進階搜尋


   此篇論文尚未公開,紙本請查詢成功大學館藏
系統識別號 U0026-0406201209012500
論文名稱(中文) 實驗室廢棄物焚化灰渣及電漿熔渣之毒性物質研究
論文名稱(英文) Tracking of toxic species in laboratory waste incineration ashes and plasma melting slags
校院名稱 成功大學
系所名稱(中) 環境工程學系碩博士班
系所名稱(英) Department of Environmental Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 段宇君
研究生(英文) Yeu-Juin Tuan
學號 p58941041
學位類別 博士
語文別 英文
論文頁數 136頁
口試委員 召集委員-張祖恩
口試委員-李文智
口試委員-魏玉麟
口試委員-周志儒
口試委員-康佩群
指導教授-王鴻博
中文關鍵字 飛灰  熔渣  焚化  電漿熔融  洗灰  XANES  DEA 
英文關鍵字 ash  slag  incineration  plasma melting  ash washing  XANES  DEA 
學科別分類
中文摘要 實驗室廢棄物焚化灰渣(ashes),因含毒性重金屬與戴奧辛(polychlorinated dibenzo-p-dioxins and dibenzofurans, PCDD/Fs)被視為有害廢棄物。焚化灰渣可以電漿熔融高溫安定化(1673-1773 K)生成熔渣(slag)。由於目前焚化灰渣及電漿熔渣之有害物質化學結構資料仍相當缺乏,因此,針對焚化灰渣及電漿熔渣中之有害物質(銅、鉻及PCDD/Fs)之安定化進行研究。尤其利用XANES,XAFS及XRD等光譜所獲得之分子尺度結果及數據,可更深入瞭解灰渣及熔渣中有害物質的物種及化學結構。
研究結果顯示CuO及CuSO4分別為焚化底渣及飛灰中主要之銅化合物。經電漿熔融處理後,金屬銅(76%)及Cu2O(15%)則為熔渣中之主要成分。此外,CuSiO2也在熔渣中發現,顯示銅可能被侷限(encapsulated)在SiO2晶格中,也是造成熔渣TCLP濃度相對低之原因,熔渣中以低氧化數銅(CuCl及Cu2O)及鉻(Cr及Cr2O3)為主。
為瞭解銅化合物對於灰渣中PCDD/Fs生成之影響,尤其在焚化煙道氣(flue gas)冷卻塔中灰渣之CuO及CuSO4比例及PCDD/Fs濃度進行關聯性研究。由焚化實廠數據之分析結果顯示,PCDD/Fs生成濃度可能與灰渣中CuO含量相關,而CuSO4可能抑制灰渣中PCDD/Fs的生成。
灰渣水洗可減少實驗室廢棄物焚化灰渣之氯含量(降低80~90%)及重量(減少65~99%),經不同液固比(L/S = 2、5、10、與20)測試結果,也考量用水量少與氯含量去除相對高之條件,發現液固比為5較有利於水洗實務應用。
為評估焚化操作效能,收集各空污防制設備(包括:冷卻塔及袋式集塵器)灰渣中重金屬之補集量,利用Data Envelopment Analysis (DEA)進行評估作業,結果發現,控制一次與二次燃燒室溫度分別為1173-1273 K及1273-1373 K時,可獲得較佳操作效率。
由同步輻射X光吸收光譜所獲得之分子尺度數據,可提供實驗室廢棄物焚化及電漿熔融實廠操作改善重要資料,也可作為後續系統效能提升之參考。
英文摘要 Ashes, which contain relatively high levels of toxic metals (e.g., copper and chromium) and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), discharged from laboratory wastes incineration are considered hazardous. The incineration ashes have been thermally stabilized with high-temperature plasma-assisted melting at the temperatures of 1673-1773 K. Detailed chemical structure of the toxic species in the ashes and slag is still lack in the literature. Thus the main objective of this work was to track toxic species, specifically copper, chromium, and PCDD/Fs, during incineration and melting. To better understand speciation of the toxic compounds in ashes and slags, their molecule-scale data were obtain by X-ray absorption (fine structure (EXAFS), X-ray absorption near edge structure (XANES)) and X-ray diffraction (XRD) spectroscopic methods.
Experimentally, by X-ray absorption spectroscopy, it is found that CuO and CuSO4 are the main copper compounds in the bottom and fly ashes, respectively. After thermal stabilization with the plasma melting, mainly metallic copper (Cu) (76%) and Cu2O (15%) are found in the slag. CuSiO2 is also observed, suggesting that copper may be encapsulated in the SiO2 matrix, which leads to formation of the thermally stable slag with a relatively low TCLP concentration of copper. The copper and chromium TCLP concentrations of slags sampled from the plasma melting reaction chamber are below the limit of Taiwan EPA. Low oxidation-state copper and chromium such as CuCl, Cu2O, Cr2O3 and Cr are found in the slag.
To learn how copper species play the key role in the formation of the relatively high PCDD/F concentrations in ashes, correlations of concentrations and fractions of CuO and CuSO4 with concentrations of PCDD/Fs in the cooling towers and baghouse filter ashes has been studied. The correlation between total concentrations of PCDD/Fs and fractions and concentrations of CuO or CuSO4 in the ash obtained from the commercial-scale incineration data suggest that the high PCDD/F concentrations may be associated with CuO in the ashes. Copper as CuSO4 can depress formation of PCDD/Fs in the ashes.
By washing, chloride contents and weight of incineration ashes can be reduced by 80-90% and 65-99%, respectively. Under liquid/solid (L/S) ratio of 5, low water consumption and relatively high chloride removal efficiency for ash washing is engineering feasible.
The incineration operation efficiency can be evaluated by effective capture of toxic metals in cooling towers and baghouse ashes. By data envelopment analysis (DEA), it is clear that the better operation temperature of the 1st and 2nd combustion chambers, are 1173-1273 and 1273-1373 K, respectively, which is to be applied in the practical operation.
It is also worth noting that the molecule-scale data obtained from synchrotron X-ray absorption spectra are well correlated with the findings from the full-scale laboratory waste incineration operation, which may be useful in process improvements.
論文目次 CONTENTS
中文摘要 I
ABSTRACT III
ACKNOWLEDGEMENT V
CONTENTS VI
TABLES VIII
FIGURES IX
ABBREVIATION LIST XI
CHAPTER 1 INTRODUCTION 1
CHAPTER 2 LITERATURES REVIEW
2.1 Laboratory wastes managements 3
2.1.1 Incineration 3
2.1.2 Plasma melting 4
2.1.3 Available laboratory wastes treatment technologies 5
2.2 Toxic species in ashes and slags 22
2.2.1 Fate of toxic species in thermal treatment processes 22
2.2.2 Polychlorinated Dibenzo-p-dioxins and Dibenzofurans (PCDD/Fs) 27
2.2.3 Chemical structure analysis of ashes and slags 29
2.2.4 Application of molecular-scale data in engineering problem solving 30
2.3 Process efficiency analysis - Data Envelopment Analysis (DEA) 31
CHAPTER 3 EXPERIMENTS
3.1 Samples preparation 33
3.2 Characterization of toxic metals in ashes and slags 39
3.2.1 Total and TCLP concentration 39
3.2.1.1 X-ray fluorescence 39
3.2.1.2 Toxic characteristic leaching procedure 39
3.2.2 Chemical structure analysis 39
3.2.2.1 Extended X-Ray Absorption Fine Structure and X-ray Absorption Near Edge Structure 39
3.2.2.2 X-ray diffraction spectroscopy 40
3.3 Polychlorinated Dibenzo-p-dioxins and Dibenzofurans analyses 42
CHAPTER 4 RESULTS AND DISCUSSION
4.1 Fate of toxic metals in incineration and plasma melting processes 43
4.1.1 Speciation of copper in the thermally stabilized slag 43
4.1.2 Fate of copper in an ash/sludge plasma melting process 50
4.1.3 Tracking of chromium in an ash/sludge plasma melting process 58
4.2 Speciation of copper associated with PCDD/Fs formation during incineration flue gas cooling down 68
4.3 Washing of ashes and slag 77
4.4 Operation efficiency evaluation of laboratory waste incineration using Data Envelopment Analysis 90
CHAPTER 5 CONCLUSIONS 102
SUGGESTION 104
REFERENCES 105
APPENDIXES
Appendix A Reduction benefits of laboratory wastes treatment intermediates 113
Appendix B Primary Component Analysis (PCA) results of incineration ashes 114
Appendix C Free Energy of Copper compounds and metals chlorides 115
Appendix D Speciation of copper in slag discharged in the slag cart 117
Appendix E Publications 128
CURRICULUM VITAE 134

TABLES
Table 2.1.3.1 Experimental wastes classification and treatment procedures of the University of Tokyo 7
Table 2.1.3.2 Members of universities & schools in Taiwan 11
Table 2.1.3.3 Quantities of treated laboratory wastes in Taiwan (2005-2011) 12
Table 2.1.3.4 Laboratory wastes classifications and treatment procedures of ERMRC 14
Table 2.1.3.5 Typical contents of the ERMRC laboratory wastes 16
Table 2.2.1.1 Typical contents in ashes, sludges and slags 24
Table 2.2.1.2 Ashes characteristics of different wastes and treatment processes (Total) 25
Table 2.2.1.3 Ashes characteristics of different wastes and treatment processes (TCLP) 26
Table 2.3.1 Envelopment models with respect to the orientations and frontier types (Zhu, 2009) 32
Table 3.1.1 Ashes/slag washing and stabilization tests 38
Table 4.1.1.1 TCLP concentrations (mg/L) of toxic elements in incineration ashes and plasma melting slag 45
Table 4.1.1.2 Bond distances and coordination number (CN) of copper in the sludge, ashes and slag (obtained from refined EXAFS) 49
Table 4.1.2.1 Concentrations (mg/L) of leachable (TCLP) toxic elements in the incineration bag-house filters ash, inorganic wastewater sludge, and plasma melting 52
Table 4.1.2.2 Chemical structure parameters of copper in the ash, sludge and slags (determined by refined EXAFS) 54
Table 4.1.3.1 Concentrations of leachable chromium and fraction of Cr in the fly ash, sludge, and slags 62
Table 4.1.3.2 Speciation parameters of chromium in the slags (determined by refined EXAFS) 65
Table 4.2.1 Concentrations of total and leachable copper related to PCDD/F concentrations in the cooling towers and baghouse filter ashes 74
Table 4.3.1 Total metals contents in ashes 80
Table 4.3.2 Solid reduction of ashes washing process with water under L/S=10 81
Table 4.4.1 Operation parameters of incineration process 92

FIGURES
Fig. 2.1.3.1 Organic wastes treatment facilities of the University of Tokyo, Japan 8
Fig. 2.1.3.2 Inorganic wastes treatment facilities of the University of Tokyo, Japan 9
Fig. 2.1.3.3 Design concept of ERMRC treatment plant 13
Fig. 2.1.3.4 Incineration process of ERMRC 17
Fig. 2.1.3.5 Plasma melting process of ERMRC 19
Fig. 2.3.1.6 Physicochemical process of ERMRC 21
Fig. 3.1.1 Sampling points of incinerator of ERMRC 34
Fig. 3.1.2 Sampling points of plasma melting process of ERMRC 35
Fig. 3.1.3 Diagram of the plasma melting reaction chamber and slags sampling points 36
Fig. 3.1.4 Diagram of the cooling tower-I and ashes sampling points at various levels 37
Fig. 3.2.2.1 Scheme of typical X-ray absorption spectroscopic experiment 41
Fig. 4.1.1.1 XRD patterns of the incineration (a) bottom and (b) fly ashes and (c) plasma melting slag 46
Fig. 4.1.1.2 Component fitted XANES spectra of copper in the incineration (a) bottom and (b) fly ashes and (c) plasma melting slag 47
Fig. 4.1.2.1 XRD patterns of slags sampled at the melting zones of (a) 0 (surface), (b) -15, (c) -30, and (d) -50 cm (bottom) in the plasma melting chamber and (e) the slag discharged 55
Fig. 4.1.2.2 Component fitted XANES spectra of copper in slags sampled at the melting zones of (a) 0 (surface), (b) -15, (c) -30, and (d) -50 cm (bottom) in the plasma melting chamber and (e) the slag discharged 56
Fig. 4.1.3.1 Diagram of the plasma melting reaction chamber and slags sampling points 61
Fig. 4.1.3.2 XRD patterns of the slags (a) I, (b) II, (c) III, and (d) IV. (1: SiO2; 2: Cr2O3; 3: NaCl; 4: NaAlSiO4; 5: Na4AlSi3O12Cl) 63
Fig. 4.1.3.3 Component fitted XANES spectra of chromium in (a) sludge, (b) fly ash, and (c) slags 64
Fig. 4.1.3.4 Correlation between molar ratios of Cr/Cr2O3 and concentrations of leachable chromium in the slags at 1100-1700 K 67

FIGURES
Fig. 4.2.1 Total concentrations of toxic metals in the cooling tower-I ashes (deposited on the wall) 70
Fig. 4.2.2 Distribution of PCDD/F congeners in the cooling tower-I and baghouse filter ashes. 73
Fig. 4.2.3 Component fitted XANES spectra of copper in the (a) cooling tower-I, (b) cooling tower-II, and (c) baghouse filter ashes. 75 oncentrations of CuO or CuSO4 in
Fig. 4.2.4 Correlation between PCDD/Fs and (a) fractions and (b) concentrations of CuO or CuSO4 in ashes. 76
Fig. 4.3.1 Chloride mass fractions in filtered liquids (FL) and washed residue (WR) 82
Fig. 4.3.2 Mass fractions of (a) Cu, (b) Zn, and (c) Ni in filtered liquids (FL) and washed residue (WR) 84
Fig. 4.3.3 Mass fractions of (a) Cr, (b) Hg, and (c) Pb in filtered liquids (FL) and washed residue (WR) 85
Fig. 4.3.4 Total contents of (a) Cu, (b) Zn, and (c) Ni in RM and WR 86
Fig. 4.3.5 Total contents of (a) Cr, (b) Hg, and (c) Pb in RM and WR 87
Fig. 4.3.6 TCLP concentrations of (a) Cu, (b) Zn, and (c) Ni in RM and WR 88
Fig. 4.3.7 TCLP concentrations of (a) Cr, (b) Hg, and (c) Pb in RM and WR 89
Fig. 4.4.1 Operation temperature zones of the incineration process 94
Fig. 4.4.2 Metals capture efficiencies in (a) cooling tower-I, (b) cooling tower-II, and (c) bag house 95
Fig. 4.4.3 Cr with sulfur/chlorine capture efficiencies in (a) cooling tower-I, (b) cooling tower-II, and (c) bag house 96
Fig. 4.4.4 Cu with sulfur/chlorine capture efficiencies in (a) cooling tower-I, (b) cooling tower-II, and (c) bag house 97
Fig. 4.4.5 Hg with sulfur/chlorine capture efficiencies in (a) cooling tower-I, (b) cooling tower-II, and (c) bag house 98
Fig. 4.4.6 Pb with sulfur/chlorine capture efficiencies in (a) cooling tower-I, (b) cooling tower-II, and (c) bag house 99
Fig. 4.4.7 Zn with sulfur/chlorine capture efficiencies in (a) cooling tower-I, (b) cooling tower-II, and (c) bag house 101
參考文獻 Abielaala, L., Aouad, H., Mesnaoui, M., Musso, J.A. (2011) Characterization and vitrification of fly ashes from incineration of waste of infectious risk cares (WIRC). Sustain. Environ. Res. 21: 195-201.
Alba, N., Vázquez, E., Gassó, S., Baldasano, J.M. (2001) Stabilizationl/solidification of MSW incineration residues from facilities with different air pollution control systems. Durability of matrices versus carbonation. Waste Manage. 21: 313-323.
Amin, G.R., Toloo, M. (2007) Finding the most efficient DMUs in DEA: An improved integrated model, Comput. Ind. Eng. 52: 71–77.
Chang, F.-Y., Wey, M.-Y. (2006) Comparison of the characteristics of bottom and fly ashes generated from various incineration processes. J. Hazard. Mater. B138: 594-603.
Chang, L., Lan, Y.-W. (2010) Has the national health insurance scheme improved hospital efficiency in Taiwan? Identifying factors that affects its efficiency, Afr. J. Bus. Manage. 4: 3752-3760.
Chen, H.-W., Chang, N.-B., Chen, J.-C., Tsai, S.-J. (2010) Environmental performance evaluation of large-scale multipal solid waste incinerators using DEA. Waste Manage. 30: 1371-1381.
Chen, Y.-T., Chen, C.-C. (2012) The privatization effect of MSW incineration service by using DEA. Waste Manage. 32: 595-602.
Chen, W.-S., Shen, Y.-H., Hsieh, T.-Y., Lin, C.-W., Wang, L.-C., Chang-Chien, G.-P. (2011) Fate and distribution of polychlorinated dibenzo-p-dioxins and dibenzofurans in a woodchip-fuelled boiler. Aerosol Air Qual. Res. 11: 282-289.
Cheng, P.-C., Chang, C.-C., Yu, M.-M., Hsu, S.-H. (2012) Performance measurement for incineration plants using multi-activity network DEA: The case in Taiwan. J. Environ. Manage. 93: 95-103.
Cheng, T.W., Tu, C.C., Ko, M.S., Ueng, T.H. (2011) Production of glass–ceramics from incinerator ash using lab-scale and pilot-scale thermal plasma systems. Ceram. Int. 37: 2437-2444.
Chiu, J.-C., Shen, Y.-H., Li, H.-W., Lin, L.-F., Wang, L.-C., Chang-Chien, G.-P. (2011) Emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans from an electric arc furnace, secondary aluminum smelter, crematory and joss paper incinerators. Aerosol Air Qual. Res. 11: 13-20.
Chiu, Y.M., Huang, C.H., Chang, F.C., Kang, H.Y., Wang, H.P. (2011) Recovery of copper from a wastewater for preparation of Cu@C nanoparticles. Sustain. Environ. Res. 21: 279-282.
Chin, Y.-T., Lin, C., Chang-Chien, G.-P., Wang, Y.-M. (2012) PCDD/F formation catalyzed by the metal chlorides and chlorinated aromatic compounds in fly ash. Aerosol Air Qual. Res. 12: 228-236.
Chou, J.-D., Wey, M.-Y., Chang S.-H. (2009) Evaluation of the distribution patterns of Pb, Cu and Cd from MSWI fly ash during thermal treatment by sequential extraction procedure. J. Hazard. Mater. 162: 1000–1006.
Chu, J.P., Hwang, I.J., Tzeng, C.C., Kuo, Y.Y., Yu, Y.J. (1998) Characterization of vitrified slag from mixed medical waste surrogates treated by a thermal plasma system, J. Hazard. Mater. 58: 179-194.
Cohen, M., Kargacin, B., Klein, C., Costa, M. (1993) Mechanisms of chromium carcinogenicity and toxicity. Crit. Rev. Toxicol. 23: 255-281.
Collivignarelli, C., Sorlini, S. (2002) Reuse of municipal solid wastes incineration fly ashes in concrete mixtures. Waste Manage. 22: 909–912.
Comans, R.N.J., Meima, E.A., Geelhoed, P. A. (2000) Reduction of contaminant leaching from MSWI bottom ash by addition of sorbing components. Waste Manage. 20: 125-133.
Costa, M. (2003) Potential hazards of hexavalent chromate in our drinking water. Toxicol. Appl. Pharmacol. 188: 1–5.
Costa, M. Klein, C.B. (2006) Toxicity and carcinogenicity of chromium compounds in humans. Crit. Rev. Toxicol. 36: 155–163.
Cunliffe, A.M. Williams, P.T. (2009) De-novo formation of dioxins and furans and the memory effect in waste incineration flue gases. Waste Manage. 29: 739-748.
Evans, J., Williams, P.T. (2000) Heavy metal adsorption onto flyash in waste incineration flue gases. Trans IChemE 78B: 40-46.
Everaert, K., Baeyens, J. (2002) The formation and emission of dioxins in large scale thermal processes. Chemosphere 46: 439-448.
Fedje, K.K., Ekberg, C., Skarnemark, G., Steenari, B.-M. (2010) Removal of hazardous metals from MSW fly ash - An evaluation of ash leaching methods. J. Hazard. Mater. 173: 310–317.
Ferreira, C., Jensen, P., Ottosen, L., Ribeiro, A., (2005) Removal of selected heavy metals from MSW fly ash by the electrodialytic process. Eng. Geol. 77: 339–347.
Gaetke, L.M., Chow, C.K. (2003) Copper toxicity, oxidative stress, and antioxidant nutrients, Toxicology 189: 147-163.
Gomez, E., Amutha Rani, D., Cheeseman, C.R., Deegan, D., Wisec, M., Boccaccini, A.R. (2009) Thermal plasma technology for the treatment of wastes: A critical review. J. Hazard. Mater. 161: 614–626.
Hammer, T. (1999) Application of Plasma Technology in Environmental Techniques. Contrib. Plasma Phys. 39: 441-462.
Heberlein, J. (2002) New approaches in thermal plasma technology. Pure Appl. Chem. 74: 327–335.
Heberlein, J., Murphy, A.B. (2008) Thermal plasma waste treatment. J. Phys. D: Appl. Phys., 41: 053001, 1-20.
Ho, H.-C., Chow, J.-D., Gau, S.-H. (2008) Thermal mobility of heavy metals in municipal solid waste incinerator fly ash (MSWIFA). Environ. Eng. Sci. 25: 649-656.
Hsiao, M.C., Wang, H.P., Chang, J.-E., Peng, C.Y. (2006) Tracking of copper species in incineration fly ashes. J. Hazard. Mater. B138: 539-542.
Hsiao, M.C., Wang, H.P., Huang, C.H., Chang, J.-E., Wei, Y.-L. (2007) Tracking of copper in contaminated soils. J. Electron Spectrosc. Relat. Phenom. 156-158: 208-210.
Hsiao, M.C., Wang, H.P., Huang, Y.-J., Yang, Y.W. (2001) EXAFS study of copper in waste incineration fly ashes. J. Synchrot. Radiat. 8: 931-933.
Hsiao, M.C., Wang, H.P., Yang, Y.W. (2001) EXAFS and XANES studies of copper in a solidified fly ash. Environ. Sci. Technol. 35: 2532–2535.
Huang, C.H., Wang, H.P., Chang, J.E., Eyring, E.M. (2009) Synthesis of nanosize-controllable copper and its alloys in carbon shells. Chem. Commun. 31: 4663-4665.
Huang, H., Buekens, A. (1996) De novo synthesis of polychlorinated dibenzo-p-dioxins and dibenzofurans – Proposal of a mechanistic scheme. Sci. Total Environ. 193: 121-141.
Huang, H.-L., Wang, H.P., Chang, J.-E., Wei, Y.-L. (2007) Speciation and distribution of copper and zinc in MCM-41. J. Electron Spectrosc. Relat. Phenom. 156-158: 357-360.
Huang, H.-L., Wang, H.P., Eyring, E.M., Chang, J.-E. (2009) Recovery of nanosize zinc from phosphor wastes with an ionic liquid. Environ. Chem. 6: 68-72.
Huang, Y.J., Wang, H.P., Lee, J.-F. (2003) Speciation of copper in ZSM-48 during NO reduction. Appl. Catal. B-Environ. 40: 111-118.
Inaba, T., Iwao T. (2000) Treatment of Waste by dc Arc Discharge Plasmas, IEEE Trns. Dielectr. Electr. Insul. 7: 684-692.
Iretskaya, S., Nzihou, A., Zahraoui, C., Sharrock P. (1999) Metal leaching from MSW fly ash before and after chemical and thermal treatments. Environ. Prog. 18: 144-148.
Károly, Z. Mohai, I., Tóth, M., Wéber, F., Szépvölgyi, J. (2007) Production of glass–ceramics from fly ash using arc plasma, J. Eur. Ceram. Soc. 27: 1721–1725.
Kim, S.-C., Lee, K.-C., Kim, K.-H., Kwon, M.-H., Song, G.-J. (2007) Enrichment of PCDDs/PCDFs in the cooling system of municipal solid waste incineration plants. Waste Manage. 27: 1593–1602.
Koningsberger, D.C., Prins, R. (1998) X-ray absorption principles, applications, techniques of EXAFS, SEXAFS and XANES, John Wiley & sons, New York.
Kourti, I., Amutha Rani, D., Bustos, A.G., Deegan, D., Boccaccini, A.R., Cheeseman, C.R. (2011) Geopolymers prepared from DC plasma treated air pollution control (APC) residues glass: Properties and characterisation of the binder phase. J. Hazard. Mater. 196: 86– 92.
Ku, C.C., Wang, H.P., Lee, P.H., Hsiao, M.C., Huang, H. L., Wang, H. C. (2003) Speciation of chromium in an electroplating sludge during thermal stabilization. Bull. Environ. Contam. Toxicol. 71: 860-865.
Kuo, Y.-C., Chen, Y.-C., Yang, C.-W., Mou, J.-L., Shih, T.-S., Tsai, P.-J. (2011) Identification the content of the windbox dust related to the formation of PCDD/Fs during the iron ore sintering process. Aerosol Air Qual. Res. 11: 351-359.
Kuo, Y.M., Lin, T.C., Tsai, P.J. (2004) Metal behavior during vitrification of incinerator ash in a coke bed furnace. J. Hazard. Mater. B109: 79–84.
Kuo, Y.M., Tseng, H.J., Chang, J.E., Wang, J.W., Wang, C.T., Chen, H.T. (2008) An alternative approach for reusing slags from a plasma vitrification process. J. Hazard. Mater. 156: 442–447.
Kuo, Y.M., Wang, C.T., Tsai, C.H., Wang, L.C. (2009) Chemical and physical properties of plasma slags containing various amorphous volume fractions. J. Hazard. Mater. 162: 469–475.
Lampris, C., Stegemann, J.A., Pellizon-Birelli, M., Fowler, G.D., Cheeseman, C.R. (2011) Metal leaching from monolithic stabilized/solidified air pollution control residues. J. Hazard. Mater. 185: 1115–1123.
Li, C.-T., Huang, Y.-J., Huang, K.-L., Lee, W.-J. (2003) Characterization of slags and ingots from the vitrification of municipal solid waste incineration ashes, Ind. Eng. Chem. Res. 42: 2306-2313.
Lin, K.L., Chang, C.T. (2006) Leaching characteristics of slag from the melting treatment of municipal solid waste incinerator ash. J. Hazard. Mater. B135: 296–302.
Lin, K.-S., Wang, H.P. (1999) Shape selectivity of trace by-products for supercritical water oxidation of 2-chlorophenol effected by CuO/ZSM-48. Appl. Catal. B-Environ. 22: 261-267.
Lin, K.-S., Wang, H.P. (2000a) Supercritical water oxidation of 2-chlorophenol catalyzed by Cu2+ cations and copper oxide clusters. Environ. Sci. Technol. 34: 4849-4854.
Lin, K.-S., Wang, H.P. (2000b) Byproduct Shape Selectivity in Supercritical Water Oxidation of 2-Chlorophenol Effected by CuO/ZSM-5., Langmuir 16: 2627-2631.
Lin, K.-S., Wang, H.P. (2001) Catalytic oxidation of 2-chlorophenol in confined channels of ZSM-48. J. Phys. Chem. B. 105: 4956-4960.
Lin, K.L., Chang, C.T. (2006) Leaching characteristics of slag from the melting treatment of municipal solid waste incinerator ash, J. Hazard. Mater. B135: 296-302.
Lin, W.-Y., Wu, Y.-L., Tu, L.-K., Wang, L.-C., Lu, X. (2010) The Emission and Distribution of PCDD/Fs in Municipal Solid Waste Incinerators and Coal-fired Power Plant. Aerosol Air Qual. Res. 10: 519-532.
Liu, S.-H., Wang, H.P. (2008) Fate of zinc in an electroplating sludge during electrokinetic treatments. Chemosphere 72: 1734-1738.
Liu, Y., Zheng, L., Li, X., Xie, S. (2009) SEM/EDS and XRD characterization of raw and washed MSWI fly ash sintered at different temperatures. J. Hazard. Mater. 162: 161–173.
McKay, G. (2002) Dioxin characterization, formation and minimization during municipal solid waste (MSW) incineration: review. Chem. Eng. J. 86: 343-368.
Moustakas, K., Xydis, G., Malamis, S., Haralambous, K.-J., Loizidou, M. (2008) Analysis of results from the operation of a pilot plasma gasification/vitrification unit for optimizing its performance. J. Hazard. Mater. 151: 473–480.
Nishigaki, M. (2000) Producing permeable blocks and pavement bricks from molten slag. Waste Manage. 20: 185-192.
Olie, K., Addink, R., and Schoonenboom, M. (1997) Metals as catalysts during the formation and decomposition of Chlorinated Dioxins and Furans in Incineration Processes. J. Air & Waste Manage. Assoc. 48: 101-105.
Park, K., Hyun, J., Maken, S., Jang, S., Park, J.-W. (2005) Vitrification of municipal solid waste incineration fly ash using Brown’s gas, Energy Fuels 19: 258-262.
Park, Y.J., Heob, J. (2002) Vitrification of fly ash from municipal solid waste incinerator, J. Hazard. Mater. B91: 83–93.
Parsons, J.G., Aldrich, M.V., Gardea-Torresdey, J.L. (2002) Environmental and biological applications of extended X-ray absorption fine structure (EXAFS) and X-ray absorption near edge structure (XANES) spectroscopies, Appl. Spectrosc. Rev. 37: 187–222.
Pedersen, A.J., Ottosen, L.M., and Villumsen, A. (2003) Electrodialytic removal of heavy metals from different fly ashes: Influence of heavy metal speciation in the ashes. J. Hazard. Mater. B100: 65–78.
Quina, M.J., Bordado, J.C., Quinta-Ferreira, R.M. (2008) Treatment and use of air pollution control residues from MSW incineration: An overview. Waste Manage. 28: 2097–2121.
Rani, D.A., Gomez, E., Boccaccini, A.R., Hao, L., Deegan, D., Cheeseman, C.R. (2008) Plasma treatment of air pollution control residues. Waste Manage. 28: 1254–1262.
Rehr, J.J., Zabinsky, S.I., Ankudinov, A., Albers, R.C. (1995) Atomic-XAFS and XANES. Physica B 208&209: 23-26.
Ryu, J.-Y.; Mulholland, J.A. (2002) Dioxin and furan formation on CuCl2 from chlorinated phenols with one ortho chlorine. Proc. Combust. Inst. 29: 2455–2461.
Sakai, S., Hiraoka, M. (2000) Municipal solid waste incinerator residue recycling by thermal processes. Waste Manage. 20: 249-258.
Shao, K., Yan, J.H., Li, X.D., Lu, S.Y., Wei, Y.L., Fu, M.X. (2010) Experimental study on the effects of H2O on PCDD/Fs formation by de novo synthesis in carbon/CuCl2 model system. Chemosphere 78: 672-679.
Song, G.-J., Kim, K.-H., Seo, Y.-C., Kim, S.-C. (2004) Characteristics of ashes from different locations at the MSW incinerator equipped with various air pollution control devices. Waste Manage. 24: 99-106.
Suzuki, K., Kasai, E., Aono, T., Yamazaki, H., Kawamoto, K. (2004) De novo formation characteristics of dioxins in the dry zone of an iron ore sintering bed. Chemosphere 54: 97-104.
Taiwan EPA, (1994) Toxicity characteristics leaching procedure (TCLP), NIEA R201.13C.
Tendler, M., Rutberg, P., van Oost, G. (2005) Plasma based waste treatment and energy production, Plasma Phys. Control. Fusion 47: A219–A230.
Teo, B.K. (1986) EXAFS: Basic principles and data analysis, Springer-Verlag, New York.
Thomas, V.M., McCreight, C.M. (2008) Relation of chlorine, copper and sulphur to dioxin emission factors. J. Hazard. Mater. 151: 164–170.
Tian, S.L., Yu, M.J., Wang, W., Wang, Q., Wu, Z.Y. (2009) Investigating the speciation of copper in secondary fly ash by X-ray absorption spectroscopy, Environ. Sci. Technol. 43: 9084-9088.
Tu, X., Wang, Q., Yu, L., Cheron, B., Yan, J., Chen, K., (2008) Diagnostic of novel atmospheric plasma source and its application to vitrification of waste incineration fly ash, Energy Fuels 22: 3057-3064.
Tuan, Y.-J., Wang, H.P., Chang, J.-E. (2012) Depression of PCDD/Fs during incineration flue gas cooling down. Aerosol Air Qual. Res. (in press)
Tuppurainen, K., Asikainen, A., Ruokojärvi, P., Ruuskanen, J. (2003) Perspectives on the formation of polychlorinated dibenzo-p-dioxins and dibenzofurans during municipal solid waste (MSW) incineration and other combustion processes, Acc. Chem. Res. 36: 652-658.
Tzeng, C.C., Kuo, Y.Y., Huang, T.F., Lin, D.L., Yu, Y.J. (1988) Treatment of radioactive wastes by plasma incineration and vitrification for final disposal, J. Hazard. Mater. 58: 207-220.
Wang, Q., Yan, J.-H., Chi, Y., Li, X.-D., Lu, S.-Y. (2010) Application of thermal plasma to vitrify fly ash from municipal solid waste incinerators. Chemosphere 78: 626–630.
Wang, Y.-H., Lin, C., Chang-Chien, G.-P. (2009) Characteristics of PCDD/Fs in a particles filtration device with activated carbon injection. Aerosol Air Qual. Res. 9: 317-322.
Wei, Y.-L., Hsu, L.-H., Wang, H.P., Chen, K.-W. (2007) XAS study of chromium recoverable from plating sludge. J. Electron Spectrosc. Relat. Phenom. 156-158: 204-207.
Wise, J. P., Sr., Wise, S. S., Little, J. E. (2002) The cytotoxicity and genotoxicity of particulate and soluble hexavalent chromium in human lung cells. Mutat. Res., 517: 221–229.
Yang, S.-F., Wang, T.-M., Lee, W.-C., Sun, K.-S., Tzeng, C.-C. (2010) Man-made vitreous fiber produced from incinerator ash using the thermal plasma technique and application as reinforcement in concrete. J. Hazard. Mater. 182: 191–196.
Yang, Y., Xiao, Y., Wilson, N., Voncken, J.H.L. (2009) Thermal behaviour of ESP ash from municipal solid waste incinerators. J. Hazard. Mater. 166: 567–575.
Zhao, P., Ni, G.H., Jiang, Y.M., Chen, L.W., Chen, M.Z., Meng, Y.D. (2010) Destruction of inorganic municipal solid waste incinerator fly ash in a DC arc plasma furnace. J. Hazard. Mater. 181: 580-585.
Zhao, Y., Song, L., Li, G. (2002) Chemical stabilization of MSW incinerator fly ashes. J. Hazard. Mater. B95: 47–63.
Zhu, J. (2009) Quantitative models for performance evaluation and benchmarking: Data envelopment analysis with spreadsheets, 2nd Ed., Springer, New York.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-09起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-08-09起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw