2005.
[48] S. S. Bharj, S. P. Tan, and B. Thompson, “A 218 GHz 180 degree phase splitter network,” in IEEE MTTS Symp. Dig., 1989, pp. 959–962.
[49] S. Basu and S. A. Maas, “Design and performance of a planar star mixer,” IEEE Trans. Microw. Theory Tech., vol. 41, no.11, pp. 20282030, Nov. 1993.
[50] R. Mongia, I. Bahl, and P. Bhartia, RF and Microwave CoupledLine Circuits. Norwood, MA: Artech House, 1999.
[51] H. R. Ahn, K. Lee, and N. H. Myung, “General design equations of Nway arbitrary power dividers,” IEEE MTTS Int. Microwave Symp. Dig., vol. 1, pp. 6568, June. 2004.
[52] I. D. Robertson, and S. Lucyszyn, RFIC and MMIC Design and Technology. The Institute of Electrical Engineers, London, U.K., 2001.

論文全文使用權限 
同意授權校內瀏覽/列印電子全文服務，於20110830起公開。同意授權校外瀏覽/列印電子全文服務，於20120830起公開。 


