進階搜尋


下載電子全文  
系統識別號 U0026-0406201616311100
論文名稱(中文) 防治與預測靜脈移植栓塞:機械力過載引起的內皮細胞過度自噬
論文名稱(英文) Prevention and Prediction of Vein Graft Stenosis: Mechanical Force Overload-induced Excessive Autophagy in Endothelial Cells
校院名稱 成功大學
系所名稱(中) 基礎醫學研究所
系所名稱(英) Institute of Basic Medical Sciences
學年度 104
學期 2
出版年 105
研究生(中文) 張雅茹
研究生(英文) Ya-Ju Chang
學號 S58991405
學位類別 博士
語文別 英文
論文頁數 84頁
口試委員 指導教授-吳佳慶
召集委員-黃朝慶
口試委員-江美治
口試委員-林聖哲
口試委員-陳玉怜
口試委員-裘正健
中文關鍵字 栓塞  內皮細胞  高頻超音波  自噬作用 
英文關鍵字 Stenosis  Endothelial cells (ECs)  High frequency ultrasound  Autophagy 
學科別分類
中文摘要 研究背景: 靜脈移植疾病的分子與機械基礎目前鮮為人知且難以預測。而其中,經血液流體力學轉變引發的過度自噬反應在靜脈栓塞當中尚未被透徹了解。發展一套精密診斷系統以評估機械因素對靜脈移植疾病的病理進程影響是必要的。

方法與結果: 靜動脈過渡引起的分子級聯使自噬反應與凋亡在靜脈內皮細胞中產生而引發內膜增生。利用體外活體系統將動脈層流剪力灌流至靜脈中也證實了血液流體力學轉換所引發的內皮細胞受損伴隨著自噬作用與發炎反應之關聯性。內皮細胞損傷可藉由利用3-甲基腺嘌呤(3-MA)抑制自噬反應而被挽救。並且在靜脈移植前給予靜脈3-甲基腺嘌呤可減少在大鼠在手術後第三週的內膜增生。栓塞的引發可藉由利用高頻超音波平台闡發及估算來自von-Mises stress的屈服應力以預測在活體大鼠中的損傷部位,而其損傷部位同時亦與高頻超音波影像中的高強度回聲有關聯性。

結論: 這些結果允諾該平台具備預測移植靜脈中損傷好發處的能力,並可對相關治療提供指示引導。
英文摘要 Background- Little is known about the molecular and mechanical bases for vein graft disease, which limits the grafting prognoses. The role of hemodynamic changes-triggered excessive autophagy in vein graft stenosis is still unclear. The development of a precise diagnostic system is necessary for assessing the mechanical effects during pathological progression of vein graft disease.

Methods and Results- The venous-arterial transition induced the molecular cascades for autophagy and apoptosis in venous endothelial cells (ECs) to cause neointimal hyperplasia. Ex vivo perfusion of arterial laminar shear stress (ALSS) to isolated veins further confirmed the switch of hemodynamic force induced endothelial injury accompanying autophagy and inflammatory responses. ALSS-induced venous EC damage can be rescued by inhibiting autophagy with 3-methyladenine (3-MA) pretreatment. Immersing veins into 3-MA solution prior to grafting reduced neointima formation in rats at post-surgical week three. Stenosis was detected by using a high-frequency ultrasonic (HFU) echogenicity platform and the yield stress was estimated by von-Mises stress computation to predict the damage locations in living rats, which correlated with the high echogenicity in HFU images.

Conclusion- These studies establish the platform to predict potential damaged sites in grafted veins and provide guidance for rational treatments.
論文目次 中文摘要...........1
Abstract...........2
Acknowledgement...........3
Contents............5
Table Contents..........8
Figure Contents............9
Chapter 1. Introduction.........11
1-1 Vein graft disease...........12
1-1.1 Vein graft bypass surgery...........12
1-1.2 Hemodynamic Shear Stress on Endothelial Cells (ECs)....12
1-1.3 Pathological remodeling...........13
1-2 Autophagy...........13
1-2.1 Biological Machinery ..........13
1-2.2 Crosstalk among Cell Death and Inflammation......14
1-2.3 Autophagy in Disease............15
1-3 Non-invasive medical imaging: Ultrasonography......16
1-3.1 High frequency ultrasound (HFU).........16
1-3.2 Ultrasound signal translation .........17
1-4 Digitizing biological events: image-based simulation....18
1-4.1 Computational Fluid dynamics (CFD) simulation......18
1-4.2 von-Mises stress...........19
1-5 Objective of study...........20
Chapter 2. Materials and Methods........21
2-1 Bypass-grafting animals ..........22
2-2 Ex vivo system establishment and arterial flow application ...22
2-3 Histological assessments ........23
2-4 HFU measurements ..........26
2-5 Predict stress overload by computational simulation .....27
2-6 Statistical analysis ..........29
Chapter 3. Role of Excessive Autophagy in Vein Graft Disease....31
3-1 Pathological evidences for endothelium damage and autophagy in vein graft disease ...........32
3-2 Confirmation of flow-regulation of venous endothelium damage cascades in ex vivo vessels ..........33
3-3 Transient inhibition of excessive autophagy alleviates EC damage ...34
3-4 Blockage autophagy prior to bypass surgery moderates neointimal hyperplasia in vein grafts ..........35
Chapter 4. Ultrasonic-based Platform Application on Vein Graft Disease: from Vascular to Molecular Scale .......37
4-1 Non-invasive prediction of endothelium damage from yield stress..38
4-2 Validate the CFD predictions with ultrasonic and histological findings.39
4-3 Ex-vivo and in vivo systems confirm HFU hyperechogenicity with autophagy-inflammation findings........40
Chapter 5. Discussion.........42
Chapter 6. Summary.........47
References............49
參考文獻 1. Parang, P. & Arora, R. Coronary vein graft disease: pathogenesis and prevention. Can. J. Cardiol. 25, e57–62 (2009).
2. Sabik, J. F. Understanding Saphenous Vein Graft Patency. Circulation 124, 273–275 (2011).
3. Bourassa, M. G. et al. Long-term fate of bypass grafts: the Coronary Artery Surgery Study (CASS) and Montreal Heart Institute experiences. Circulation 72, V71–8 (1985).
4. Campeau, L. et al. Loss of the improvement of angina between 1 and 7 years after aortocoronary bypass surgery: correlations with changes in vein grafts and in coronary arteries. Circulation 60, 1–5 (1979).
5. Chien, S. Effects of disturbed flow on endothelial cells. Ann. Biomed. Eng. 36, 554–62 (2008).
6. Li, Y.-S. J., Haga, J. H. & Chien, S. Molecular basis of the effects of shear stress on vascular endothelial cells. J. Biomech. 38, 1949–71 (2005).
7. Chiu, J.-J. & Chien, S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91, 327–87 (2011).
8. Malek, A. M., Alper, S. L. & Izumo, S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282, 2035–42 (1999).
9. Nerem, R. M. et al. The study of the influence of flow on vascular endothelial biology. Am. J. Med. Sci. 316, 169–75 (1998).
10. Galis, Z. S. & Khatri, J. J. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ. Res. 90, 251–62 (2002).
11. Kwei, S. et al. Early adaptive responses of the vascular wall during venous arterialization in mice. Am. J. Pathol. 164, 81–9 (2004).
12. Ali, Z. A. et al. Tetrahydrobiopterin determines vascular remodeling through enhanced endothelial cell survival and regeneration. Circulation 128, S50–8 (2013).
13. Li, F. D. et al. Intimal thickness associated with endothelial dysfunction in human vein grafts. J. Surg. Res. 180, e55–62 (2013).
14. Gluckman, T. J. et al. Effects of aspirin responsiveness and platelet reactivity on early vein graft thrombosis after coronary artery bypass graft surgery. J. Am. Coll. Cardiol. 57, 1069–77 (2011).
15. Moreno, K. et al. Circulating inflammatory cells are associated with vein graft stenosis. J. Vasc. Surg. 54, 1124–30 (2011).
16. Satoh, K. et al. Cyclophilin A mediates vascular remodeling by promoting inflammation and vascular smooth muscle cell proliferation. Circulation 117, 3088–98 (2008).
17. Hastings, N. E., Simmers, M. B., McDonald, O. G., Wamhoff, B. R. & Blackman, B. R. Atherosclerosis-prone hemodynamics differentially regulates endothelial and smooth muscle cell phenotypes and promotes pro-inflammatory priming. Am. J. Physiol. Cell Physiol. 293, C1824–33 (2007).
18. Zhang, L., Freedman, N. J., Brian, L. & Peppel, K. Graft-extrinsic cells predominate in vein graft arterialization. Arterioscler. Thromb. Vasc. Biol. 24, 470–6 (2004).
19. Mitra, A. K., Gangahar, D. M. & Agrawal, D. K. Cellular, molecular and immunological mechanisms in the pathophysiology of vein graft intimal hyperplasia. Immunol. Cell Biol. 84, 115–24 (2006).
20. Bonetti, P. O., Lerman, L. O. & Lerman, A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler. Thromb. Vasc. Biol. 23, 168–75 (2003).
21. Manchio, J. V et al. Disruption of graft endothelium correlates with early failure after off-pump coronary artery bypass surgery. Ann. Thorac. Surg. 79, 1991–8 (2005).
22. Li, W., Li, J. & Bao, J. Microautophagy: lesser-known self-eating. Cell. Mol. Life Sci. 69, 1125–36 (2012).
23. Cuervo, A. M. & Wong, E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 24, 92–104 (2014).
24. Deretic, V., Saitoh, T. & Akira, S. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 13, 722–37 (2013).
25. Codogno, P., Mehrpour, M. & Proikas-Cezanne, T. Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat. Rev. Mol. Cell Biol. 13, 7–12 (2012).
26. Feng, Y., He, D., Yao, Z. & Klionsky, D. J. The machinery of macroautophagy. Cell Res. 24, 24–41 (2014).
27. Yang, Z. & Klionsky, D. J. Eaten alive: a history of macroautophagy. Nat. Cell Biol. 12, 814–22 (2010).
28. Ravikumar, B. et al. Mammalian macroautophagy at a glance. J. Cell Sci. 122, 1707–11 (2009).
29. Mizushima, N. Autophagy: process and function. Genes Dev. 21, 2861–73 (2007).
30. Jones, S. A., Mills, K. H. G. & Harris, J. Autophagy and inflammatory diseases. Immunol. Cell Biol. 91, 250–8 (2013).
31. Virgin, H. W. & Levine, B. Autophagy genes in immunity. Nat. Immunol. 10, 461–70 (2009).
32. Shpilka, T., Weidberg, H., Pietrokovski, S. & Elazar, Z. Atg8: an autophagy-related ubiquitin-like protein family. Genome Biol. 12, 226 (2011).
33. Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–45 (2007).
34. Bjørkøy, G. et al. Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol. 452, 181–97 (2009).
35. Mariño, G., Niso-Santano, M., Baehrecke, E. H. & Kroemer, G. Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 15, 81–94 (2014).
36. Denton, D., Xu, T. & Kumar, S. Autophagy as a pro-death pathway. Immunol. Cell Biol. 93, 35–42 (2015).
37. Marquez, R. T. & Xu, L. Bcl-2:Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch. Am. J. Cancer Res. 2, 214–21 (2012).
38. Lindqvist, L. M., Heinlein, M., Huang, D. C. S. & Vaux, D. L. Prosurvival Bcl-2 family members affect autophagy only indirectly, by inhibiting Bax and Bak. Proc. Natl. Acad. Sci. U. S. A. 111, 8512–7 (2014).
39. Arroyo, D. S. et al. Autophagy in inflammation, infection, neurodegeneration and cancer. Int. Immunopharmacol. 18, 55–65 (2014).
40. Medzhitov, R. & Horng, T. Transcriptional control of the inflammatory response. Nat. Rev. Immunol. 9, 692–703 (2009).
41. Chen, G. Y. & Nuñez, G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 10, 826–37 (2010).
42. Harris, J. et al. Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. J. Biol. Chem. 286, 9587–9597 (2011).
43. Jia, G., Cheng, G., Gangahar, D. M. & Agrawal, D. K. Insulin-like growth factor-1 and TNF-alpha regulate autophagy through c-jun N-terminal kinase and Akt pathways in human atherosclerotic vascular smooth cells. Immunol. Cell Biol. 84, 448–454 (2006).
44. Chiu, J. J. et al. Shear Stress Increases ICAM-1 and Decreases VCAM-1 and E-selectin Expressions Induced by Tumor Necrosis Factor-α in Endothelial Cells. Arterioscler. Thromb. Vasc. Biol. 24, 73–79 (2004).
45. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–5 (2011).
46. Shi, C.-S. et al. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 13, 255–63 (2012).
47. Gatica, D., Chiong, M., Lavandero, S. & Klionsky, D. J. Molecular mechanisms of autophagy in the cardiovascular system. Circ. Res. 116, 456–67 (2015).
48. Schrijvers, D. M., De Meyer, G. R. Y. & Martinet, W. Autophagy in atherosclerosis: a potential drug target for plaque stabilization. Arterioscler. Thromb. Vasc. Biol. 31, 2787–91 (2011).
49. Orogo, A. M. & Gustafsson, Å. B. Therapeutic targeting of autophagy: potential and concerns in treating cardiovascular disease. Circ. Res. 116, 489–503 (2015).
50. Shi, R. et al. Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci. Ther. 18, 250–60 (2012).
51. Autophagy in Human Health and Disease — NEJM. at
52. Valentim, L. et al. Urocortin inhibits Beclin1-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury. J. Mol. Cell. Cardiol. 40, 846–52 (2006).
53. Zhu, H. et al. Cardiac autophagy is a maladaptive response to hemodynamic stress. J. Clin. Invest. 117, 1782–93 (2007).
54. Zhang, D. et al. MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice. J. Clin. Invest. 120, 2805–16 (2010).
55. Kim, J. et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152, 290–303 (2013).
56. Rubinsztein, D. C., Codogno, P. & Levine, B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov. 11, 709–30 (2012).
57. Uemiya, N. et al. Analysis of restenosis after carotid artery stenting: preliminary results using computational fluid dynamics based on three-dimensional angiography. J. Clin. Neurosci. 20, 1582–7 (2013).
58. McGah, P. M., Leotta, D. F., Beach, K. W., Riley, J. J. & Aliseda, A. A longitudinal study of remodeling in a revised peripheral artery bypass graft using 3D ultrasound imaging and computational hemodynamics. J. Biomech. Eng. 133, 041008 (2011).
59. Marshall, I., Zhao, S., Papathanasopoulou, P., Hoskins, P. & Xu, Y. MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models. J. Biomech. 37, 679–87 (2004).
60. Langø, T. Ultrasound guided surgery: image processing and navigation. Science And Technology (2000). at
61. Leinenga, G. & Gotz, J. Scanning ultrasound removes amyloid-  and restores memory in an Alzheimer’s disease mouse model. Sci. Transl. Med. 7, 278ra33–278ra33 (2015).
62. Shung, K. K. High Frequency Ultrasonic Imaging. J. Med. Ultrasound 17, 25–30 (2009).
63. Carovac, A., Smajlovic, F. & Junuzovic, D. Application of ultrasound in medicine. Acta Inform. medica AIM J. Soc. Med. Informatics Bosnia Herzegovina časopis Društva za Med. Inform. BiH 19, 168–71 (2011).
64. Chen, Y.-C. et al. Monitoring tissue inflammation and responses to drug treatments in early stages of mice bone fracture using 50 MHz ultrasound. Ultrasonics 54, 177–86 (2014).
65. Duenwald-Kuehl, S., Lakes, R. & Vanderby, R. Strain-induced damage reduces echo intensity changes in tendon during loading. J. Biomech. 45, 1607–11 (2012).
66. Lin, S. et al. Cross-Sectional Nakagami Images in Passive Stretches Reveal Damage of Injured Muscles. 2016, (2016).
67. Tsui, P.-H. & Chang, C.-C. Imaging local scatterer concentrations by the Nakagami statistical model. Ultrasound Med. Biol. 33, 608–19 (2007).
68. Ho, M.-C. et al. Using ultrasound Nakagami imaging to assess liver fibrosis in rats. Ultrasonics 52, 215–22 (2012).
69. Lin, Y.-H., Huang, C.-C. & Wang, S.-H. Quantitative assessments of burn degree by high-frequency ultrasonic backscattering and statistical model. Phys. Med. Biol. 56, 757–73 (2011).
70. Gerhard-Herman, M. et al. Guidelines for noninvasive vascular laboratory testing: a report from the American Society of Echocardiography and the Society for Vascular Medicine and Biology. Vasc. Med. 11, 183–200 (2006).
71. Peiro, J. & Sherwin, S. Finite Difference, Finite Element and Finite Volume Methods for Partial Differential Equations. Handb. Mater. Model. M, 2415–2446 (2005).
72. Liu, W. K. et al. Immersed finite element method and its applications to biological systems. Comput. Methods Appl. Mech. Eng. 195, 1722–1749 (2006).
73. Gíslason, M. K., Stansfield, B. & Nash, D. H. Finite element model creation and stability considerations of complex biological articulation: The human wrist joint. Med. Eng. Phys. 32, 523–31 (2010).
74. Fillinger, M. F., Marra, S. P., Raghavan, M. L. & Kennedy, F. E. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J. Vasc. Surg. 37, 724–32 (2003).
75. Wang, X. & Li, X. Biomechanical behaviors of curved artery with flexible wall: a numerical study using fluid-structure interaction method. Comput. Biol. Med. 41, 1014–21 (2011).
76. Newman, M. F. et al. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N. Engl. J. Med. 344, 395–402 (2001).
77. Pattingre, S. et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927–39 (2005).
78. Wang, J. Beclin 1 bridges autophagy, apoptosis and differentiation. Autophagy 4, 947–8 (2008).
79. Ghosh, K., Scott, H., Yang, X. & Ardekani, S. Abstract 220: Role of ECM Stiffness in Microvascular Inflammation. Circ. Res. 113, A220– (2013).
80. Liou, J.-Y., Wu, C.-C., Chen, B.-R., Yen, L. B. & Wu, K. K. Nonsteroidal anti-inflammatory drugs induced endothelial apoptosis by perturbing peroxisome proliferator-activated receptor-delta transcriptional pathway. Mol. Pharmacol. 74, 1399–406 (2008).
81. Schips, T. G. et al. FoxO3 induces reversible cardiac atrophy and autophagy in a transgenic mouse model. Cardiovasc. Res. 91, 587–97 (2011).
82. Kroemer, G., Mariño, G. & Levine, B. Autophagy and the integrated stress response. Mol. Cell 40, 280–93 (2010).
83. Totzke, G., Schulze-Osthoff, K. & Jänicke, R. U. Cyclooxygenase-2 (COX-2) inhibitors sensitize tumor cells specifically to death receptor-induced apoptosis independently of COX-2 inhibition. Oncogene 22, 8021–30 (2003).
84. Yamanaka, Y. et al. COX-2 inhibitors sensitize human hepatocellular carcinoma cells to TRAIL-induced apoptosis. Int. J. Mol. Med. 18, 41–7 (2006).
85. Li, J. et al. Specific COX-2 inhibitor, meloxicam, suppresses proliferation and induces apoptosis in human HepG2 hepatocellular carcinoma cells. J. Gastroenterol. Hepatol. 21, 1814–20 (2006).
86. Weng, L. et al. Aliskiren ameliorates pressure overload-induced heart hypertrophy and fibrosis in mice. Acta Pharmacol. Sin. 35, 1005–14 (2014).
87. Maiuri, M. C. et al. Macrophage autophagy in atherosclerosis. Mediators Inflamm. 2013, (2013).
88. Zakkar, M. et al. Dexamethasone arterializes venous endothelial cells by inducing mitogen-activated protein kinase phosphatase-1: A novel antiinflammatory treatment for vein grafts? Circulation 123, 524–532 (2011).
89. Torsney, E. et al. Thrombosis and neointima formation in vein grafts are inhibited by locally applied aspirin through endothelial protection. Circ. Res. 94, 1466–1473 (2004).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-06-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2018-06-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw