進階搜尋


下載電子全文  
系統識別號 U0026-0405201213064800
論文名稱(中文) 使用光配向技術製作軸對稱液晶元件之光電特性研究及其應用
論文名稱(英文) Electro-optical Properties of Axially Symmetrical Liquid Crystal Films based on Photo-alignment and Their Applications
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 100
學期 2
出版年 101
研究生(中文) 葛士瑋
研究生(英文) Shih-Wei Ko
學號 l78971071
學位類別 博士
語文別 英文
論文頁數 105頁
口試委員 召集委員-張守進
口試委員-蔡錦俊
指導教授-傅永貴
口試委員-羅光耀
口試委員-黃啟炎
口試委員-林宗賢
中文關鍵字 液晶  偶氮染料  光異構化  光配向  軸對稱 
英文關鍵字 liquid crystal  azo-dye  photoisomerization  photoalignment  axially symmetric 
學科別分類
中文摘要 近年來,軸對稱光學技術被大量使用於雷射與光學系統中,更發展於通訊、顯示、光電子學及生物醫學光電等方面,但是在建構此種光學系統過程中,複雜的光學元件仍是軸對稱光學系統設計上的瓶頸。然而,有賴於液晶材料所具有的光電特性,及液晶光學研究的進步,液晶材料逐漸應用於軸對稱元件的製作。本實驗室開發出良好的軸對稱液晶元件製作技術,突破以往傳統接觸式製作方式,改以新型的非接觸式製作方式-光配向技術。此配向技術乃是利用摻雜偶氮衍生物(如氮苯、偶氮染料等)於液晶材料中,以單一激發光使偶氮染料吸附於基板上(單光子效應),其中最主要的機制為光引致染料分子吸附效應(包含:正/負力矩效應、光致同素異構化效應、吸附/脫附效應)。並以上述方式製作出單、雙面光配向之軸對稱液晶元件。
本論文以此種元件製作技術為基礎,應用於三方面之研究主題,第一:利用單面軸對稱光配向液晶元件之特性,以液晶分子排列螺旋結構中的不連續線變化,進行輕手性分子之螺旋扭轉能測量,此種新型螺旋扭轉能測量方式較過去的測量技術(如:楔形元件、膽固醇液晶反射光譜)更為精準,並可應用於測量極低的輕手性分子摻雜濃度之液晶材料。第二:利用軸對稱液晶元件製加以設計並組合出可應用於軸對稱光學系統的特殊偏振轉換元件。調整軸對稱光配向寫入光偏振方向,可製作出特殊分布的軸對稱配向元件,藉由設計組合出可以產生特殊光電場的軸對稱光學元件,並且此種元件具有可電壓調控之特性,有利於改善傳統軸對稱光學系統設計複雜的缺點。此外,軸對稱液晶元件還可以加以應用於雷射系統中。第三:利用此種軸對稱液晶元件所轉換的特殊光偏振,將高斯分佈之雷射光斑轉換為多拿滋型雷射光斑(甜甜圈型雷射光斑),並可利用電壓調控產生不同之光束形狀,由於液晶材料之光學性質,此元件亦可用於生物醫學光電所採用之紅外光波長,且同樣具有可電控之特性。此外,藉由簡單的光學系統亦可轉換為不同的光斑外型(如:花瓣型),大幅增加了此光學元件的應用價值,將有助於光鑷系統之開發。
英文摘要 In recent years, axially symmetric optical technology has been widely used in laser and optical systems, and has also been increasingly developed in communication, display, optoelectronics, and bio-photonics fields. However, building complex optical components are challenging in the design of axially symmetric optical systems. With the development of the optical and electrical properties of liquid crystal materials, liquid crystal is gradually used in the production of axially symmetric components. The axially symmetric liquid crystal device fabrication technology has been well developed, breaking through the traditional contact fabricating method using new non-contact production methods such as photo-alignment. This technique involves the doping of azo derivatives (e.g., azobenzene, azo dyes) in liquid crystal materials. The adsorption of azo dyes in a dye-doped liquid crystal (DDLC) film is achieved through a single pump beam. Light-induced dye adsorption is the main mechanism of liquid crystal photo-alignment, which conclusively results from the positive/negative torque effect, photoisomerization effect, and adsorption/desorption. Single-sided and double-side axially symmetric photo-alignment liquid crystal devices were produced via the method described above.
This study consists of three experiments based on the fabricating technique of axially symmetric photo-alignment liquid crystal devices.
(1) Using the optical properties of a single side axially symmetric photo-alignment liquid crystal device (homogeneous-radial device), we detected the variations of the disclination line in the spiral structure formed by liquid crystal molecules to measure the helical twisting power (HTP) of a chiral dopant in liquid crystal materials. The HTP measured using an axially symmetrical liquid crystal film is more accurate than that using other methods such as the Cano wedge cell and the reflective spectrum of a cholesteric liquid crystal. In addition, this novel method can be used for measuring very low doping concentrations of the chiral dopant in liquid crystal materials.
(2) The special polarization converter, which is formed by combining these axially symmetric photo-alignment liquid crystal devices, can be applied to the axially symmetric optical system. The axially symmetric polarization converter can generate a special optical field and polarization for axially symmetric optics. Such axially symmetric liquid crystal devices can be modulated by applying voltage. These devices are useful for simplifying complex axially symmetric optical systems. Moreover, the special design of axially symmetric devices can be utilized for applications of laser systems.
(3) The axially symmetric liquid crystal device can convert a Gaussian laser beam into a donut-shaped laser beam. Moreover, it can modulate the shape of a laser beam by applying voltage. Notably, this device can be used for infrared wavelength applied for biophotonics application, and can also be tuned by applying voltage.
In addition, this novel liquid crystal device can be utilized in a simple optical system for converting a differently shaped laser beam (e.g., petal-type). The device developed in this study has substantially increased the value of the application and will contribute to the development of an optical tweezer system.
論文目次 摘要I
Abstract III
Acknowledgments VI
Contents VII
List of Figures X
List of Tables XVII
Chapter One Introduction 1
1.1 Preface 1
1.2 Liquid crystals 4
1.2.1 Categories of liquid crystals 5
1.2.2 Phases of rod-like thermotropic liquid crystals 7
1.3 Physical properties of liquid crystals 13
1.3.1 Birefringence 13
1.3.2 Effect of temperature on LCs 16
1.3.3 Anisotropy of dielectric constant 17
1.3.4 Elastic continuum theory of liquid crystal 19
1.3.5 Fréedericksz transition 21
Chapter Two Basic relation theories 23
2.1 Light induced molecules reorientation effect 23
2.1.1 Positive Torque Effect –Jánossy Model 23
2.1.2 Negative Torque Effect – Gibbons Model 26
2.1.3 Photoisomerization Effect 28
2.2 Jones Matrix Method 29
2.2.1 Jones Vector 29
2.2.2 Jones Matrix 31
2.2.3 Jones matrix of non-uniform birefringence film 35
2.3 Basic theory of the liquid crystal devices 37
2.3.1 Homogeneous liquid crystal device 37
2.3.2 Twist Nematic liquid crystal device 38
2.3.3 Bisector effect 43
2.3.4 Mauguin condition 45
2.3.5 The Bragg Reflections of cholesteric liquid crystals 46
Chapter Three Experimental preparations 48
3.1 Materials 48
3.1.1 Liquid Crystals - E7 48
3.1.2 Azo dye – Methyl Red 49
3.1.3 Chiral agent – CB15 and S811 50
3.2 Fabrications of samples 51
3.2.1 Azo dye-doped CLC cell for measuring helical twisting
power (used in Chapter four) 51
3.2.2 Azo dye-doped LC cell for polarization converters (used in Chapter five) 52
3.2.3 Azo dye-doped LC cell for tunable donut beam (used in
chapter six) 54
Chapter Four Measurement of helical twisting power using dye-doped
liquid crystal film 55
4.1 Optical properties of chiral doped axially symmetric
dye-doped liquid crystal device 56
4.2 Calculation for the HTP values of chiral materials via axially symmetric dye-doped liquid crystal device and error
percentage 60
Chapter Five Polarization converters based on axially symmetric twisted
nematic liquid crystal 64
5.1 Optical properties of axially symmetric dye-doped liquid
crystal devices-radial, azimuthal and twist structures 65
5.2 Calculation and measurement of axially symmetric twisted
nematic liquid crystal device69
5.3 Operation and simulation of axially symmetric twisted
nematic liquid crystal device71
Chapter Six Novel control of laser-beam shape using axially symmetric liquid crystal cells 76
6.1 Optical properties and simulation of axially symmetric
dye-doped liquid crystal devices 78
6.2 Operation and analyze of donut beam shape formed by
axially symmetric dye-doped liquid crystal devices 80
6.3 Operation of donut beam shape via axially symmetric
dye-doped liquid crystal devices 84
6.4 Applications of axially symmetric dye-doped liquid crystal devices 86
Chapter Seven Conclusions and future work 89
7.1 Conclusions 89
7.2 Future works 90
References 94
List of Publications 102
參考文獻 [1] I. Jánossy, A. D. Lloyd, B. S. Wherrett, Mol. Crys. & Liq. Cryst., 179, 1 (1990)
[2] I. Jánossy, L. Csillag, A. D. Lloyd, Phys. Rev. A, 44, 8410 (1991)
[3] P. Wu, L. Wang, J. Xu, B. Zou, X. Gong, G. Zhang, G. Tang, and W. Chen, Phys. Rev. B, 57, 3874 (1998)
[4] I. C. Khoo, S. Slussarenko, B. D. Guenther, M. Y. Shih, P. Chen, W. V. Wood, Opt. Lett., 23, 253 (1998)
[5] B. Saad, M. M. Denariez-Roberge, T. V. Galstyan, Opt. Lett., 23, 727 (1998).
[6] O. Francescangeli, S. Slussarenko, F. Simoni, D. Andrienko, V. Reshetnyak, Y. Reznikov, Phys. Rev. Lett., 82, 1855 (1999)
[7] E. Ouskova, D. Fedorenko, Yu. Reznikov, S. V. Shiyanovskii, L. Su, J. L. West, O.V. Kuksenok, O. Francescangeli, and F. Simoni, Phys. Rev. E, 63,
021701 (2001)
[8] E. Ouskova, Yu. Reznikov, S. V. Shiyanovskii, L. Su, J. L. West, O. V. Kuksenok, O. Francescangeli and F. Simoni, Phys. E, 64, 051709 (2001)
[9] C. Sanchez, R. Cases, R. Alcala, A. Lopez, M. Quintanilla, L. Oriol and M. Millaruelo, J. App. Phys., 89, 10, 5299 (2001)
[10]H. Yoshida, K. Tagashira, T. Kumagai, A. Fujii and M.Ozaki, Opt. Express, 18, 12562 (2010)
[11]I. C. Khoo, M. V. Wood, M. Y. Shih and P. H. Chen. Opt. Express, 11, 432 (1999)
[12]M. Stalder and M. Schadt, Opt. Lett., 21, 1948 (1996)
[13]Y. H. Wu, Y. H. Lin, H. Ren, X. Nie, J. H. Lee, and S. T. Wu, Opt. Express, 13, 4638 (2005)
[14]H. Ren, Y. H. Lin, and S. T. Wu, Appl. Phys. Lett., 89, 051114 (2006)
[15]Y. Y. Tzeng, S. W. Ko, C. L. Ting, Andy Y. G. Fuh, and T. H. Lin, Opt. Express, 16, 3768 (2008)
[16]S. W. Ko, Y. Y. Tzeng, C. L. Ting, Andy Y. G. Fuh, and T. H. Lin, Opt. Express, 16, 19643 (2008)
[17]S. W. Ko, S. H. Huang, C. L. Ting, Andy Y. G. Fuh, and T. H. Lin, Opt. Express, 18, 15926 (2009)
[18]S. W. Ko, C. L. Ting, Andy Y. G. Fuh, and T. H. Lin, Opt. Express, 18, 3601 (2010)
[19]Andy Y. G. Fuh, S. W. Ko, S. H. Huang, Y. Y. Chen, and T. H. Lin, Opt. Express, 19, 2294 (2011)
[20]S. W. Ko, T. H. Lin, H. C. Jau, S. C. Chu, Y. H. Huang, Y. Y. Chen, and Andy Y.-G. Fuh. Appl. Opt., 51 (2012)
[21]B. Bahoadur, “Liquid Crystals-Applications and Uses”, World Scientific Press, Singapore (1990)
[22]E. B. Priestley, P. J. Wojtowicz and P. Sheng, “Introduction to Liquid Crystals”, Princeton, New Jersey (1975)
[23]P. J Collings and M. Hird, “Introduction to Liquid Crystal ”, Taylor & Francis, London (1997)
[24]P. G. de Gennes and J. Prost, “The physics of Liquid Crystals”, 2nd ed., Clarendon Press, Oxford (1993)
[25]M Blinov and V. G. Chigrinov, “Electrooptic Effects in Liquid Crystal Materials”, Springer-Verlag, New York (1994)
[26]S. Chandraseker, F. R. S., “Liquid crystals”, Second edition, Cambridge University Press, Cambridge (1992)
[27]I. C. Khoo, “Liquid Crystals”, 2th Ed., John Wiley & Sons, Inc., New Jersey (2007)
[28]A. Yariv, “Optical Electronics in Modern Communications”, 5th Ed., Oxford University Press, New York (1997)
[29]Andy Y. G. Fuh, T. H. Lin, F. C. Wu, Opt. Express, 12, 1857 (2004)
[30]T. H. Lin, Y. J. Chen, C. H. Wu, J. H. Liu, P. C. Yang and Andy Y. G. Fuh, Appl. Phys. Lett., 86, 161120 (2005)
[31]T. H. Lin, H. C. Jau, C. H. Chen, T. H. Wei, C. W. Chen and Andy Y. G. Fuh, Appl. Phys. Lett., 88, 061122 (2006)
[32]Andrew J. Lovinger, Karl R. Amundson and Don D. Davis, Chem. Mater., 6, 1726 (1994)
[33]Grant R. Fowles, “Introduction to Modern Optics”, 2nd ed., University of Utah, New York (1975)
[34]S. T. Wu and D. K.Yang, “Reflective Liquid Crystal Displays”, John Wiley & Sons, Inc., Chichester (2001)
[35]T. Tako, S. Masubuchi and T. Akahane, Mol. Liq. Cryst., 38, 303 (1977)
[36]C. W. Ossen, Trans. Faraday Soc., 29, 883 (1933)
[37]H. Zocher, Trans. Faraday Soc., 29, 945 (1933)
[38]F. C. Frank, Discuss, Faraday Soc., 25, 19 (1958)
[39]Giovanni Barberoan and Luiz Roberto Evangelista, “Adsorption phenomena and anchoring energy in nematic Liquid Crystals”, Taylor and Francis, Boca Raton (2006)
[40]I. Jánossy and T. Kosa, Opt. Lett., 17, 1183 (1992)
[41]I. Jánossy, A.D. Lloyd, Mol. Crys. & Liq. Cryst., 203, 74 (1990)
[42]I. Jánossy, Phys. Rev. E, 49, 2957 (1994)
[43]Dennis Gabor, Nature, 161, 777(1948)
[44]W. M. Gibbons, P. J. Shannon S. T. Sun, and B. J. Swetlin, Nature, 351, 49 (1991)
[45]W. M. Gibbons, T. Kosa, P. Palffy-Muhoray, P. J. Shannon and S. T. Sun, Nature, 377, 43 (1995)
[46]W. Y. Wong, T. M. Wong and H. Hiraoka, Appl. Phys. A, 65, 519 (1997)
[47]H. Hervel, W. Urbach and F. Rondelez, J. Chem. Phys., 68, 2725 (1978)
[48]C. R. Lee, T. S. Mo, K. T. Cheng, T. L. Fu and A. Y. G. Fuh, Appl. Phys. Lett. 83, 4285 (2003)
[49]D. K. Yang and S. T. Wu, “Fundamentals of Liquid Crystal Devices”, Chapter 3, John Wiley & Sons, Inc. (2006)
[50]P. Yeh and C. Gu, “Optics of Liquid Crystal Displays”, John Wiley & Sons, Inc., London (1988)
[51]M. Schadt and W. Helfrich, Appl. Phys. Lett., 18, 127 (1971)
[52]M. D. Tillin, J. Appl. Phys., 102, 073101 (2007)
[53]H. Bock, Phys. Lett., 73, 2905 (1998)
[54]F. Vicentini and L. C. Chien, Liq. Cryst., 24, 483 (1998)
[55]T. Sasaki, A. Emoto, T. Shioda, and H. Ono, Appl. Phys. Lett., 94, 023303 (2009)
[56]S. S. Choi, S. M. Morris, and H. J. Coles, Appl. Phys. Lett., 91, 231110 (2007)
[57]C. T. Wang and T. H. Lin, Opt. Express, 16, 18334 (2008)
[58]T. H. Lin, Y. J. Chen, C. H. Wu, Andy Y. G. Fuh, J. H. Liu and P. C. Yang, Appl. Phys. Lett., 86, 161120 (2005)
[59]D. K. Yang, J. W. Doane, Z. Yaniv, and J. Glasser, Appl. Phys. Lett., 65, 1905 (1994)
[60]P. Oswald, P. Pieranski, “Nematic and Cholesteric Liquid Crystals”, Chapter B-VII, page 446, Taylor & Francis, London (2005)
[61]J. F. Strömer, D. Marenduzzo, C. V. Brown, J. M. Yeomans and E. P. Raynes, J. Appl. Phys., 99, 064911 (2006)
[62]R. Bhandari, Phys. Rep., 282, 1 (1997)
[63]Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman, Opt. Lett., 27, 1141 (2002)
[64]A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, and M. Ritsch-Marte, Opt. Express, 15, 5801 (2007)
[65]G. A. Swartzlander, Jr., Opt. Lett., 26, 497 (2001)
[66]S. Bernet, A. Jesacher, S. Fuerhapter, C. Maurer, and M. Ritsch-Marte, Opt. Express, 14, 3792 (2006)
[67]A. V. Nesterov, and V. G. Niziev, Phys. D: Appl. Phys., 33, 1817 (2000)
[68]J. H. Lee, H. R. Kim, and S. D. Lee, Appl. Phys. Lett., 75, 859 (1999)
[69]G. Sinclair, P. Jordan, J. Courtial, M. Padgett, J. Cooper, and Z. J. Laczik, Opt. Express, 12, 5475 (2004)
[70]S. C. Chapin, V. Germain, and E. R. Dufresne, Opt. Express, 14, 13095 (2006)
[71]R. Yamaguchi, T. Nose, and S. Sato, Jpn. J. Appl. Phys., 28, 1730 (1989)
[72]A. Niv, G. Biener, V. Kleiner, and E. Hasman, Opt. Lett., 28, 510 (2003)
[73]S. Nersisyan, N. Tabiryan, D. M. Steeves, B. R. Kimball, Opt. Express, 17, 11926 (2009)
[74]L. C. Lin, H. C. Jau, T. H. Lin, and A. Y. G. Fuh, Opt. Express, 15, 2900 (2007)
[75]A. Ashkin, and J. M. Dziedzic, Science, 235, 1517 (1987)
[76]C. Bustamante, Z. Bryant, and S. B. Smith, Nature, 421, 423 (2003)
[77]S. M. Block, D. F. Blair, and H. C. Berg, Nature, 338, 514 (1989)
[78]T. M. Hansen, S. N. S. Reihani, L. B. Oddershede, and M. A. Sorensen, Proc. Natl. Acad. Sci. U.S.A., 104, 5830 (2007)
[79]R. Agarwal, K. Ladavac, Y. Roichman, G. Yu, C. M. Lieber, and D. G. Grier, Opt. Express, 13, 8906 (2005)
[80]S. Tan, H. A. Lopez, C. W. Cai, and Y. Zhang, Nano Lett., 4 , 1415 (2004)
[81]C. Selhuber-Unkel, I. Zins, O. Schubert, C. Sonnichsen, and L. B. Oddershede, Nano Lett., 8, 2998 (2008)
[82]Y. Seol, A. E. Carpenter, and T. T. Perkins, Opt. Lett., 31, 2429 (2006)
[83]F. Hajizadeh and S. N. S. Reihani, Opt. Express, 18, 551 (2010)
[84]A. Ashkin, Phys. Rev. Lett., 24, 156 (1970)
[85]Colon JM, Sarosi P, McGovern PG, Askin A, Dziedzic JM, Skurnick J, Weiss G, Bonder EM., Fertil. Steril., 57, 695 (1992)
[86]T.T. Perkins, D.E. Smith, R.G. Larson, and S. Chu, Science, 268, 83 (1995)
[87]K. Visscher, G. J. Brakenhoff, and J. J. Krol, Cytometry, 14, 105 (1993)
[88]K. Vermeulen, J. van Mameren, G. Stienen, E. Peterman, G. Wuite, and C. Schmidt, Rev. of Sci. Instrum., 77, 013704 (2006)
[89]Benjamin K. Wilson, Tim Mentele, Stephanie Bachar, Emily Knouf, Ausra Bendoraite, Muneesh Tewari, Suzie H. Pun, and Lih Y. Lin, Opt. Express, 18, 16005 (2010)
[90]K. T. Gahagan and G. A. Swartzlander, Jr., Opt. Lett., 21, 827 (1996)
[91]J Liesener, M Reicherter, T Haist, H J Tiziani “Multi-functional optical tweezers using computer gererated holograms,” Opt. Commun., 185, 77 (2000)
[92]A. Jesacher, A. Schwaighofer, S. Fürhapter, C. Maurer, S. Bernet, M. Ritsch-Marte, "Wavefront correction of spatial light modulators using an optical vortex image," Opt. Express, 15, 5801 (2007)
[93]C.-S. Guo, X. Liu, J.-L. He, H.-T. Wang, "Optimal annulus structures of optical vortices," Opt. Express, 12, 4625 (2004)
[94]D. P. Rhodes, D. M. Gherardi, J. Livesey, D. McGloin, H. Melville, T. Freegarde and K. Dholakia, “Atom guiding along high order Laguerre–Gaussian light beams formed by spatial light modulation,” J. Mod. Opt., 53, 547 (2006)
[95]Darwin Palima and Jesper Glückstad, “Gaussian to uniform intensity shaper based on generalized phase contrast,” Opt. Express, 16, 1507 (2008)
[96]D. McGloin, G.C. Spalding, H. Melville, W. Sibbett and K. Dholakia, “Applications of spatial light modulators in atom optics,” Opt. Express, 11, 158 (2003)
[97]F. K. Fatemi and M. Bashkansky and Z. Dutton, “Dynamic high-speed spatial manipulation of cold atoms using acousto-optic and spatial light modulation,” Opt. Express, 15, 3589 (2007)
[98]René Lynge Eriksen, Vincent Ricardo Daria and Jesper Glückstad, “Fully dynamic multiple-beam optical tweezers,” Opt. Express, 10, 597 (2002)
[99]S. C. Chu, K. Otsuka, Opt. Commun., 281, 1647 (2008)
[100] A. Jesacher, S. Fürhapter, S. Bernet, M. R. Marte, Opt. Express, 12, 2243 (2004)
[101] V. V. Kotlyar, A. A. Kovalev, R. V. Skidanov, S. N. Khonina, O. Yu. Moiseev, V. A. Soĭfer, J. Opt. Technol., 74, 49 (2007)
[102] The Language of Technical Computing, http://www.mathworks.com/
[103] J. W. Goodman, “Introduction to Fourier Optics”, Chapter 4, Roberts & Company Publishers (2004)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-05-08起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-05-08起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw