進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0406201316133500
論文名稱(中文) 篩選特異miRNAs與aptamers為癌幹細胞之標靶以偵測與治療癌症
論文名稱(英文) Identification of miRNAs/aptamers targeting cancer stem cell for cancer detection and therapy
校院名稱 成功大學
系所名稱(中) 基礎醫學研究所
系所名稱(英) Institute of Basic Medical Sciences
學年度 101
學期 2
出版年 102
研究生(中文) 謝宜珊
研究生(英文) I-Shan Hsieh
學號 s58961141
學位類別 博士
語文別 英文
論文頁數 100頁
口試委員 指導教授-陳玉玲
召集委員-蔡少正
口試委員-劉校生
口試委員-謝達斌
口試委員-袁國
口試委員-陳健尉
口試委員-張俊彥
口試委員-劉柯俊
中文關鍵字 癌幹細胞  微小核醣核酸  適體 
英文關鍵字 Cancer stem cell  miRNA  Aptamer 
學科別分類
中文摘要 癌幹細胞又稱腫瘤起源細胞,目前所知在癌細胞中占極少數的比例,因具有自我更新及分化的特性,可驅使腫瘤的形成以及增加癌轉移與對藥物治療產生抗藥性。因此,發展合成的短小寡核酸,如: microRNAs, small interfering RNA以及aptamers對於癌幹細胞的偵測與治療為一個理想的方向。本篇論文主要涵蓋兩個主題,在第一個研究主題中,我們發現miR-320的表現量在前列腺癌腫瘤組織中較非腫瘤組織表現量相對減少。將miR-320過度表現於前列癌細胞株,在體內與體外試驗中皆顯示可抑制腫瘤的生成。miR-320經由透過3’UTR抑制β-catenin的表現,而miR-320的減少,在癌幹細胞樣細胞以及臨床檢體中,會增進β-catenin的表現。我們更進一步證實,減少miR-320的表現量,在前列腺癌與肺癌細胞株中會誘導癌幹細胞之特性,使癌細胞株具有高度的自我更新、抗藥性與癌化的能力。此外,我們更發現將癌幹細胞樣細胞過度表現miR-320,會抑制前列腺癌以及肺癌其癌幹細胞樣細胞的特性。這些結果證實miR-320經由負調控Wnt/β-catenin pathway扮演抑癌基因的角色,在未來對於前列腺癌的偵測與診斷也是重要的標的基因。在第二個研究主題,為了尋找可以專一性結合於癌幹細胞的aptamer,我們以Cell-SELEX篩選出一條對於對癌幹細胞樣細胞具有特異性的DNA aptamer,命名為AP-9R。在體外試驗中,相較於一般癌細胞以及正常細胞,AP-9R更能夠特異性的辨識癌幹細胞樣細胞,並且具有高度的結合力。同時,我們也證實AP-9R不具有細胞毒性並且能有效的抑制癌幹細胞樣細胞的爬行能力,這些作用或許是透過一個在癌幹細胞會高度表現的目標蛋白Annexin A2。研究結果顯示,AP-9R可發展作為偵測癌幹細胞的生物標誌,在應用於癌症的治療方面也具有可行性。
英文摘要 Cancer stem cells (CSC), also called tumor initiating cells (TIC), are a small population of cancer cells within a tumor that drive the tumor initiation, metastasis, and resistance to chemotherapeutic drugs. An effective cancer stem cell targeting strategy by oligonucleotide-based approaches, including microRNAs, small interfering RNAs and aptamers in diagnosis and treatment are urgently needed. This dissertation is composed of two main parts. In the first part, we report findings that miR-320 is significantly downregulated in prostate cancer (PCa). Overexpression of miR-320 in PCa cells decreases PCa tumorigenesis in vitro and in vivo. MicroRNA-320 inhibits β-catenin expression by targeting the 3′-untranslated region of β-catenin mRNA. The reduction of miR-320 resulting in increased β-catenin was also found in prostate CSCs and clinical PCa specimens. Interestingly, knockdown of miR-320 significantly increases the cancer stem cell properties, such as tumorsphere formation, chemoresistance, and tumorigenic ability. Furthermore, increased miR-320 expression in prostate and lung CSCs significantly suppresses cancer stem cell properties of PCa and lung cells. These results suggest that miR-320 is a key negative regulator in CSCs, and suggest that developing miR-320 as a novel therapeutic agent may offer benefits for cancer treatment. In the second part, we aimed to develop an effective aptamer-based biomarker for CSCs in cancer therapy. We isolated DNA aptamers with high affinity to CSCs by Cell-SELEX. The aptamer AP-9R bound to lung CSCs, but did not bind with normal cells. In addition, AP-9R blocked cell migration and exhibited no apparent cytotoxicity in vitro. Using mass spectrometry identification and flow cytometry confirmation, the target protein of AP-9R was characterized to be Annexin A2, which was highly expressed in non-small cell lung cancer. Moreover, AP-9R mediated blocking of Annexin A2 reduces migration of lung CSCs. Taken together, our data indicate that both miRNA-based and aptamer-based therapies will be useful as therapeutic and diagnostic agents for CSCs.
論文目次 Abstract in Chinese I
Acknowledgements IV
Contents VI
Table contents IX
Figure contents X
Abbreviation XII
Chapter1. Introduction 1
1. General introduction of cancer stem cells 1
2. Epithelial-mesenchymal transition in cancer stem cells 2
3. General introduction of miRNAs 3
4. miRNA Biogenesis and Functions 4
5. miRNA in cancer and cancer stem cells 5
6. General introduction of Aptamer 5
7. Microfluidic-Based SELEX 6
8. Cell-SELEX 7
9. Annexin A2 as a cancer antigen 8
Objectives of study 10
Chapter 2.Materials and methods 11
Part 1. To investigate the cancer stem cells related miRNAs 11
Clinical tissues and cell lines 11
Collecting miR-320 expression datasets 11
Quantitative RT-PCR 12
Cell transfection and Western blotting 12
Cell proliferation and soft-agar colony formation assays 13
Microarray analysis and pathway analysis 13
MicroRNA reporter assays 14
In situ hybridization (ISH) and immunohistochemistry 14
Immunofluorescence staining 15
TOP-/FOP-FLASH Wnt reporter assay 15
Lentivirus production and infection 15
Sphere formation assay 16
Colony formation assay 17
Cytotoxicity Assay 17
Tumorigenicity assays in NOD/SCID mice 17
Flow cytometric analysis 17
Magnetic cell sorting 18
Part 2. Selection of cancer stem like cell-specific aptamers. 18
Cell lines 18
Library preparation and reagents for SELEX 19
Aptamer binding assay 19
Flow cytometric analysis 20
Confocal fluorescence imaging 20
Capture assay 20
Cytotoxicity Assay 20
Migration Assays 21
Identification of the protein target of AP-9R 21
Pull-Down Assay 21
Chaprer 3. Results 23
Part 1. To investigate the cancer stem cells related miRNAs 23
Downregulation of MiR-320 in PCa. 23
MiR-320 directly inhibits β-catenin expression via its 3-UTR. 24
MiR-320 levels inversely correlate with β-catenin protein levels in PCa. 25
MiR-320 inhibits β-catenin/T-cell factor (TCF)-mediated transcription and decreases cell viability and anchorage-independent proliferation. 25
cDNA microarray revealed that Wnt pathway and stem cell markers could be regulated by miR-320 27
MicroRNA-320 is downregulated in cancer stem-like cells and overexpression of miR-320 inhibits stem cell-like properties 28
Downregulation of miR-320 promotes cancer stem cell- like properties 30
Part 2: Selection of Cancer stem like cell-specific aptamers. 31
Identification of cancer stem cell specific DNA Aptamers with the Cell-SELEX Method 31
Targeting the lung cancer stem like cells with aptamer AP-9R 32
Investigation of the biological function of AP-9R 33
To identify the AP-9R protein target 33
Chapter 4. Discussion 35
Chapter 5. Conclusion 44
References 45
Tables 54
Figures 59
Appendix 94
Equipments 97
Curriculum Vitae 99
參考文獻 Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., and Clarke, M. F.(2003).Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100,3983-3988.

Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. In Cell,pp. 281-297.

Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., Barzilai, A., Einat, P., Einav, U., Meiri, E., et al. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37, 766-770.

Bisson, I., and Prowse, D. M. (2009). WNT signaling regulates self-renewal and differentiation of prostate cancer cells with stem cell characteristics. Cell Res 19, 683-697.

Bohnsack, M. T., Czaplinski, K., and Gorlich, D. (2004). Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10, 185-191.

Bronisz, A., Godlewski, J., Wallace, J. A., Merchant, A. S., Nowicki, M. O., Mathsyaraja, H., Srinivasan, R., Trimboli, A. J., Martin, C. K., Li, F., et al. (2012).
Reprogramming of the tumour microenvironment by stromal PTEN-regulated miR-320. Nat Cell Biol 14, 159-167.

Calin, G. A., Sevignani, C., Dumitru, C. D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M., and Croce, C. M. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101, 2999-3004.

Conacci-Sorrell, M., Zhurinsky, J., and Ben-Ze'ev, A. (2002). The cadherin-catenin adhesion system in signaling and cancer. J Clin Invest 109, 987-991.

Cortez, M. A., Bueso-Ramos, C., Ferdin, J., Lopez-Berestein, G., Sood, A. K., and Calin, G. A. (2011). MicroRNAs in body fluids--the mix of hormones and biomarkers. Nat Rev Clin Oncol 8, 467-477.

Eberhard, D. A., Karns, L. R., VandenBerg, S. R., and Creutz, C. E. (2001). Control of the nuclear-cytoplasmic partitioning of annexin II by a nuclear export signal and by p11 binding. J Cell Sci 114, 3155-3166.

Ellington, A. D., and Szostak, J. W. (1990). In vitro selection of RNA molecules that bind specific ligands. Nature 346, 818-822.

Famulok, M., Hartig, J. S., and Mayer, G. (2007). Functional aptamers and aptazymes in biotechnology, diagnostics, and therapy. Chem Rev 107, 3715-3743.

Filipenko, N. R., Kang, H. M., and Waisman, D. M. (2000). Characterization of the Ca2+-binding sites of annexin II tetramer. J Biol Chem 275, 38877-38884.

Filippov, V., Solovyev, V., Filippova, M., and Gill, S. S. (2000). A novel type of RNase III family proteins in eukaryotes. Gene 245, 213-221.

Fodde, R., and Brabletz, T. (2007). Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Curr Opin Cell Biol 19, 150-158.

Gandellini, P., Folini, M., and Zaffaroni, N. (2009). Towards the definition of prostate cancer-related microRNAs: where are we now? Trends Mol Med 15, 381-390.

Grishok, A., Pasquinelli, A. E., Conte, D., Li, N., Parrish, S., Ha, I., Baillie, D. L., Fire, A., Ruvkun, G., and Mello, C. C. (2001). Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106, 23-34.

Gupta, P. B., Onder, T. T., Jiang, G., Tao, K., Kuperwasser, C., Weinberg, R. A., and Lander, E. S. (2009). Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell 138, 645-659.

Hajjar, K. A., and Krishnan, S. (1999). Annexin II: a mediator of the plasmin/plasminogen activator system. Trends Cardiovasc Med 9, 128-138.

He, L., and Hannon, G. J. (2004). MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5, 522-531.

He, X. C., Yin, T., Grindley, J. C., Tian, Q., Sato, T., Tao, W. A., Dirisina, R., Porter-Westpfahl, K. S., Hembree, M., Johnson, T., et al. (2007). PTEN-deficient intestinal stem cells initiate intestinal polyposis. Nat Genet 39, 189-198.

Hill, R., and Wu, H. (2009). PTEN, stem cells, and cancer stem cells. J Biol Chem 284, 11755-11759.

Huang, C. J., Lin, H. I., Shiesh, S. C., and Lee, G. B. (2010). Integrated microfluidic system for rapid screening of CRP aptamers utilizing systematic evolution of ligands by exponential enrichment (SELEX). Biosens Bioelectron 25, 1761-1766.

Hurt, E. M., Kawasaki, B. T., Klarmann, G. J., Thomas, S. B., and Farrar, W. L. (2008). CD44+ CD24(-) prostate cells are early cancer progenitor/stem cells that provide a model for patients with poor prognosis. Br J Cancer 98, 756-765.

Hybarger, G., Bynum, J., Williams, R. F., Valdes, J. J., and Chambers, J. P. (2006). A microfluidic SELEX prototype. Anal Bioanal Chem 384, 191-198.

Iorio, M. V., and Croce, C. M. (2009). MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol 27, 5848-5856.

Ireson, C. R., and Kelland, L. R. (2006). Discovery and development of anticancer aptamers. Mol Cancer Ther 5, 2957-2962.

Jordan, C. T., Guzman, M. L., and Noble, M. (2006). Cancer stem cells. N Engl J Med 355, 1253-1261.

Kagan, J., Stein, J., Babaian, R. J., Joe, Y. S., Pisters, L. L., Glassman, A. B., von Eschenbach, A. C., and Troncoso, P. (1995). Homozygous deletions at 8p22 and 8p21 in prostate cancer implicate these regions as the sites for candidate tumor suppressor genes. Oncogene 11, 2121-2126.

Kang, D., Wang, J., Zhang, W., Song, Y., Li, X., Zou, Y., Zhu, M., Zhu, Z., Chen, F., and Yang, C. J. (2012). Selection of DNA aptamers against glioblastoma cells with high affinity and specificity. PLoS One 7, e42731.

Karube, Y., Tanaka, H., Osada, H., Tomida, S., Tatematsu, Y., Yanagisawa, K., Yatabe, Y., Takamizawa, J., Miyoshi, S., Mitsudomi, T., and Takahashi, T. (2005). Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 96, 111-115.

Ketting, R. F., Fischer, S. E., Bernstein, E., Sijen, T., Hannon, G. J., and Plasterk, R. H. (2001). Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15, 2654-2659.

Kolligs, F. T., Hu, G., Dang, C. V., and Fearon, E. R. (1999). Neoplastic transformation of RK3E by mutant beta-catenin requires deregulation of Tcf/Lef transcription but not activation of c-myc expression. Mol Cell Biol 19, 5696-5706.

Kong, D., Banerjee, S., Ahmad, A., Li, Y., Wang, Z., Sethi, S., and Sarkar, F. H. (2010). Epithelial to mesenchymal transition is mechanistically linked with stem cell signatures in prostate cancer cells. PLoS One 5, e12445.

Kulshreshtha, R., Davuluri, R. V., Calin, G. A., and Ivan, M. (2008). A microRNA component of the hypoxic response. Cell Death Differ 15, 667-671.

Kumar, M. S., Lu, J., Mercer, K. L., Golub, T. R., and Jacks, T. (2007). Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39, 673-677.

Lapidot, T., Sirard, C., Vormoor, J., Murdoch, B., Hoang, T., Caceres-Cortes, J., Minden, M., Paterson, B., Caligiuri, M. A., and Dick, J. E. (1994). A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367, 645-648.

Lau, M. T., Klausen, C., and Leung, P. C. (2011). E-cadherin inhibits tumor cell growth by suppressing PI3K/Akt signaling via beta-catenin-Egr1-mediated PTEN expression. Oncogene 30, 2753-2766.

Lee, K. H., Chen, Y. L., Yeh, S. D., Hsiao, M., Lin, J. T., Goan, Y. G., and Lu, P. J. (2009a). MicroRNA-330 acts as tumor suppressor and induces apoptosis of prostate cancer cells through E2F1-mediated suppression of Akt phosphorylation. Oncogene 28, 3360-3370.

Lee, K. H., Lotterman, C., Karikari, C., Omura, N., Feldmann, G., Habbe, N., Goggins, M. G., Mendell, J. T., and Maitra, A. (2009b). Epigenetic silencing of MicroRNA miR-107 regulates cyclin-dependent kinase 6 expression in pancreatic cancer. Pancreatology 9, 293-301.

Lee, R. C., Feinbaum, R. L., and Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854.

Leung, E. L., Fiscus, R. R., Tung, J. W., Tin, V. P., Cheng, L. C., Sihoe, A. D., Fink, L. M., Ma, Y., and Wong, M. P. (2010). Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PLoS One 5, e14062.

Li, Y., Wang, L., Zhang, M., Melamed, J., Liu, X., Reiter, R., Wei, J., Peng, Y., Zou, X., Pellicer, A., et al. (2009). LEF1 in androgen-independent prostate cancer: regulation of androgen receptor expression, prostate cancer growth, and invasion. Cancer Res 69, 3332-3338.

Liu, C., Kelnar, K., Liu, B., Chen, X., Calhoun-Davis, T., Li, H., Patrawala, L., Yan, H., Jeter, C., Honorio, S., et al. (2011). The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat Med 17, 211-215.

Lobo, N. A., Shimono, Y., Qian, D., and Clarke, M. F. (2007). The biology of cancer stem cells. Annu Rev Cell Dev Biol 23, 675-699.

Lokman, N. A., Ween, M. P., Oehler, M. K., and Ricciardelli, C. (2011). The role of annexin A2 in tumorigenesis and cancer progression. Cancer Microenviron 4, 199-208.

Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B. L., Mak, R. H., Ferrando, A. A., et al. (2005). MicroRNA expression profiles classify human cancers. Nature 435, 834-838.

Lu, W., Tinsley, H. N., Keeton, A., Qu, Z., Piazza, G. A., and Li, Y. (2009). Suppression of Wnt/beta-catenin signaling inhibits prostate cancer cell proliferation. Eur J Pharmacol 602, 8-14.

Malanchi, I., Peinado, H., Kassen, D., Hussenet, T., Metzger, D., Chambon, P., Huber, M., Hohl, D., Cano, A., Birchmeier, W., and Huelsken, J. (2008). Cutaneous cancer stem cell maintenance is dependent on beta-catenin signalling. Nature 452, 650-653.

Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., Brooks, M., Reinhard, F., Zhang, C. C., Shipitsin, M., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 133, 704-715.

Meister, G., Landthaler, M., Patkaniowska, A., Dorsett, Y., Teng, G., and Tuschl, T. (2004). Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15, 185-197.

Miska, E. A. (2005). How microRNAs control cell division, differentiation and death. Curr Opin Genet Dev 15, 563-568.
Morris, K. N., Jensen, K. B., Julin, C. M., Weil, M., and Gold, L. (1998). High affinity ligands from in vitro selection: complex targets. Proc Natl Acad Sci U S A 95, 2902-2907.

Mulholland, D. J., Xin, L., Morim, A., Lawson, D., Witte, O., and Wu, H. (2009). Lin-Sca-1+CD49fhigh stem/progenitors are tumor-initiating cells in the Pten-null prostate cancer model. Cancer Res 69, 8555-8562.

Patrawala, L., Calhoun-Davis, T., Schneider-Broussard, R., and Tang, D. G. (2007). Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer Res 67, 6796-6805.

Patrawala, L., Calhoun, T., Schneider-Broussard, R., Li, H., Bhatia, B., Tang, S., Reilly, J. G., Chandra, D., Zhou, J., Claypool, K., et al. (2006). Highly purified CD44+ prostate cancer cells from xenograft human tumors are enriched in tumorigenic and metastatic progenitor cells. Oncogene 25, 1696-1708.

Pearson, H. B., Phesse, T. J., and Clarke, A. R. (2009). K-ras and Wnt signaling synergize to accelerate prostate tumorigenesis in the mouse. Cancer Res 69, 94-101.

Peinado, H., Olmeda, D., and Cano, A. (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7, 415-428.

Porkka, K. P., Pfeiffer, M. J., Waltering, K. K., Vessella, R. L., Tammela, T. L., and Visakorpi, T. (2007). MicroRNA expression profiling in prostate cancer. Cancer Res 67, 6130-6135.

Ren, X. P., Wu, J., Wang, X., Sartor, M. A., Qian, J., Jones, K., Nicolaou, P., Pritchard, T. J., and Fan, G. C. (2009). MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation 119, 2357-2366.

Rodriguez, A., Griffiths-Jones, S., Ashurst, J. L., and Bradley, A. (2004). Identification of mammalian microRNA host genes and transcription units. Genome Res 14, 1902-1910.

Schaar, D. G., Medina, D. J., Moore, D. F., Strair, R. K., and Ting, Y. (2009). miR-320 targets transferrin receptor 1 (CD71) and inhibits cell proliferation. Exp Hematol 37, 245-255.

Schepeler, T., Reinert, J. T., Ostenfeld, M. S., Christensen, L. L., Silahtaroglu, A. N., Dyrskjot, L., Wiuf, C., Sorensen, F. J., Kruhoffer, M., Laurberg, S., et al. (2008). Diagnostic and prognostic microRNAs in stage II colon cancer. Cancer Res 68, 6416-6424.

Sefah, K., Shangguan, D., Xiong, X., O'Donoghue, M. B., and Tan, W. (2010). Development of DNA aptamers using Cell-SELEX. Nat Protoc 5, 1169-1185.

Sharma, M. C., and Sharma, M. (2007). The role of annexin II in angiogenesis and tumor progression: a potential therapeutic target. Curr Pharm Des 13, 3568-3575.

Shigdar, S., Lin, J., Yu, Y., Pastuovic, M., Wei, M., and Duan, W. (2011). RNA aptamer against a cancer stem cell marker epithelial cell adhesion molecule. Cancer Sci 102, 991-998.

Shin, S., Kim, I. H., Kang, W., Yang, J. K., and Hah, S. S. (2010). An alternative to Western blot analysis using RNA aptamer-functionalized quantum dots. Bioorg Med Chem Lett 20, 3322-3325.

Singh, A., and Settleman, J. (2010). EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 29, 4741-4751.

Singh, T. K., and Liu, L. (2000). Modification of cysteine residues by N-ethylmaleimide inhibits annexin II tetramer mediated liposome aggregation. Arch Biochem Biophys 381, 235-240.

Skurk, C., Maatz, H., Rocnik, E., Bialik, A., Force, T., and Walsh, K. (2005). Glycogen-Synthase Kinase3beta/beta-catenin axis promotes angiogenesis through activation of vascular endothelial growth factor signaling in endothelial cells. Circ Res 96, 308-318.

Tan, W., Wang, H., Chen, Y., Zhang, X., Zhu, H., Yang, C., Yang, R., and Liu, C. (2011). Molecular aptamers for drug delivery. Trends Biotechnol 29, 634-640.

Thiery, J. P., and Sleeman, J. P. (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7, 131-142.

Tuerk, C., and Gold, L. (1990). Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505-510.

Wang, C. Y., Chen, C. L., Tseng, Y. L., Fang, Y. T., Lin, Y. S., Su, W. C., Chen, C. C., Chang, K. C., Wang, Y. C., and Lin, C. F. (2012). Annexin A2 silencing induces G2 arrest of non-small cell lung cancer cells through p53-dependent and -independent mechanisms. J Biol Chem 287, 32512-32524.

Wang, H., Leav, I., Ibaragi, S., Wegner, M., Hu, G. F., Lu, M. L., Balk, S. P., and Yuan, X. (2008). SOX9 is expressed in human fetal prostate epithelium and enhances prostate cancer invasion. Cancer Res 68, 1625-1630.

Weng, C.H., Hsieh, I. S., Hung, L.Y., Lin, C.I., Shiesh, S.J., Chen, Y.L., and Lee, G.B., Lee.(2012) An automatic microfluidic system for rapid screening of cancer stem-like cell-specific aptamers. Microfluidics and Nanofluidics 14,753-765.

White, R. E., and Giffard, R. G. (2012). MicroRNA-320 induces neurite outgrowth by targeting ARPP-19. Neuroreport 23, 590-595.

Yan, L. X., Huang, X. F., Shao, Q., Huang, M. Y., Deng, L., Wu, Q. L., Zeng, Y. X., and Shao, J. Y. (2008). MicroRNA miR-21 overexpression in human breast cancer is associated with advanced clinical stage, lymph node metastasis and patient poor prognosis. RNA 14, 2348-2360.

Yoshida, S., Furukawa, N., Haruta, S., Tanase, Y., Kanayama, S., Noguchi, T., Sakata, M., Yamada, Y., Oi, H., and Kobayashi, H. (2009). Expression profiles of genes involved in poor prognosis of epithelial ovarian carcinoma: a review. Int J Gynecol Cancer 19, 992-997.

Yu, F., Yao, H., Zhu, P., Zhang, X., Pan, Q., Gong, C., Huang, Y., Hu, X., Su, F., Lieberman, J., and Song, E. (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131, 1109-1123.

Zhai, H., Acharya, S., Gravanis, I., Mehmood, S., Seidman, R. J., Shroyer, K. R., Hajjar, K. A., and Tsirka, S. E. (2011). Annexin A2 promotes glioma cell invasion and tumor progression. J Neurosci 31, 14346-14360.

Zhang, S. Q., Wang, G. P., Zhu, P., Liang, J. J., Xu, Y. J., Peng, M. Y., Chen, Y., Tan, S. Q., and Chen, F. P. (2011). [Screening and structure analysis of nucleic acid aptamers binding to surface of CD33(+)/CD34(+) cells from patients with acute myeloid leukemia subtype M(2)]. Zhongguo Shi Yan Xue Ye Xue Za Zhi 19, 561-565.

Zhao, P., Zhang, W., Tang, J., Ma, X. K., Dai, J. Y., Li, Y., Jiang, J. L., Zhang, S. H., and Chen, Z. N. (2010). Annexin II promotes invasion and migration of human hepatocellular carcinoma cells in vitro via its interaction with HAb18G/CD147. Cancer Sci 101, 387-395.

Zimmerman, A. L., and Wu, S. (2011). MicroRNAs, cancer and cancer stem cells. Cancer Lett 300, 10-19.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2018-06-10起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw