參考文獻 |
1. Parang, P. & Arora, R. Coronary vein graft disease: pathogenesis and prevention. Can. J. Cardiol. 25, e57–62 (2009).
2. Sabik, J. F. Understanding Saphenous Vein Graft Patency. Circulation 124, 273–275 (2011).
3. Bourassa, M. G. et al. Long-term fate of bypass grafts: the Coronary Artery Surgery Study (CASS) and Montreal Heart Institute experiences. Circulation 72, V71–8 (1985).
4. Campeau, L. et al. Loss of the improvement of angina between 1 and 7 years after aortocoronary bypass surgery: correlations with changes in vein grafts and in coronary arteries. Circulation 60, 1–5 (1979).
5. Chien, S. Effects of disturbed flow on endothelial cells. Ann. Biomed. Eng. 36, 554–62 (2008).
6. Li, Y.-S. J., Haga, J. H. & Chien, S. Molecular basis of the effects of shear stress on vascular endothelial cells. J. Biomech. 38, 1949–71 (2005).
7. Chiu, J.-J. & Chien, S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol. Rev. 91, 327–87 (2011).
8. Malek, A. M., Alper, S. L. & Izumo, S. Hemodynamic shear stress and its role in atherosclerosis. JAMA 282, 2035–42 (1999).
9. Nerem, R. M. et al. The study of the influence of flow on vascular endothelial biology. Am. J. Med. Sci. 316, 169–75 (1998).
10. Galis, Z. S. & Khatri, J. J. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ. Res. 90, 251–62 (2002).
11. Kwei, S. et al. Early adaptive responses of the vascular wall during venous arterialization in mice. Am. J. Pathol. 164, 81–9 (2004).
12. Ali, Z. A. et al. Tetrahydrobiopterin determines vascular remodeling through enhanced endothelial cell survival and regeneration. Circulation 128, S50–8 (2013).
13. Li, F. D. et al. Intimal thickness associated with endothelial dysfunction in human vein grafts. J. Surg. Res. 180, e55–62 (2013).
14. Gluckman, T. J. et al. Effects of aspirin responsiveness and platelet reactivity on early vein graft thrombosis after coronary artery bypass graft surgery. J. Am. Coll. Cardiol. 57, 1069–77 (2011).
15. Moreno, K. et al. Circulating inflammatory cells are associated with vein graft stenosis. J. Vasc. Surg. 54, 1124–30 (2011).
16. Satoh, K. et al. Cyclophilin A mediates vascular remodeling by promoting inflammation and vascular smooth muscle cell proliferation. Circulation 117, 3088–98 (2008).
17. Hastings, N. E., Simmers, M. B., McDonald, O. G., Wamhoff, B. R. & Blackman, B. R. Atherosclerosis-prone hemodynamics differentially regulates endothelial and smooth muscle cell phenotypes and promotes pro-inflammatory priming. Am. J. Physiol. Cell Physiol. 293, C1824–33 (2007).
18. Zhang, L., Freedman, N. J., Brian, L. & Peppel, K. Graft-extrinsic cells predominate in vein graft arterialization. Arterioscler. Thromb. Vasc. Biol. 24, 470–6 (2004).
19. Mitra, A. K., Gangahar, D. M. & Agrawal, D. K. Cellular, molecular and immunological mechanisms in the pathophysiology of vein graft intimal hyperplasia. Immunol. Cell Biol. 84, 115–24 (2006).
20. Bonetti, P. O., Lerman, L. O. & Lerman, A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler. Thromb. Vasc. Biol. 23, 168–75 (2003).
21. Manchio, J. V et al. Disruption of graft endothelium correlates with early failure after off-pump coronary artery bypass surgery. Ann. Thorac. Surg. 79, 1991–8 (2005).
22. Li, W., Li, J. & Bao, J. Microautophagy: lesser-known self-eating. Cell. Mol. Life Sci. 69, 1125–36 (2012).
23. Cuervo, A. M. & Wong, E. Chaperone-mediated autophagy: roles in disease and aging. Cell Res. 24, 92–104 (2014).
24. Deretic, V., Saitoh, T. & Akira, S. Autophagy in infection, inflammation and immunity. Nat. Rev. Immunol. 13, 722–37 (2013).
25. Codogno, P., Mehrpour, M. & Proikas-Cezanne, T. Canonical and non-canonical autophagy: variations on a common theme of self-eating? Nat. Rev. Mol. Cell Biol. 13, 7–12 (2012).
26. Feng, Y., He, D., Yao, Z. & Klionsky, D. J. The machinery of macroautophagy. Cell Res. 24, 24–41 (2014).
27. Yang, Z. & Klionsky, D. J. Eaten alive: a history of macroautophagy. Nat. Cell Biol. 12, 814–22 (2010).
28. Ravikumar, B. et al. Mammalian macroautophagy at a glance. J. Cell Sci. 122, 1707–11 (2009).
29. Mizushima, N. Autophagy: process and function. Genes Dev. 21, 2861–73 (2007).
30. Jones, S. A., Mills, K. H. G. & Harris, J. Autophagy and inflammatory diseases. Immunol. Cell Biol. 91, 250–8 (2013).
31. Virgin, H. W. & Levine, B. Autophagy genes in immunity. Nat. Immunol. 10, 461–70 (2009).
32. Shpilka, T., Weidberg, H., Pietrokovski, S. & Elazar, Z. Atg8: an autophagy-related ubiquitin-like protein family. Genome Biol. 12, 226 (2011).
33. Pankiv, S. et al. p62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J. Biol. Chem. 282, 24131–45 (2007).
34. Bjørkøy, G. et al. Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol. 452, 181–97 (2009).
35. Mariño, G., Niso-Santano, M., Baehrecke, E. H. & Kroemer, G. Self-consumption: the interplay of autophagy and apoptosis. Nat. Rev. Mol. Cell Biol. 15, 81–94 (2014).
36. Denton, D., Xu, T. & Kumar, S. Autophagy as a pro-death pathway. Immunol. Cell Biol. 93, 35–42 (2015).
37. Marquez, R. T. & Xu, L. Bcl-2:Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch. Am. J. Cancer Res. 2, 214–21 (2012).
38. Lindqvist, L. M., Heinlein, M., Huang, D. C. S. & Vaux, D. L. Prosurvival Bcl-2 family members affect autophagy only indirectly, by inhibiting Bax and Bak. Proc. Natl. Acad. Sci. U. S. A. 111, 8512–7 (2014).
39. Arroyo, D. S. et al. Autophagy in inflammation, infection, neurodegeneration and cancer. Int. Immunopharmacol. 18, 55–65 (2014).
40. Medzhitov, R. & Horng, T. Transcriptional control of the inflammatory response. Nat. Rev. Immunol. 9, 692–703 (2009).
41. Chen, G. Y. & Nuñez, G. Sterile inflammation: sensing and reacting to damage. Nat. Rev. Immunol. 10, 826–37 (2010).
42. Harris, J. et al. Autophagy controls IL-1beta secretion by targeting pro-IL-1beta for degradation. J. Biol. Chem. 286, 9587–9597 (2011).
43. Jia, G., Cheng, G., Gangahar, D. M. & Agrawal, D. K. Insulin-like growth factor-1 and TNF-alpha regulate autophagy through c-jun N-terminal kinase and Akt pathways in human atherosclerotic vascular smooth cells. Immunol. Cell Biol. 84, 448–454 (2006).
44. Chiu, J. J. et al. Shear Stress Increases ICAM-1 and Decreases VCAM-1 and E-selectin Expressions Induced by Tumor Necrosis Factor-α in Endothelial Cells. Arterioscler. Thromb. Vasc. Biol. 24, 73–79 (2004).
45. Zhou, R., Yazdi, A. S., Menu, P. & Tschopp, J. A role for mitochondria in NLRP3 inflammasome activation. Nature 469, 221–5 (2011).
46. Shi, C.-S. et al. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nat. Immunol. 13, 255–63 (2012).
47. Gatica, D., Chiong, M., Lavandero, S. & Klionsky, D. J. Molecular mechanisms of autophagy in the cardiovascular system. Circ. Res. 116, 456–67 (2015).
48. Schrijvers, D. M., De Meyer, G. R. Y. & Martinet, W. Autophagy in atherosclerosis: a potential drug target for plaque stabilization. Arterioscler. Thromb. Vasc. Biol. 31, 2787–91 (2011).
49. Orogo, A. M. & Gustafsson, Å. B. Therapeutic targeting of autophagy: potential and concerns in treating cardiovascular disease. Circ. Res. 116, 489–503 (2015).
50. Shi, R. et al. Excessive autophagy contributes to neuron death in cerebral ischemia. CNS Neurosci. Ther. 18, 250–60 (2012).
51. Autophagy in Human Health and Disease — NEJM. at
52. Valentim, L. et al. Urocortin inhibits Beclin1-mediated autophagic cell death in cardiac myocytes exposed to ischaemia/reperfusion injury. J. Mol. Cell. Cardiol. 40, 846–52 (2006).
53. Zhu, H. et al. Cardiac autophagy is a maladaptive response to hemodynamic stress. J. Clin. Invest. 117, 1782–93 (2007).
54. Zhang, D. et al. MTORC1 regulates cardiac function and myocyte survival through 4E-BP1 inhibition in mice. J. Clin. Invest. 120, 2805–16 (2010).
55. Kim, J. et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 152, 290–303 (2013).
56. Rubinsztein, D. C., Codogno, P. & Levine, B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat. Rev. Drug Discov. 11, 709–30 (2012).
57. Uemiya, N. et al. Analysis of restenosis after carotid artery stenting: preliminary results using computational fluid dynamics based on three-dimensional angiography. J. Clin. Neurosci. 20, 1582–7 (2013).
58. McGah, P. M., Leotta, D. F., Beach, K. W., Riley, J. J. & Aliseda, A. A longitudinal study of remodeling in a revised peripheral artery bypass graft using 3D ultrasound imaging and computational hemodynamics. J. Biomech. Eng. 133, 041008 (2011).
59. Marshall, I., Zhao, S., Papathanasopoulou, P., Hoskins, P. & Xu, Y. MRI and CFD studies of pulsatile flow in healthy and stenosed carotid bifurcation models. J. Biomech. 37, 679–87 (2004).
60. Langø, T. Ultrasound guided surgery: image processing and navigation. Science And Technology (2000). at
61. Leinenga, G. & Gotz, J. Scanning ultrasound removes amyloid- and restores memory in an Alzheimer’s disease mouse model. Sci. Transl. Med. 7, 278ra33–278ra33 (2015).
62. Shung, K. K. High Frequency Ultrasonic Imaging. J. Med. Ultrasound 17, 25–30 (2009).
63. Carovac, A., Smajlovic, F. & Junuzovic, D. Application of ultrasound in medicine. Acta Inform. medica AIM J. Soc. Med. Informatics Bosnia Herzegovina časopis Društva za Med. Inform. BiH 19, 168–71 (2011).
64. Chen, Y.-C. et al. Monitoring tissue inflammation and responses to drug treatments in early stages of mice bone fracture using 50 MHz ultrasound. Ultrasonics 54, 177–86 (2014).
65. Duenwald-Kuehl, S., Lakes, R. & Vanderby, R. Strain-induced damage reduces echo intensity changes in tendon during loading. J. Biomech. 45, 1607–11 (2012).
66. Lin, S. et al. Cross-Sectional Nakagami Images in Passive Stretches Reveal Damage of Injured Muscles. 2016, (2016).
67. Tsui, P.-H. & Chang, C.-C. Imaging local scatterer concentrations by the Nakagami statistical model. Ultrasound Med. Biol. 33, 608–19 (2007).
68. Ho, M.-C. et al. Using ultrasound Nakagami imaging to assess liver fibrosis in rats. Ultrasonics 52, 215–22 (2012).
69. Lin, Y.-H., Huang, C.-C. & Wang, S.-H. Quantitative assessments of burn degree by high-frequency ultrasonic backscattering and statistical model. Phys. Med. Biol. 56, 757–73 (2011).
70. Gerhard-Herman, M. et al. Guidelines for noninvasive vascular laboratory testing: a report from the American Society of Echocardiography and the Society for Vascular Medicine and Biology. Vasc. Med. 11, 183–200 (2006).
71. Peiro, J. & Sherwin, S. Finite Difference, Finite Element and Finite Volume Methods for Partial Differential Equations. Handb. Mater. Model. M, 2415–2446 (2005).
72. Liu, W. K. et al. Immersed finite element method and its applications to biological systems. Comput. Methods Appl. Mech. Eng. 195, 1722–1749 (2006).
73. Gíslason, M. K., Stansfield, B. & Nash, D. H. Finite element model creation and stability considerations of complex biological articulation: The human wrist joint. Med. Eng. Phys. 32, 523–31 (2010).
74. Fillinger, M. F., Marra, S. P., Raghavan, M. L. & Kennedy, F. E. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J. Vasc. Surg. 37, 724–32 (2003).
75. Wang, X. & Li, X. Biomechanical behaviors of curved artery with flexible wall: a numerical study using fluid-structure interaction method. Comput. Biol. Med. 41, 1014–21 (2011).
76. Newman, M. F. et al. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N. Engl. J. Med. 344, 395–402 (2001).
77. Pattingre, S. et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 122, 927–39 (2005).
78. Wang, J. Beclin 1 bridges autophagy, apoptosis and differentiation. Autophagy 4, 947–8 (2008).
79. Ghosh, K., Scott, H., Yang, X. & Ardekani, S. Abstract 220: Role of ECM Stiffness in Microvascular Inflammation. Circ. Res. 113, A220– (2013).
80. Liou, J.-Y., Wu, C.-C., Chen, B.-R., Yen, L. B. & Wu, K. K. Nonsteroidal anti-inflammatory drugs induced endothelial apoptosis by perturbing peroxisome proliferator-activated receptor-delta transcriptional pathway. Mol. Pharmacol. 74, 1399–406 (2008).
81. Schips, T. G. et al. FoxO3 induces reversible cardiac atrophy and autophagy in a transgenic mouse model. Cardiovasc. Res. 91, 587–97 (2011).
82. Kroemer, G., Mariño, G. & Levine, B. Autophagy and the integrated stress response. Mol. Cell 40, 280–93 (2010).
83. Totzke, G., Schulze-Osthoff, K. & Jänicke, R. U. Cyclooxygenase-2 (COX-2) inhibitors sensitize tumor cells specifically to death receptor-induced apoptosis independently of COX-2 inhibition. Oncogene 22, 8021–30 (2003).
84. Yamanaka, Y. et al. COX-2 inhibitors sensitize human hepatocellular carcinoma cells to TRAIL-induced apoptosis. Int. J. Mol. Med. 18, 41–7 (2006).
85. Li, J. et al. Specific COX-2 inhibitor, meloxicam, suppresses proliferation and induces apoptosis in human HepG2 hepatocellular carcinoma cells. J. Gastroenterol. Hepatol. 21, 1814–20 (2006).
86. Weng, L. et al. Aliskiren ameliorates pressure overload-induced heart hypertrophy and fibrosis in mice. Acta Pharmacol. Sin. 35, 1005–14 (2014).
87. Maiuri, M. C. et al. Macrophage autophagy in atherosclerosis. Mediators Inflamm. 2013, (2013).
88. Zakkar, M. et al. Dexamethasone arterializes venous endothelial cells by inducing mitogen-activated protein kinase phosphatase-1: A novel antiinflammatory treatment for vein grafts? Circulation 123, 524–532 (2011).
89. Torsney, E. et al. Thrombosis and neointima formation in vein grafts are inhibited by locally applied aspirin through endothelial protection. Circ. Res. 94, 1466–1473 (2004).
|