進階搜尋


下載電子全文  
系統識別號 U0026-0407201022103200
論文名稱(中文) 應用於Ku 至 Ka 頻段之寬頻、微小化平衡式頻率轉換電路之研製
論文名稱(英文) Broadband Miniaturized Balanced-type Frequency Conversion Circuits for Ku- to Ka-band Applications
校院名稱 成功大學
系所名稱(中) 微電子工程研究所碩博士班
系所名稱(英) Institute of Microelectronics
學年度 98
學期 2
出版年 99
研究生(中文) 賴昱安
研究生(英文) Yu-Ann Lai
學號 q1895135
學位類別 博士
語文別 英文
論文頁數 177頁
口試委員 口試委員-荊鳳德
口試委員-王是琦
指導教授-王永和
口試委員-盧春林
口試委員-邱煥凱
口試委員-孟慶宗
口試委員-洪茂峰
口試委員-蔡俊輝
口試委員-張全生
中文關鍵字 頻率轉換電路  平衡式  90度混成器  混頻器  次諧波混頻器  倍頻器  馬遜巴倫  三路功率分配器  雙180度混成器 
英文關鍵字 Frequency conversion circuits  Balanced-type  Quadrature hybrid  Mixer  Sub-harmonic mixer (SHM)  Doubler  Marchand Balun  Three-way power divider  Dual 180° hybrid 
學科別分類
中文摘要 本論文主要是探討平衡式頻率轉換電路,含括混頻器、次諧波混頻器與倍頻器,其研究方向著重於發展寬頻、微小化之新穎電路架構。
在混頻器方面,電路設計包含單平衡式與雙平衡式混頻器。在單平衡混頻器的研究中,本論文提出新型90度的混成器,並藉此來縮小單平衡混頻器之面積。在雙平衡式混頻器的研究中,本論文設計出三個新型180度混成器,應用於製作雙平衡式混頻器;而上述之雙平衡式混頻器皆具寬頻、面積微小化與中頻訊號取出容易之特性。
由於高頻高輸出功率的本地振盪器製作困難,以致混頻器常採用兩種頻率轉換電路來解決之。第一種解決方式是採用次諧波混頻器,第二種解決方式是採用倍頻器。在次諧波混頻器的研究上,採用一方向耦合器將射頻訊號與本地訊號結合輸入至反並聯式配對二極體,除了其本身寬頻特性以外,也具有阻抗轉換功能,使得射頻訊號、本地訊號與二極體匹配容易,利於電路設計上更加彈性。另外,亦有次諧波混頻器使用補償電容方式來縮小馬遜巴倫(Marchand Balun)面積,並結合平衡式架構,此一設計不僅提高埠際隔離度,並可達到微小化的目的。
第二種方式為採用倍頻器。首先設計一個新的180度混成器來實現平衡式主動倍頻器,其特點是利用多重耦合線來改善插入損失與頻寬。另一方面,為了改善增益擾動與諧波抑制能力,本論文亦使用微小化巴倫電路整合帶拒濾波器與偏壓電路來實現雙平衡式被動倍頻器。亦有單平衡式被動倍頻器採用補償電容方式來縮小巴倫面積,此一設計具有良好的基頻抑制能力與精簡尺寸。
最後,本論文亦討論新式混頻器與被動電路。混頻器方面,本論文提出兩個利用新穎混頻機制來設計的混頻器,利用特定的相位機制可產生所需的中頻電流並可以簡化電路佈局。被動電路方面,本論文提出運用多重耦合線來設計雙180度混成器與三路功率分配器,結合多重耦合線特性即可解決傳統三路功率分配器需要立體結構之缺點;而多重耦合線特性亦可解決傳統雙馬遜巴倫應用於電路時的不便性。由實作的成果可知多重耦合線的應用促使雙180度混成器與三路功率分配器具有良好的反射損失及等功率分配,並提供靈活的佈局性,有助於射頻電路的製作與整合。
英文摘要 This research focuses on the development of miniaturized balanced-type frequency conversion circuits, which include mixers, sub-harmonic mixers, and doublers.
In studies on mixers, several novel design concepts were proposed to improve operation bandwidth and circuit structure. In the single-balanced configuration, a novel quadrature hybrid is developed to reduce chip size. Three novel configurations were applied to simplify the circuit structure and reduce the chip area, using the conventional double balanced mixer as basis. These configurations are also suitable for extracting IF signals more conveniently, as well as maintaining superior port-to-port isolations.
Realizing high output power oscillators that operate at a high frequency band is difficult; thus, two methods are used to avoid fundamental mixers using a high frequency and high power oscillator. The first method adopts a sub-harmonic mixer (SHM). In studies on SHM, a novel SHM with an anti-parallel diode pair was developed. This mixer employs a directional coupler to provide impedance transformation among the diode and RF/LO ports; hence, the SHM becomes more compact and flexible. Based on the advantages of balanced topology and the compensative capacitor method, a single balanced SHM is also proposed. The compact chip size demonstrates satisfactory port-to-port isolation.
The other method adopts s frequency doubler. In research on balanced doublers, a novel active doubler was developed. This doubler employs a new 180° hybrid, which adopts the multi-coupler line structure to reduce insertion/return loss and chip size. To solve the problem of gain swing, the doubler adopts a bias circuit to improve conversion efficiency, and uses two band-reject filters to enhance the harmonics rejection performance, as well. In addition, a single balanced doubler is proposed, which adopts the coupler line to compensate the capacitor to reduce the chip size, and demonstrates the good performance.
Finally, two novel mixers and passive circuits are discussed in this dissertation. Based on the new phase relationships, these mixers can obtain the desirable IF current and miniature chip area. In research on passive circuits, the proposed three-way power divider was realized using multi-coupled line technology, which is applied to avoid the 3-dimentional structure in the conventional three-way power divider. Moreover, a dual 180° hybrid adopts the multi-coupled line for the flexibility of output ports; hence, the complex layout is eliminated while the dual Marchand balun is applied to the balanced RF circuits.
論文目次 ABSTRACT (Chinese)....................................I
ABSTRACT (English)....................................III
ACKNOWLEDGMENT.................................V
CONTENTS.........................................VII
FIGURE CAPTIONS......................................XI
TABLE CAPTIONS......................................XVI

CHAPTER 1 Introduction
1.1 Background and Motivation.......................1
1.2 Literature Survey..............................2
1.3 Contributions...................................5
1.4 Organization of the Dissertation.....................7
1.5 References.....................................10

CHAPTER 2 Broadband Miniaturized Single-and Double-Balanced Mixers
2.1 Introduction.................................15
2.1.1 Fundamental Principles and Parameters of Diode Mixers...15
2.1.2 Motivation....................................20
2.2 28-40 GHz Single Balanced Mixer with Novel Quadrature Hybrid...22
2.2.1 Design Purpose for Single Balanced Mixer.........22
2.2.2 Mixer Design Concept............................24
2.2.3 Circuit Implementation and Results.................26
2.3 29-40 GHz Double Balanced Star Mixer...................29
2.3.1 Design Purpose of the Star DBM....................29
2.3.2 Circuit Configuration and Analysis..................30
2.3.3 Circuit Implementation...........................32
2.3.4 Circuit Performance...............................33
2.4 13-34 GHz Compact Double Balanced Star Mixer............35
2.4.1 The Purpose of the Compact Star DBM..................35
2.4.2 Design of the Compact Star DBM Configuration.........35
2.4.3 Circuit Implementation...........................37
2.4.4 Circuit Performance...............................38
2.5 17-34 GHz Broadband Miniaturized Star Double Balanced Mixer...................40
2.5.1 The Purpose of the Broadband Miniaturized Star DBM........40
2.5.2 Design of the Broadband Miniaturized Star DBM.........40
2.5.3 Circuit Implementation...........................55
2.5.4 Circuit Performance...............................55
2.6 Comparison with Reported Balanced-type Mixers.........57
2.7 Summary......................................58
2.8 References.....................................60

CHAPTER 3 Sub-harmonic Mixers
3.1 Introduction......................................63
3.1.1 Fundamental Principles of the Anti-Parallel Diode Pair......63
3.1.2 Motivation....................................65
3.2 23-37 GHz Miniature Sub-harmonic Mixer...............66
3.2.1 Circuit Design................................66
3.2.2 Circuit Implementation and Measured Results.........67
3.3 30-40 GHz Miniature Single Balanced Sub-harmonic Mixer......72
3.3.1 Circuit Design and Analysis........................72
3.3.2 Single Balanced SHM Measured Results...............79
3.4 Summary....................................81
3.5 References....................................82

CHAPTER 4 Miniaturized Single-and Double-Balanced Doubler
4.1 Introduction....................................85
4.1.1 Fundamental Principles and Parameters of Balanced Doublers......86
4.1.2 Motivation....................................89
4.2 23-26 GHz Active Balanced Doubler.................91
4.2.1 Circuit Design................................91
4.2.2 Circuit Implementation and Measured Results.........95
4.3 25-37 GHz Compact Double Balanced Doubler............97
4.3.1 Circuit Design and Implementation...............97
4.3.2 Experimental Results............................101
4.4 20-44 GHz Compact Single Balanced Doubler............104
4.4.1 Circuit Design and Analysis........................104
4.4.2 20-44 GHz Single Balanced Doubler Results.........110
4.5 Summary......................................113
4.6 References.....................................114

CHAPTER 5 Conclusions and Future Works
5.1 Conclusions....................................118
5.2 Future Works.......................................120

APPENDIX Balanced-like Mixer & Passive Circuits
A Introduction to Balanced-like Mixer..................122
A.1 26-38 GHz Balanced-like Mixer Based on Lange Couplers........124
A.1.1 Circuit Design and Configuration.................124
A.1.2 Circuit Implementation.....................127
A.1.3 Mixer Performance.................................127
A.2 A New Type of Compact and Wideband Balanced-like Mixer based on Quadrature Hybrids................130
A.2.1 New Phase Relationship for the Balanced-like Mixers......130
A.2.2 Mixer Design Methodology and Implementation.........142
A.2.3 Mixer Performance................................142
A.3 Comparison with Microwave and Millimeter-wave Mixers.........150
B Introduction to Three-way Power Divider..................151
B.1 Design of the Three-way Power Divider...............152
B.2 Implementation and Results.....................156
C Introduction to Dual 180° Hybrid........................158
C.1 Design of the Dual 180° Hybrid.......................160
C.2 Dual 180° Hybrid Implementation and Results............162
D Summary.........................................166
E References......................................168

PUBLICATION LIST....................................174
VITA...............................................177
參考文獻 CHAPTER 1
[1] I. D. Robertson, and S. Lucyszyn, RFIC and MMIC Design and Technology. The Institute of Electrical Engineers, London, United Kingdom, 2001.
[2] I. Bahl, and P. Bhartia, Microwave solid state circuit design, Wiley-Interscience, 2003.
[3] S. E. Gunnarsson, C. Kärnfelt, H. Zirath, R. Kozhuharov, D. Kuylenstierna, A. Alping, and C. Fager, “Highly integrated 60 GHz transmitter and receiver MMICs in a GaAs pHEMT technology,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2174-2186, Nov. 2005.
[4] M. T. Faber, J. Chramiec, and M. E. Adamski, Microwave and Millimeter-Wave Diode Frequency Multipliers. Boston, MA: Artech House, 1995.
[5] K. W. Hamed, A. P. Freundorfer and Y. M. M. Antar, “A monolithic double-balanced direct conversion mixer with an integrated wideband passive balun,” IEEE J. Solid-State Circuits, vol. 40, pp. 622, Mar. 2005.
[6] S. A. Maas, Microwave Mixers, 2nd ed. Norwood, MA: Artech House, 1993.
[7] C. M. Lin, C. H. Lin, J. C. Chiu and Y. H. Wang “An ultra-broadband doubly balanced monolithic ring mixer for Ku- to Ka-band applications,” IEEE Microw. Wireless Compon. Lett., vol. 17, pp. 733, Oct. 2007.
[8] C. H. Lin, J. C. Chiu, C. M Lin, Y. A. Lai and Y. H. Wang, “A variable conversion gain star mixer for Ka-Band applications,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 11, pp. 802-804, Nov. 2007.
[9] K. W. Kobayashi, R. Kasody, A. K. Oki, S. Dow, B. Allen, and D. C. Streit, “K-Band double balanced mixer using GaAs HBT THz Schottky diodes,” in IEEE MTT-S Int. Microw. Symp.Dig, 1994, pp. 1163- 1166.
[10] S. S. Kim, J. H. Lee and K. W. Yeom, “A novel planar dual balun for doubly balanced star mixer,” IEEE Microw. Wireless Compon. Lett., vol. 14, no.9, pp. 440-442, Sep. 2004.
[11] M. Yu, and R. H. Walden, A. E. Schmitz, and M. Lui, “Ka/Q-band doubly balanced MMIC mixers with low LO power,” IEEE Microw. Guided Wave Lett., vol. 10, no. 10, pp.424-426, Oct. 2000.
[12] T. Y. Yang, W. R. Lien, C. C. Yang and H. K. Chiou, “A compact V-Band star mixer using compensated overlay capacitors in dual baluns,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 537-539, July. 2007.
[13] K. W. Yeom and D. H. Ko, “A novel 60-GHz monolithic star mixer using gate-drain-connected pHEMT diodes,” IEEE Trans. Microw. Theory Tech., vol. MTT-53, no. 7, pp. 2435-2440, July. 2005.
[14] C. M. Lin, H. K. Lin, C. F. Lin, Y. A. Lai, C. H. Lin and Y. H. Wang, “A 16-44 GHz Compact Doubly Balanced Monolithic Ring Mixer,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 620-622, Sep. 2008.
[15] C. J. Trantanella, “Ultra-small MMIC mixers for K- and Ka-band communications,” in IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, pp. 647-650, 2000.
[16] M. Cohn, J. E. Degenford, and B. A. Newman, “Harmonic mixing with an antiparallel diode pair,” IEEE Trans. Microwave Theory Tech., vol. MTT-23, no.8, pp. 667-673, Aug. 1975.
[17] K. Itoh, A. Iida, Y. Sasaki, and S. Urasaki, “A 40 GHz band monolithic even harmonic mixer with an antiparallel diode pair,’’ in IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, 1991, p. 879-882.
[18] S. Raman, F. Rucky, and G. M. Rebeiz, “A high-performance W-Band uniplanar subharmonic mixer,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 6, pp. 955–962, Jun. 1997.
[19] M. W. Chapman and S. Raman, “A 60-GHz uniplanar MMIC 4X subharmonic mixer,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 11, pp. 2580–2588, Nov. 2002.
[20] K. Kanaya, K. Kawakami, T. Hisaka, T. Ishikawa, and S. Sakamoto, “A 94 GHz high performance quadruple subharmonic mixer MMIC,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2002, vol. 2, pp. 1249–1252.
[21] W. Y. Uhm, W. S. Sul, H. J. Han, S. C. Kim, H. S. Lee, D. An, S. D. Kim, D. H. Shin, H. M. Park, and J. K. Rhee, “A high performance v-band monolithic quadruple sub-harmonic mixer,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2003, vol. 2, pp. 1319–1322.
[22] S. Sarkar, P. Sen, S. Pinel, C. H. Lee, and J. Laskar, “Si-based 60GHz 2X subharmonic mixer for multi-gigabit wireless personal area network application,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2006, pp. 1830–1833.
[23] C. H. Lin, Y. A. Lai, J. C. Chiu, and Y. H. Wang, “A 23–37 GHz miniature MMIC subharmonic mixer,” IEEE Microw. Wireless Compon. Lett., vol.17, no.9, pp. 679-681, Sep. 2007.
[24] C. M. Lin, H. K. Lin, Y. A. Lai, C. P. Chang, and Y. H. Wang, “A 10–40 GHz broadband subharmonic monolithic mixer in 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 95-97,Feb. 2009.
[25] H. Zirath, I. Angelov, and N. Rorsman, “A millimeterwave subharmonically pumped resistive mixer based on a heterostructure field effect transistor technology,” in IEEE MTT-S Int. Microw. Symp. Dig., 1992, pp. 599–602.
[26] K. S. Ang, A. H. Baree, S. Nam, and I. D. Robertson, “A millimeterwave monolithic subharmonically pumped resistive mixer,” in Proc. Asia Pacific Microw. Conf., 1999, pp. 222–225
[27] M. F. Lei, P. S. Wu, T. W. Huang, and H. Wang, “Design and analysis of miniature W-band MMIC subharmonically pumped resistive mixer,” in IEEE MTT-S Int. Microw. Symp. Dig., 2004, pp. 235–238.
[28] J. J. Hung, T. M. Hancock, and G. M. Rebeiz, “A 77 GHz SiGe sub-harmonic balanced mixer,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2167–2173, Nov. 2005.
[29] M. Bao, H. Jacobsson, L. Aspemyr, G. Carchon, and X. Sun, “A 9-31-GHz subharmonic passive mixer in 90-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, no. 10, pp. 2257–2264, Oct. 2006.
[30] B. R. Jackson and C. E. Saavedra, “A CMOS Ku-band 4x subharmonic mixer,” IEEE J. Solid-State Circuits, vol. 43, no. 6, pp. 1351–1359, Jun. 2008.
[31] J. J. Hung, Timothy M. Hancock and Gabriel M. Rebeiz, “High-Power High-Efficiency SiGe Ku- and Ka-Band Balanced Frequency Doublers,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 2, pp. 754-761, Feb. 2005.
[32] C. C. Weng, Z. M. Tsai, and H. Wang, “A K-band miniature, broadband, high output power HBT MMIC balanced doubler with integrated balun,” in IEEE Euro. Microw. Conf. Dig., vol. 3, pp. 1-3, Oct. 2005.
[33] D. W. Kang, D. H. Baek, S. H. Jeon, J. W. Park, and Songcheol Hong, “A miniaturized K-band balanced frequency doubler using InGaP HBT technology,” in IEEE MTT-S Int. Microwave Symp. Dig., vol.1, pp. 107-110, Jun. 2003.
[34] Rizwan Murji and M. Jamal Deen, “A Low-Power Wideband Frequency Doubler in 0.18-μm CMOS,” in IEEE Int. Symposium on Circuits and Systems ISCAS., vol.5, pp. 4353-4356, May 2005.
[35] V. Puyal, A. Konczykowska, P. Nouet, S. Bernard, S. Blayac, F. Jorge, M. Riet, and J. Godin, “DC–100-GHz frequency doublers in InP DHBT technology,” IEEE Trans. Microwave Theory Tech., vol.53, no. 4, pp. 1338-1344, Apr. 2005.
[36] S. Hackl and J. Bock, “42 GHz active frequency doubler in SiGe Bipolar technology,” in IEEE Int. Conference on Microwave and Millimeter Wave Technology Proceedings ICMMT., pp. 54-57, Aug. 2002.
[37] T. Y. Yang, and H. K. Chiou, “A 25-75 GHz miniature doubler balanced frequency doubler in 0.18-μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 275-277, Apr. 2008.
[38] C. S. Lin, P. S. Wu, M. C. Yeh, J. S. Fu, H. Y. Chang, K. Y. Lin, and H. Wang, “Analysis of multiconductor coupled-line Marchand baluns for miniature MMIC design,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 6, pp. 1190–1199, Jun. 2007.
[39] S. A. Maas and Y. Ryu, “A broadband, planar, monolithic resistive frequency doubler,” in IEEE MTT-S Int. Dig., pp. 443–446, 1994.
[40] B. Piernas, H. Hayashi, K. Nishikawa, K. Kamogawa, and T. Nakagawa, “A broadband and miniatures V-band PHEMT frequency doubler,” IEEE Microw. Guided Wave Lett., vol.10, pp. 276-278, July 2000.
[41] Y. Campos-Roca, L. Verweyen, M. Fernandez-Barciela, W. Bischof, M.C. Curras-Francos, E. Sanchez, A. Hulsmann, and M. Schlechtweg, “38/76 GHz PHEMT MMIC balance frequency doublers in coplanar technology,” IEEE Microw. Guided Wave Lett., vol. 10, no. 11, pp. 484-487, Nov. 2000.
[42] K. Nishikawa, B. Piernas, T. Nakagawa, and K. Araki, “Miniaturized and broadband V-band balanced frequency doubler for highly integrated 3-D MMIC,” in IEEE MTT-S Int. Dig., vol. 1, pp.351–354, Jun. 2002.

CHAPTER 2
[1] S. E. Gunnarsson, C. Kärnfelt, H. Zirath, R. Kozhuharov, D. Kuylenstierna, A. Alping, and C. Fager, “Highly integrated 60 GHz transmitter and receiver MMICs in a GaAs pHEMT technology,” IEEE J. Solid-State Circuits, vol. 40, no. 11, pp. 2174-2186, Nov. 2005.
[2] K. W. Hamed , A. P. Freundorfer and Y. M. M. Antar, “A monolithic double-balanced direct conversion mixer with an integrated wideband passive balun,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 622-629, Mar. 2005.
[3] C. M. Lin, C. H. Lin, J. C. Chiu and Y. H. Wang, “An ultra-broadband doubly balanced monolithic ring mixer for Ku- to Ka-band applications,” IEEE Microw. Wireless Compon. Lett., vol. 17, pp. 733-735, Oct. 2007.
[4] C. H. Lin, J. C. Chiu, C. M Lin, Y. A. Lai and Y. H. Wang, “A variable conversion gain star mixer for Ka-Band applications,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 11, pp. 802-804, Nov. 2007.
[5] S. A. Maas and K.W Chang, “A broadband, planar, doubly balanced monolithic Ka-band diode mixer,” IEEE Trans. Microw. Theory Tech., vol. MTT-41, no. 12, pp. 2330-2335, Dec. 1993.
[6] S. S. Kim, J. H. Lee and K. W. Yeom, “A novel planar dual balun for doubly balanced star mixer,” IEEE Microw. Wireless Compon. Lett., vol. 14, no.9, pp. 440-442, Sep. 2004.
[7] T. Y. Yang, W. R. Lien, C. C. Yang and H. K. Chiou, “A compact V-Band star mixer using compensated overlay capacitors in dual baluns,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 537-539, July. 2007.
[8] K. W. Yeom and D. H. Ko, “A novel 60-GHz monolithic star mixer using gate-drain-connected pHEMT diodes,” IEEE Trans. Microw. Theory Tech., vol. MTT-53, no. 7, pp. 2435-2440, July. 2005.
[9] C. M. Lin, H. K. Lin, C. F. Lin, Y. A. Lai, C. H. Lin and Y. H. Wang, “A 16-44 GHz Compact Doubly Balanced Monolithic Ring Mixer,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 620-622, Sep. 2008.
[10] C. J. Trantanella, “Ultra-small MMIC mixers for K- and Ka-band communications,” in IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, pp. 647-650, 2000.
[11] D. Kuylenstierna, S. E. Gunnarsson, and H. Zirath, “Lumped element quadrature power splitters using mixed right/left-handed transmission lines,” IEEE Trans. Microwave Theory Tech., vol. 53, no. 8, pp. 2616-2621, Aug. 2005.
[12] W. S. Tung, H. H. Wu, and Y. C. Chiang, “Design of microwave wide-band quadrature hybrid using planar transformer coupling method,” IEEE Trans. Microw. Theory Tech., vol. MTT-51, no. 7, pp. 1852-1856, Jul. 2003.
[13] A. P. M. Maas and J. A. Hoogland, “60 GHz GaAs MMIC mixers with integrated LO buffer,” in European Gallium Arsenide and Other Semiconductor Application Symposium, Paris, pp. 465-468, Oct. 2005.
[14] J. A. Hou and Y. H. Wang, “A compact quadrature hybrid based on high-pass and low-pass lumped elements,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 8, pp. 595-597, Aug. 2007.
[15] M. Yu, and R. H. Walden, A. E. Schmitz, and M. Lui, “Ka/Q-band doubly balanced MMIC mixers with low LO power,” IEEE Microw. Guided Wave Lett., vol. 10, no. 10, pp.424-426, Oct. 2000.
[16] T. Y. Yang, W. R. Lien, C. C. Yang and H. K. Chiou, “A compact V-Band star mixer using compensated overlay capacitors in dual baluns,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 537-539, July. 2007.
[17] K. W. Yeom and D. H. Ko, “A novel 60-GHz monolithic star mixer using gate-drain-connected pHEMT diodes,” IEEE Trans. Microw. Theory Tech., vol. MTT-53, no. 7, pp. 2435-2440, July. 2005.
[18] C. M. Lin, H. K. Lin, C. F. Lin, Y. A. Lai, C. H. Lin and Y. H. Wang, “A 16-44 GHz Compact Doubly Balanced Monolithic Ring Mixer,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 620-622, Sep. 2008.
[19] L. Verweyen, H. Massler, M. Neumann, U. Schaper, and W. H. Haydl, “Coplanar integrated mixers for 77-GHz automotive applications,” IEEE Microw. Guided Wave Lett., vol. 8, pp. 38-40, Jan. 1998.

CHAPTER 3
[1] M. Cohn, James E. Degenford, Burton A. Newman, “Harmonic mixing with an antiparallel diode pair,” IEEE Trans. Microw. Theory and Tech., vol. 2, pp. 71-76, May 1978.
[2] S. A. Maas, Microwave Mixers, 2nd ed. Norwood, MA: Artech House, 1993.
[3] A. Madjar, “A novel general approach for the optimum design of microwave and millimeter wave subharmonic mixers,” IEEE Trans. Microw. Theory and Tech., vol. 44, pp. 1997-1999, Nov. 1996.
[4] R. G. Hicks and P. J. Khan, “Numerical Analysis of Subharmonic Mixers Using Accurate and Approximate Models,” IEEE Trans. Microw. Theory and Tech., vol. 30, pp. 2113-2120, Dec. 1982.
[5] S. Raman, F. Rucky, and G. M. Rebeiz, “A high-performance W-Band uniplanar subharmonic mixer,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 6, pp. 955–962, Jun. 1997.
[6] S. Sarkar, P. Sen, S. Pinel, C. H. Lee, and J. Laskar, “Si-based 60GHz 2X subharmonic mixer for multi-gigabit wireless personal area network application,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1830–1833, Jun. 2006
[7] H. Zirath, I. Angelov, and N. Rorsman, “A millimeterwave subharmonically pumped resistive mixer based on a heterostructure field effect transistor technology,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 599–602, 1992.
[8] K. S. Ang, A. H. Baree, S. Nam, and I. D. Robertson, “A millimeterwave monolithic subharmonically pumped resistive mixer,” in Proc. Asia Pacific Microw. Conf., pp. 222–225, 1999.
[9] M. Bao, H. Jacobsson, L. Aspemyr, G. Carchon, and X. Sun, “A 9-31-GHz subharmonic passive mixer in 90-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, no. 10, pp. 2257–2264, Oct. 2006.
[10] K. Itoh, A. Iida, Y. Sasaki, and S. Urasaki, “A 40 GHz band monolithic even harmonic mixer with an antiparallel diode pair,’’ in IEEE MTT-S Int. Dig., vol. 2, pp. 879-882, 1991.
[11] K. L. Deng, Y. B. Wu, Y. L. Tang, H. Wang, and C. H. Chen, “Broadband monolithic GaAs-based HEMT diode mixers,” in Asia-Pacific Microw. Conf., pp. 1135-1138, 2000.
[12] W. C. Chen, S. Y. Chen, J. H. Tsai, T. W. Huang, and H. Wang, “A 38-48-GHz miniature MMIC subharmonic mixer,’’ in Gallium Arsenide and Other Semiconductor Application Symp., European, pp. 437-440, 2005.
[13] H. I. Fujishiro, Y. Ogawa, T. Hamada, and T. Kimura, “SSB MMIC mixer with subharmonic LO and CPW circuits for 38 GHz band applications,” Electronic Lett., vol. 37, pp. 435-436, 2001.
[14] H. R. Ahn, and B. Kim, “Transmission-line directional couplers for impedance transforming,” IEEE Microw. Wireless Compon. Lett., vol. 16, pp. 537-539, Oct. 2006.
[15] Z. Liu, and R. M. Weikle, “A 180° hybrid based on interdigitally coupled asymmetrical artificial transmission lines,” in IEEE MTT-S Int. Microw. Symp. Dig., June 2006, pp. 1555-1558.
[16] T. Fujii and I. Ohta, “Size-reduction of coupled-microstrip 3 dB forward couplers by loading with periodic shunt capacitive stubs.” in IEEE MTT-S Int. Microwave Symp. Dig., pp. 1235-1238, 12-17 June 2005.
[17] R. Mongia, I. Bahl, and P. Bhartia, RF and Microwave Coupled-Line Circuits, Norwood, MA: Artech House, 1999.
[18] M. F. Lei, P. S. Wu, T. W. Huang, and H. Wang, “Design and analysis of miniature W-band MMIC subharmonically pumped resistive mixer,” in IEEE MTT-S Int. Microw. Symp. Dig., 2004, pp. 235–238.
[19] H. K. Chiou, W. R. Lian, and T. Y Yang, “A miniature Q-band balanced sub-harmonically pumped image rejection mixer,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 6, pp.463-465, June 2007
[20] C. M. Lin, H. K. Lin, Y. A. Lai, C. P. Chang, and Y. H. Wang, “A 10–40 GHz broadband subharmonic monolithic mixer in 0.18 μm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp. 95-97, Feb. 2009.

CHAPTER 4
[1] Y. A. Lai, C. M. Lin, C. P. Chang and Y. H. Wang, “A MMIC doubler based on novel open/short stub hybrids,” IEEE Microwave and Wireless Components Letters, vol. 19, no.4, pp242-244, Apr. 2009.
[2] M. T. Faber, J. Chramiec, and M. E. Adamski, Microwave and Millimeter-Wave Diode Frequency Multipliers. Boston, MA: Artech House, 1995.
[3] S. A. Maas, Nonlinear Microwave and RF circuits 2nd ed., Artech House, 2003.
[4] S. A. Maas, The RF and Microwave Circuit Design Cookbook, Artech House, 1998.
[5] C. C. Weng, Z. M. Tsai, and H. Wang, “A K-band miniature, broadband, high output power HBT MMIC balanced doubler with integrated balun,” in IEEE Euro. Microw. Conf. Dig., vol. 3, pp. 1–3, Oct. 4–6, 2005.
[6] K. L. Deng and H. Wang, “A miniature broadband PHEMT MMIC balanced distributed doubler,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 1257–1261, Apr. 2003.
[7] B. Piernas, H. Hayashi, K. Nishikawa, K. Kamogawa, and T. Nakagawa, "A broadband and miniatures V-band PHEMT frequency doubler," IEEE Microw. Guided Wave Lett., vol.10, pp. 276-278, July 2000.
[8] J. J. Hung, T. M. Hancock, and G. M. Rebeiz, “A high-efficiency miniaturized SiGe Ku-band balanced frequency doubler,” in IEEE RFIC Symp. Digest, pp. 219-222, June 2004.
[9] H. Y. Chang, G. Y. Chen, and Y. M. Hsin, “A broadband high efficiency high output power frequency doubler,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 4, pp. 226-228, Apr. 2010.
[10] C. H. Lin, J. C. Chiu, C. M Lin, Y. A. Lai and Y. H. Wang, “A variable conversion gain star mixer for Ka-Band applications,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 11, pp. 802-804, Nov. 2007.
[11] L. Boglione and R. Pavio, “Temperature and process insensitive circuit design of a voltage variable attenuator IC for cellular band applications,” IEEE Microw. Guided Wave Lett., vol. 10, pp. 279-281, Jul. 2000.
[12] S. M. Daoud, and P. N. Shastry, “A novel wideband MMIC voltage controlled attenuator with a bandpass filter topology,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, part. 2, pp. 2576–2583, Jun. 2006.
[13] D. Coffing, E. Main, M. Randol and G. Szklarz, “A variable gain amplifier with 50-dB control range for 900-MHz applications,” IEEE J. Solid-State Circuits, vol. 37, no. 9, pp.1169-1175, Sept. 2002.
[14] C. S. Lin, P. S. Wu, M. C. Yeh, J. S. Fu, H. Y. Chang, K. Y. Lin, and H. Wang, “Analysis of multiconductor coupled-line Marchand baluns for miniature MMIC design,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 6, pp. 1190–1199, Jun. 2007.
[15] Y. Campos-Roca, L. Verweyen, M. Fernandez-Barciela, W. Bischof, M.C. Curras-Francos, E. Sanchez, A. Hulsmann, and M. Schlechtweg, ”38/76 GHz PHEMT MMIC balance frequency doublers in coplanar technology,” IEEE Microw. Guided Wave Lett., vol. 10, no. 11, pp. 484-487, Nov. 2000.
[16] K. Nishikawa, B. Piernas, T. Nakagawa, and K. Araki, “Miniaturized and broadband V-band balanced frequency doubler for highly integrated 3-D MMIC,” in IEEE MTT-S Int. Dig., vol. 1, pp.351–354, Jun. 2002.
[17] M. C. Tsai, “A new compact wideband balun,” in IEEE MTT-S Int. Microw. Symp. Digest, vol. 1, pp. 141–143, Jun. 1993.
[18] R. Mongia, I. Bahl, and P. Bhartia, RF and Microwave Coupled-Line Circuits, Norwood, MA: Artech House, 1999.
[19] I. D. Robertson, and S. Lucyszyn, RFIC and MMIC Design and Technology. The Institute of Electrical Engineers, London, United Kingdom, 2001.
[20] N. Marchand, “Transmission line conversion transformers,” Electronics, vol. 17, no. 12, pp.142-145, Dec. 1944.
[21] Z. Liu, and R. M. Weikle, “A 180° hybrid based on interdigitally coupled asymmetrical artificial transmission lines,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1555-1558, June 2006.
[22] T. Fujii, and I. Ohta, “Size-reduction of coupled-microstrip 3 dB forward couplers by loading with periodic shunt capacitive stubs.” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1235-1238, June 2005.
[23] Z. Liu, and R. M. Weikle, “A 180° hybrid based on interdigitally coupled asymmetrical artificial transmission lines,” in IEEE MTT-S Int. Microw. Symp. Dig., pp. 1555-1558, June 2006.
[24] T. Fujii and I. Ohta, “Size-reduction of coupled-microstrip 3 dB forward couplers by loading with periodic shunt capacitive stubs.” in IEEE MTT-S Int. Microwave Symp. Dig., pp. 1235-1238, 12-17 June 2005.
[25] S. A. Maas and Y. Ryu, “A broadband, planar, monolithic resistive frequency doubler,” in IEEE MTT-S Int. Dig., pp. 443–446, 1994.
[26] M. Ferndahl, B. Motlagh, and H. Zirath, “40 and 60 GHz frequency doublers in 90-nm CMOS,” in IEEE MTT-S Int. Dig., vol. 1, pp. 179-182., Jun. 2004.
[27] A. Y. K. Chen, Y. Baeyens, Y. K. Chen, and J. Lin, “A 36-80 GHz high gain millimeter-wave double-balanced active frequency doubler in SiGe BiCMOS,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 9, pp. 572-574, Sept. 2009.

APPENDIX
[1] K. W. Hamed , A. P. Freundorfer and Y. M. M. Antar “A monolithic double-balanced direct conversion mixer with an integrated wideband passive balun,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 622-629, Mar. 2005.
[2] C. H. Lien, K. L. Deng, C. C. Liu, H. S. Chou, and H. Wang, “Ka-band monolithic GaAs pHEMT circuits for transceiver applications,” in Proc. Asia-Pacific Microwave Conf., pp. 1171-1174, Dec, 2000.
[3] L. Verweyen, H. Massler, M. Neumann, U. Schaper, and W. H. Haydl, “Coplanar integrated mixers for 77-GHz automotive applications,” IEEE Microw. Guided Wave Lett., vol. 8, pp. 38-40, Jan. 1998.
[4] P. S. Wu, C. H. Wang, T. W. Huang and H. Wang, “Compact and broad-band millimeter-wave monolithic transformer balanced mixers,” IEEE Trans. Microw. Theory Tech., vol. MTT-53, no. 10, pp. 3106-3114, Oct. 2005.
[5] S. A. Maas, F. M. Yamada, A. K. Oki, N. Matovelle, and C. Hochuli, “An 18-40 GHz monolithic ring mixer,” in IEEE WIC Symp. Dig., 1998, pp. 29-32.
[6] C. H. Lin, J. C. Chiu, C. M. Lin, Y. A. Lai and Y. H. Wang, “A variable conversion gain star mixer for Ka-Band applications,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 11, pp. 802-804, Nov. 2007.
[7] S. S. Kim, J. H. Lee and K. W. Yeom, “A novel planar dual balun for doubly balanced star mixer,” IEEE Microw. Wireless Compon. Lett., vol. 14, no.9, pp. 440-442, Sep. 2004.
[8] T. Y. Yang, W. R. Lien, C. C. Yang and H. K. Chiou, “A compact V-Band star mixer using compensated overlay capacitors in dual baluns,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 7, pp. 537-539, July. 2007.
[9] K. W. Yeom and D. H. Ko, “A novel 60-GHz monolithic star mixer using gate-drain-connected pHEMT diodes,” IEEE Trans. Microw. Theory Tech., vol. MTT-53, no. 7, pp. 2435-2440, July. 2005.
[10] C. M. Lin, H. K. Lin, C. F. Lin, Y. A. Lai, C. H. Lin and Y. H. Wang, “A 16-44 GHz Compact Doubly Balanced Monolithic Ring Mixer,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 620-622, Sep. 2008.
[11] C. J. Trantanella, “Ultra-small MMIC mixers for K- and Ka-band communications,” in IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, pp. 647-650, 2000.
[12] C. C. Kuo, C. L. Kuo, C. J. Kuo, S. A. Maas and H. Wang, “Novel Miniature and Broadband Millimeter-Wave Monolithic Star Mixers,” IEEE Trans. Microw. Theory Tech., vol. MTT-56, no. 4, pp. 793-802, April 2008.
[13] C. H. Lin, C. M. Lin, Y. A. Lai and Y. H. Wang, “A 26-38 GHz Monolithic Doubly Balanced Mixer,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 9, pp. 623-625, Sep. 2008.
[14] S. A. Maas and K.W. Chang, “A broadband, planar, doubly balanced monolithic Ka-band diode mixer,” IEEE Trans. Microw. Theory Tech., vol. MTT-41, no. 12, pp. 2330-2335, Dec. 1993.
[15] M. Yu, and R. H. Walden, A. E. Schmitz, and M. Lui, “Ka/Q-band doubly balanced MMIC mixers with low LO power,” IEEE Microw. Guided Wave Lett., vol. 10, no. 10, pp.424-426, Oct. 2000.
[16] C. Nguyen and D. Smith, “Novel miniaturized wideband baluns for MIC and MMIC applications,” Electron. Lett., vol. 29, no. 12, pp. 1060-1061, June 1993.
[17] K.W. Chang, T.H. Chen, H. Wang, S.A. Maas, “Frequency upconversion behavior of singly balanced diode mixers,” in IEEE APS Symp. Digest, vol. 1, pp. 222-225, Jun. 24-28, 1991.
[18] S. A. Maas, Microwave Mixers, 2nd ed. Norwood, MA: Artech House, 1993.
[19] M. Madihian, L. Desclos, K. Muruhashi, K. Onda, and M. Kuzuhara, “A monolithic AlGaAs/InGaAs up-converter IC for K-band wireless networks,” IEEE Trans. Microwave Theory Tech., vol. 43, pp. 2773-2778, Dec. 1995.
[20] H. Ogawa, M. Aikawa and K. Morita, “K-Band integrated double-balanced mixer,” IEEE Trans. Microw. Theory Tech., vol. MTT-28, no.3, pp. 180-185, Mar. 1980.
[21] D. Regev, “Characterization of spurious-response suppression in double-balanced mixers,” IEEE Trans. Microw. Theory Tech., vol. MTT-38, no.2, pp. 123-128, Feb. 1990.
[22] J. A. Hou and Y. H. Wang, “A compact quadrature hybrid based on high-pass and low-pass lumped elements,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 8, pp. 595-597, Aug. 2007.
[23] I. Ohta, X. P. Li, T. Kawai, and Y. Kokubo, “A design of lumped-element 3 dB quadrature hybrids,” Asia-Pacific Microw. Conf. Proceedings, vol. 3, pp. 1141-1144, Dec 1997.
[24] D. M. Pozar, Microwave engineering, 2nd Ed. New York: Wiley 1998.
[25] M. Madihian, L. Desclos, K. Muruhashi, K. Onda, and M. Kuzuhara, “A monolithic AlGaAs/InGaAs up-converter IC for K-band wireless networks,” IEEE Trans. Microwave Theory Tech., vol. 43, pp. 2773-2778, Dec. 1995.
[26] P. J. Sullivan, B. A. Xavier, and W. H. Ku, “Low voltage performance of a microwave CMOS Gilbert cell mixer,” IEEE J. Solid-State Circuits, vol. 32, pp. 1151-1155, July. 1997.
[27] J. P. Comeau and J. D. Cressler, “A 28-GHz SiGe up-conversion mixer using a series-connected triplet for higher dynamic range and improved IF port return loss,” IEEE J. Solid-State Circuits, vol. 41, no. 3, pp. 560–565, Mar. 2006.
[28] E. J. Wilkinson, “An N-way power divider,” IEEE Trans. Microw. Theory Tech., vol. MTT-8, pp. 116-118, Jan. 1960.
[29] M. E. Goldfarb, “A recombinant, in-phase power divider,” IEEE Trans. Microw. Theory Tech., vol. MTT-39, no. 8, pp. 1438-1440, Aug. 1991.
[30] J. C. Chiu, J. M. Lin, and Y. H. Wang, “A novel planar three-way power divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 8, pp. 449-451, Aug. 2006.
[31] Y. Sun, and A. P. Freundorfer, “Broadband folded Wilkinson power combiner/splitter,” IEEE Microw. Wireless Compon. Lett., vol.14, no.6, pp. 295-297, June., 2004
[32] J. M. Rebollar, J. Esteban and J. E. Page, “Design of a compact Ka-band three-way power divider,” IEEE Antennas and Propagation Society International Symp, Dig., vol. 2, pp. 1074-1077, June 20-24, 1994.
[33] J. Reed and G. H. Wheeler, “A method of analysis of symmetrical four-port networks,” IRE Trans. Microw. Theory Tech., vol. MTT-4, no. 10, pp. 246-252, Oct. 1956.
[34] S. B. Cohn, “A class of broad-band three-port TEM mode hybrids,” IEEE Trans. Microw. Theory Tech., vol. MTT-16, pp. 110-116, Feb. 1968.
[35] H.R. Ahn, K. Lee, and N.H. Myung, “General design equations of N-way arbitrary power dividers,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, pp.65-68, June. 2004.
[36] Gustavo López Risueño, J. I. Alonso, “Simulation of Interdigitated Structures using Two-Coupled Line Models,” Microwave Journal, Vol. 43, No. 6, pp. 70-82, June 2000.
[37] G. Mazzarela, “CAD Modeling of Interdigital Structures,” IEEE Trans. on Education, vol. 42, no. 1, pp. 81-87, Feb. 1999.
[38] Y. J. Ko, J. Y. Park, and J. U. Bu, “Fully integrated unequal Wilkinson power divider with EBG CPW,” IEEE Microw. Wireless Compon. Lett., vol. 13, no. 7, pp. 276-278, July. 2003.
[39] M. Catoiu, “A novel 3-way hybrid combiner/divider for high power C-class microwave amplifiers,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, pp. 31-34, May. 2001.
[40] M. B. Bazdar, A. R. Djordjevic, R. F. Harrington, and T. K. Sarkar, “Evaluation of quasi-static matrix parameters for multiconductor transmission lines using Galerkin's method,” IEEE Trans. Microwave Theory Tech., vol. MTT-42, no.7, pp. 1223-1228, July 1994.
[41] D. E. Meharry, J. E. Sanctuary, and B. A. Golja, “Broad bandwidth transformer coupled differential amplifiers for high dynamic range,” IEEE J. Solid-State Circuits, vol. 34, pp. 1233-1238, Sept. 1999.
[42] C. H. Lin, J. C. Chiu, C. M. Lin, Y. A. Lai and Y. H. Wang, “A variable conversion gain star mixer for Ka-Band applications,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 11, pp. 802-804, Nov. 2007.
[43] K. S. Ang and Y. C. Leong, “Converting baluns into broad-band impedance-transforming 180° hybrids,” IEEE Trans. Microwave Theory Tech., vol. 50, pp. 1990-1995, Aug. 2002.
[44] M. Chongcheawchamnan, C. Y. Ng, K. Bandudej, A. Worapishet and I. D. Robertson, “On miniaturization isolation network of an all-ports matched impedance-transforming Marchand balun,” IEEE Microw. Wireless Compon. Lett., vol. 13, no.7, pp. 281-283, July. 2003.
[45] H. K. Chiou and H. H. Lin, “A miniature MMIC double doubly balanced mixer using lumped dual balun for high dynamic receiver application,” IEEE Microw. Wireless Compon. Lett., vol. 7, no. 8, pp. 227–229, Aug. 1997.
[46] Z. Y. Zhang, Y. X. Guo, L. C. Ong, and M. Y. W. Chia, “A new wide-band planar balun on a single-layer PCB,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 6, pp. 416-418, Jun. 2005.
[47] M. A. Antoniades and G. V. Eleftheriades, “A broadband Wilkinson balun using microstrip metamaterial lines,” IEEE Antennas Wireless Propag. Lett., vol. 4, no. 8, pp. 209-212, Aug. 2005.
[48] S. S. Bharj, S. P. Tan, and B. Thompson, “A 2-18 GHz 180 degree phase splitter network,” in IEEE MTT-S Symp. Dig., 1989, pp. 959–962.
[49] S. Basu and S. A. Maas, “Design and performance of a planar star mixer,” IEEE Trans. Microw. Theory Tech., vol. 41, no.11, pp. 2028-2030, Nov. 1993.
[50] R. Mongia, I. Bahl, and P. Bhartia, RF and Microwave Coupled-Line Circuits. Norwood, MA: Artech House, 1999.
[51] H. R. Ahn, K. Lee, and N. H. Myung, “General design equations of N-way arbitrary power dividers,” IEEE MTT-S Int. Microwave Symp. Dig., vol. 1, pp. 65-68, June. 2004.
[52] I. D. Robertson, and S. Lucyszyn, RFIC and MMIC Design and Technology. The Institute of Electrical Engineers, London, U.K., 2001.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2011-08-30起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2012-08-30起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw