進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0403201910034100
論文名稱(中文) 石墨烯和矽烯相關系統的豐富基本特性
論文名稱(英文) Rich essential properties of graphene- and silicene-related systems
校院名稱 成功大學
系所名稱(中) 物理學系
系所名稱(英) Department of Physics
學年度 107
學期 2
出版年 108
研究生(中文) 阮維康
研究生(英文) Duy Khanh Nguyen
學號 L28047026
學位類別 博士
語文別 英文
論文頁數 168頁
口試委員 指導教授-林明發
召集委員-楊志開
口試委員-梁贊全
口試委員-邱裕煌
口試委員-盧炎田
口試委員-呂欽山 
中文關鍵字 化学键合  第一性原理计算  电荷转移 
英文關鍵字 Chemical bonding  first-principles calculation  charge transfer 
學科別分類
中文摘要 none
英文摘要 Geometric, magnetic, and electronic properties of graphene- and silicene-related systems are investigated by the first-principles theoretical framework, including the adatom-diversified geometric structure, atom-dominated energy bands, spatial spin density distributions, spatial charge density distributions and its variations, and spin- and orbital-projected density of states (DOSs). Such physical quantities are sufficient to identify the critical chemical bondings. The essential properties are very sensitive to adatom concentration, adatom distributions, doping positions, various kinds of adatoms. The pristine monolayer structure can be deformed, buckled, non-hexagonal, and planar after the adatom adsorption and substitution. The critical orbital hybridizations in the C-adatom bondings, the Si-adatom bondings, the finite-size confinements, and the edge structure directly determine the semiconducting, semi-metallic, and metallic behaviors. The diverse spin-dependent electronic properties cover the non-magnetic, ferromagnetic, and anti-ferromagnetic metals, the non-magnetic semiconductors, and the anti-ferromagnetic semiconductors with/without spin splitting. The developed first-principles theoretical framework can fully be generalized to other 2D layered systems.
論文目次 Chapter 1. Introduction…………………………………….…….1
References ....................................................................................10
Chapter 2. Rich Essential Properties of Si-Doped Graphene
2.1 Introduction.............................................................................20
2.2 Computational method............................................................22
2.3 Results and discussions
2.3.1 Si adatom-diversified 2D planar structure............................24
2.3.2 Si adatom-induced rich 2D energy band...............................30
2.3.3 Si adatom-induced diverse charge distribution.....................39
2.3.4 Si adatom-diversified 2D density of states............................43
2.4 Concluding remarks….. ...........................................................50
References ......................................................................................54
Chapter 3. Fluorination-Enriched Electronic and Magnetic Properties in Graphene Nanoribbons
3.1 Introduction................................................................................67
3.2 Computational method ..............................................................69
3.3 Results and discussions
3.3.1 F adatom-modified 1D geometric structure.............................70
3.3.2 F adatom-induced feature-rich 1D band structure....................75
3.3.3 F adatom-induced diverse magnetic configuration...................82
3.3.4 F adatom-created diverse charge distribution...........................84
3.3.5 F adatom-reshaped 1D density of states....................................86
3.3.6 Experimental measurement........................................................89
3.4 Concluding remarks......................................................................90
References ..........................................................................................92

Chapter 4. Diverse Electronic and Magnetic Properties of Chlorination-Related Graphene Nanoribbons
4.1 Introduction....................................................................................99
4.2 Computational method .................................................................101
4.3 Results and discussions
4.3.1 Halogen adatom-diversified 1D planar structure.......................102
4.3.2 Halogen adatom-induced feature-rich 1D band structure..........106
4.3.3 Cl adatom-related diverse magnetic configuration.....................111
4.3.4 Cl adatom-related diverse charge distribution............................114
4.3.5 Cl adatom-diversified 1D density of states................................116
4.4 Concluding remarks.......................................................................119
References............................................................................................121
Chapter 5. Concentration-Diversified Magnetic and Electronic Properties of Halogen-Adsorbed Silicene
5.1 Introduction.....................................................................................127
5.2 Computational method....................................................................130
5.3 Results and discussions
5.3.1 Halogen adatom-diversified 2D buckled structure.......................131
5.3.2 Halogen adatom-enriched 2D energy band...................................137
5.3.3 Halogen adatom-related diverse spin distribution.........................143
5.3.4 Halogen adatom-induced diverse charge distribution...................146
5.3.5 Halogen adatom-reshaped 2D density of states.............................149
5.4 Concluding remarks..........................................................................154
References...............................................................................................155
Chapter 6. Summary and Future Research..............................................163
參考文獻 Chapter 1:
[1] Hirsch, A. The era of carbon allotropes. Nature Materials, 9, 868(2010).

[2] Kobayashi, K. Electronic structure of a stepped graphite surface. Physical Review B, 48, 1757(1993).

[3] Robertson, J. Electronic structure of diamond-like carbon. Diamond and Related Materials, 6, 212-218(1997).

[4] Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science, 306, 666-669(2004).

[5] Ni, Z. H, et al. Raman spectroscopy of epitaxial graphene on a SiC substrate. Physical Review B, 77, 115416(2008).

[6] Novoselov, K. S., Fal, V. I., Colombo, L., Gellert, P. R., Schwab, M. G., and Kim, K. A roadmap for graphene. Nature, 490, 192(2012).

[7]Yang, X., Dou, X., Rouhanipour, A., Zhi, L., Rader, H. J., and Mullen, K. Two-dimensional graphene nanoribbons. Journal of the American Chemical Society, 130, 4216-4217(2008).

[8] Jiao, L., Zhang, L., Wang, X., Diankov, G., and Dai, H. Narrow graphene nanoribbons from carbon nanotubes. Nature, 458, 877(2009).

[9] da Costa, M. F., Ribeiro, H. B., Kessler, F., de Souza, E. A. T., and Fechine, G. J. M. . Micromechanical exfoliation of two-dimensional materials by a polymeric stamp. Materials Research Express, 3, 025303(2016).

[10] Su, C. Y., Lu, A. Y., Xu, Y., Chen, F. R., Khlobystov, A. N., and Li, L. J. High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano, 5, 2332-2339(2011).

[11] Yang, W. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nature Materials, 12, 792(2013).

[12] Moon, I. K., Lee, J., Ruoff, R. S., and Lee, H. Reduced graphene oxide by chemical graphitization. Nature Communications, 1, 73(2010).

[13] Pei, S., and Cheng, H. M. The reduction of graphene oxide. Carbon, 50, 3210-3228(2012).

[14] Ismach, A. et al. Direct chemical vapor deposition of graphene on dielectric surfaces. Nano letters, 10, 1542-1548(2010).

[15] Wu, Z. S., Zhou, G., Yin, L. C., Ren, W., Li, F., and Cheng, H. M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy, 1, 107-131(2012).

[16] Yang, J. et al. Graphene and cobalt phosphide nanowire composite as an anode material for high performance lithium-ion batteries. Nano Research, 9, 612-621(2016).

[17] Partoens, B., and Peeters, F. M. From graphene to graphite: Electronic structure around the K point. Physical Review B, 74, 075404(2006).

[18] Wong, J. H., Wu, B. R., and Lin, M. F. Strain effect on the electronic properties of single layer and bilayer graphene. The Journal of Physical Chemistry C, 116, 8271-8277(2012).

[19] Lai, Y. H., Ho, J. H., Chang, C. P., and Lin, M. F. Magnetoelectronic properties of bilayer Bernal graphene. Physical Review B, 77, 085426(2008).

[20] Lin, C. Y., Wu, J. Y., Ou, Y. J., Chiu, Y. H., and Lin, M. F. Magneto-electronic properties of multilayer graphenes. Physical Chemistry Chemical Physics, 17, 26008-26035(2015).

[21] Sutter, P., Hybertsen, M. S., Sadowski, J. T., and Sutter, E. Electronic structure of few-layer epitaxial graphene on Ru (0001). Nano letter, 9, 2654-2660(2009).

[22] Tran, N. T. T., Lin, S. Y., Glukhova, O. E., and Lin, M. F. Configuration-induced rich electronic properties of bilayer graphene. The Journal of Physical Chemistry C, 119, 10623-10630(2015).

[23] Liu, H., Liu, Y., and Zhu, D. . Chemical doping of graphene. Journal of materials chemistry, 21, 3335-3345(2011).

[24] Wu, J. et al. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano, 4, 43-48(2009).

[25] Wang, Z. L., Xu, D., Wang, H. G., Wu, Z., and Zhang, X. B. In situ fabrication of porous graphene electrodes for high-performance energy storage. ACS Nano, 7, 2422-2430 (2013).

[26] Wang, Y., Shao, Y., Matson, D. W., Li, J. and Lin, Y. Nitrogen-doped graphene and its application in electrochemical biosensing. ACS Nano, 4, 1790-1798 (2010).

[27] Gao, H., Wang, L., Zhao, J., Ding, F., and Lu, J. Band gap tuning of hydrogenated graphene: H coverage and configuration dependence. The Journal of Physical Chemistry C, 115, 3236-3242(2011).

[28] Robinson, J. T. et al. Properties of fluorinated graphene films. Nano letters, 10, 3001-3005(2010).

[29] Papagno, M. et al . Large band gap opening between graphene Dirac cones induced by Na adsorption onto an Ir superlattice. ACS Nano, 6, 199-204(2011).

[30] Akturk, O. U., and Tomak, M. Bismuth doping of graphene. Applied Physics Letters, 96, 081914(2010).

[31] Lv, R. et al. Nitrogen-doped graphene: beyond single substitution and enhanced molecular sensing. Scientific reports, 2, 586(2012).

[32] Sun, M. et al. Electronic and magnetic behaviors of graphene with 5d series transition metal atom substitutions: A first-principles study. Physica E: Low-dimensional Systems and Nanostructures, 80, 142-148(2016).

[33] Badi, N. et al . Low-cost carbon-silicon nanocomposite anodes for lithium-ion batteries. Nanoscale research letters, 9, 360(2014).

[34] Yim, C. H., Courtel, F. M. and Abu-Lebdeh, Y. A high capacity silicon-graphite composite as anode for lithium-ion batteries using low content amorphous silicon and compatible binders. Journal of Materials Chemistry A, 1, 8234-8243(2013).

[35] Son, I. H. et al. Silicon carbide-free graphene growth on silicon for lithium-ion battery with high volumetric energy density. Nature Communications, 6, ncomms8393(2015).

[36] Barone, V., Hod, O., and Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Letters, 6, 2748-2754(2006).

[37] Son, Y. W., Cohen, M. L., and Louie, S. G. Energy gaps in graphene nanoribbons. Physical review letters, 97, 216803(2006).

[38] Yoon, W. et al. Graphene nanoribbons formed by a sonochemical graphene unzipping using flavin mononucleotide as a template. Carbon, 81, 629-638(2015).

[39] Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 458, 872(2009).

[40] Wang, X., and Dai, H. Etching and narrowing of graphene from the edges. Nature chemistry, 2, 661(2010).

[41] Chen, Y. C., De Oteyza, D. G., Pedramrazi, Z., Chen, C., Fischer, F. R., and Crommie, M. F. Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano, 7, 6123-6128(2013).

[42] Yang, W., Lucotti, A., Tommasini, M., and Chalifoux, W. A. Bottom-up synthesis of soluble and narrow graphene nanoribbons using alkyne benzannulations. Journal of the American Chemical Society, 138, 9137-9144(2016).

[43] Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 466, 470(2010).

[44] Jordan, R. S. et al. Synthesis of N=8 Armchair Graphene Nanoribbons from Four Distinct Polydiacetylenes. Journal of the American Chemical Society, 139, 15878-15890(2017).

[45] Nguyen, G. D. et al. Bottom-up synthesis of N=13 sulfur-doped graphene nanoribbons. The Journal of Physical Chemistry C, 120, 2684-2687(2016).

[46] Talirz, L. et al. Termini of bottom-up fabricated graphene nanoribbons. Journal of the American Chemical Society, 135, 2060-2063(2013).

[47] Li, Y., Zhou, Z., Shen, P., and Chen, Z. Spin gapless semiconductor-metal-half-metal properties in nitrogen-doped zigzag graphene nanoribbons. ACS Nano, 3, 1952-1958(2009).

[48] Chang, C. P., Wu, B. R., Chen, R. B., and Lin, M. F. Deformation effect on electronic and optical properties of nanographite ribbons. Journal of applied physics, 101, 063506(2007).

[49] Huang, Y. C., Chang, C. P., and Lin, M. F. Magnetoabsorption spectra of bilayer graphene ribbons with bernal stacking. Physical Review B, 78, 115422(2008).

[50] Lin, C. Y., Wu, J. Y., Ou, Y. J., Chiu, Y. H., and Lin, M. F. Magneto-electronic properties of multilayer graphenes. Physical Chemistry Chemical Physics, 17, 26008-26035(2015).

[51] Chang, S. L., Lin, S. Y., Lin, S. K., Lee, C. H., and Lin, M. F. Geometric and electronic properties of edge-decorated graphene nanoribbons. Scientific reports, 4, 6038(2014).

[52] Sadeghi, H., Ahmadi, M. T., Mousavi, S. M., Ismail, R., and Ghadiry, M. H. Channel conductance of ABA stacking trilayer graphene nanoribbon field-effect transistor. Modern Physics Letters B, 26, 1250047(2012).

[53] Chang, C. P., Huang, Y. C., Lu, C. L., Ho, J. H., Li, T. S., and Lin, M. F. Electronic and optical properties of a nanographite ribbon in an electric field. Carbon, 44, 508-515(2006).

[54] Lin, M. F., and Shyu, F. L. Optical properties of nanographite ribbons. Journal of the Physical Society of Japan, 69, 3529-3532(2000).

[55] Brey, L., and Fertig, H. A. Electronic states of graphene nanoribbons studied with the Dirac equation. Physical Review B, 73, 235411(2006).

[56] Poklonski, N. A., Kislyakov, E. F., Vyrko, S. A., Bubel, O. N., and Ratkevich, S. V. Electronic band structure and magnetic states of zigzag graphene nanoribbons: quantum chemical calculations. Journal of Nanophotonics, 6, 061712(2012).

[57] Wang, Z., Xiao, J., and Li, M. Adsorption of transition metal atoms (Co and Ni) on zigzag graphene nanoribbon. Applied Physics A, 110, 235-239(2013).

[58] Krepel, D., and Hod, O. Lithium adsorption on armchair graphene nanoribbons. Surface Science, 605, 1633-1642(2011).

[59] da Rocha, C. G., Clayborne, P. A., Koskinen, P., and Hakkinen, H. Optical and electronic properties of graphene nanoribbons upon adsorption of ligand-protected aluminum clusters. Physical Chemistry Chemical Physics, 16, 3558-3565(2014).

[60] Huang, B. et al. Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor. The Journal of Physical Chemistry C, 112, 13442-13446(2008).

[61] Johnson, J. L., Behnam, A., Pearton, S. J., and Ural, A. Hydrogen Sensing Using Pd-Functionalized Multi-Layer Graphene Nanoribbon Networks. Advanced materials, 22, 4877-4880(2010).

[62] Lin, J. et al. Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium-ion batteries. ACS Nano, 7, 6001-6006(2013).

[63] Jeon, I. Y. et al. Fluorine: Edge-Fluorinated Graphene Nanoplatelets as High Performance Electrodes for Dye-Sensitized Solar Cells and Lithium-Ion Batteries. Advanced Functional Materials, 25, 1328-1328(2015).

[64] Sun, C., Feng, Y., Li, Y., Qin, C., Zhang, Q., and Feng, W. Solvothermally exfoliated fluorographene for high-performance lithium primary batteries. Nanoscale, 6, 2634-2641(2014).

[65] Vogt, P. et al. Silicene: compelling experimental evidence for graphene-like two-dimensional silicon. Physical review letters, 108, 155501(2012).

[66] Zhang, L. et al. Structural and electronic properties of germanene on MoS 2. Physical review letters, 116, 256804(2016).

[67] Salazar, C., Muniz, R. A., and Sipe, J. E. Effective model for the electronic and optical properties of stanene. Physical Review Materials, 1, 054006(2017).

[68] Perepichka, D. F., Rosei, F. Silicon nanotubes. Small, 2, 22-25(2006).

[69] Marsen, B., Sattler, K. Fullerene-structured nanowires of silicon. Physical Review B, 60, 11593(1999).

[70] Vogt, P. et al. Silicene: compelling experimental evidence for graphene-like two-dimensional silicon. Physical review letters, 108, 155501(2012).

[71] Feng, B. et al. Evidence of silicene in honeycomb structures of silicon on Ag (111). Nano Letters, 12, 3507-3511(2012).

[72] Gao, J., Zhao, J. Initial geometries, interaction mechanism and high stability of silicene on Ag (111) surface. Scientific reports, 2, 861(2012).

[73] Meng, L. et al. Buckled silicene formation on Ir (111). Nano letters, 13, 685-690(2013).

[74] Takeda, K., Shiraishi, K. Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Physical Review B, 50, 14916(1994).

[75] Lee, C. C., Fleurence, A., Yamada-Takamura, Y., Ozaki, T., Friedlein, R. Band structure of silicene on zirconium diboride (0001) thin-film surface: Convergence of experiment and calculations in the one-Si-atom Brillouin zone. Physical Review B, 90, 075422(2014).

[76] Chen, L. et al. Evidence for Dirac fermions in a honeycomb lattice based on silicon. Physical review letters, 109, 056804(2012).

[77] Tao, L. et al. Silicene field-effect transistors operating at room temperature. Nature Nanotechnology, 10, 227(2015).

[78] Liu, C. C., Jiang, H., Yao, Y. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Physical Review B, 84, 195430(2011).

[79] Liu, C. C., Feng, W., Yao, Y. Quantum spin Hall effect in silicene and two-dimensional germanium. Physical review letters, 107, 076802(2011).

[80] Ezawa, M. A topological insulator and helical zero mode in silicene under an inhomogeneous electric field. New Journal of Physics, 14, 033003(2012).

[81] Drummond, N. D., Zolyomi, V., Falko, V. I. Electrically tunable band gap in silicene. Physical Review B, 85, 075423(2012).

[82] Ezawa, M. Valley-polarized metals and quantum anomalous Hall effect in silicene. Physical review letters, 109, 055502(2012).
[83] Lin, S. Y., Chang, S. L., Tran, N. T. T., Yang, P. H., Lin, M. F. H-Si bonding-induced unusual electronic properties of silicene: a method to identify hydrogen concentration. Physical Chemistry Chemical Physics, 17, 26443-26450(2015).

[84] Sahin, H., Peeters, F. M. Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene. Physical Review B, 87, 085423(2013).

[85] Sivek, J., Sahin, H., Partoens, B., Peeters, F. M. Adsorption and absorption of boron, nitrogen, aluminum, and phosphorus on silicene: Stability and electronic and phonon properties. Physical Review B, 87, 085444(2013).

[86] Gao, N., Zheng, W. T., Jiang, Q. Density functional theory calculations for two-dimensional silicene with halogen functionalization. Physical Chemistry Chemical Physics, 14, 257-261.(2012).

[87] Zhang, W. B., Song, Z. B., Dou, L. M. The tunable electronic structure and mechanical properties of halogenated silicene: a first-principles study. Journal of Materials Chemistry C, 3, 3087-3094(2015).

[88] Li, W., Sheng, S., Chen, J., Cheng, P., Chen, L., Wu, K. Ordered chlorinated monolayer silicene structures. Physical Review B, 93, 155410(2016).

Chapter 2:
[1] Fayos, J. Possible 3D carbon structures as progressive intermediates in graphite to diamond phase transition. Journal of Solid State Chemistry, 148, 278-285(1999).
[2] Wang, Y., Panzik, J. E., Kiefer, B. & Lee, K. K. Crystal structure of graphite under room-temperature compression and decompression. Scientific reports, 2, 520(2012).

[3] Novoselov, K. S. et al. Electric feld in atomically thin carbon. Science, 306, 666-669(2004).

[4] Zhang, Y., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 438, 201(2005).

[5] Jiao, L., Wang, X., Diankov, G., Wang, H. & Dai, H. Facile synthesis of high-quality graphene nanoribbons. Nature Nanotechnology, 5, 321(2010).

[6] Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 458, 872(2009).

[7] Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature, 466, 470(2010).
[8] Issi, J. P., Langer, L., Heremans, J. & Olk, C. H. Electronic properties of carbon nanotubes: experimental results. Carbon, 33, 941-948(1995).

[9] Wilder, J. W., Venema, L. C., Rinzler, A. G., Smalley, R. E. & Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature, 391, 59(1998).

[10] Odom, T. W., Huang, J. L., Kim, P. & Lieber, C. M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature, 391, 62(1998).

[11] Yang, L., Jiang, J. & Dong, J. Formation mechanism of toroidal carbon nanotubes. Physica status solidi (b), 238, 115-119(2003).

[12] Rocha, C. G., Pacheco, M., Barticevic, Z. & Latge, A. Carbon nanotube tori under external fields. Physical Review B, 70, 233402(2004).

[13] Howard, J. B., McKinnon, J. T., Makarovsky, Y., Laeur, A. L., & Johnson, M. E. Fullerenes C60 and C70. Nature, 352, 139(1991).

[14] Reinert, L. et al . Dispersion analysis of carbon nanotubes, carbon onions, and nanodiamonds for their application as a reinforcement phase in nickel metal matrix composites. RSC Advances, 5, 95149-95159.(2015).

[15] Park, H. J., Meyer, J., Roth, S. & Skakalova, V. Growth and properties of few-layer graphene prepared by chemical vapor deposition. Carbon, 48, 1088-1094(2010).

[16] Kim, J., Lee, G. & Kim, J. Wafer-scale synthesis of multi-layer graphene by high temperature carbon ion implantation. Applied Physics Letters, 107, 033104(2015).

[17] Nagashio, K., Nishimura, T., Kita, K. & Toriumi, A. Mobility variations in mono-and multi-layer graphene _lms. Applied physics express, 2, 025003(2009).

[18] Latil, S. & Henrard, L. Charge carriers in few-layer graphene. Physical Review Letters, 97, 036803(2006).

[19] Zhang, F. et al. Spontaneous quantum Hall states in chirally stacked few-layer graphene systems. Physical review letters, 106, 156801(2011).

[20] Ho, J. H., Lai, Y. H., Tsai, S. J., Hwang, J., Chang, C. & Lin, M.F Magnetoelectronic Properties of a Single-Layer Graphite (Condensed matter: electronic structure and electrical, magnetic, and optical properties). Journal of the Physical Society of Japan, 75, (2006).

[21] Huang, Y. K., Chen, S. C., Ho, Y. H., Lin, C. Y. & Lin, M. F. Feature-rich magnetic quantization in sliding bilayer graphenes. Scientific reports, 4, 7509(2014).

[22] Koshino, M. & McCann, E. Landau level spectra and the quantum Hall effect of multilayer graphene. Physical Review B, 83, 165443(2011).

[23] Wang, Z. F., Liu, F. & Chou, M. Y. Fractal Landau-level spectra in twisted bilayer graphene. Nano Letters, 12, 3833-3838(2012).

[24] Ho, J. H., Chang, C. P. & Lin, M. F. Electronic excitations of the multilayered graphite. Physics Letters A, 352, 446-450(2006).

[25] Lin, M. F., Chuang, Y. C. & Wu, J. Y. Electrically tunable plasma excitations in AA-stacked multilayer graphene. Physical Review B, 86, 125434(2012).

[26] Wu, J. Y., Chen, S. C., Roslyak, O., Gumbs, G. & Lin, M. F. Plasma excitations in graphene: Their spectral intensity and temperature dependence in the magnetic field. ACS Nano, 5, 1026-1032(2011).

[27] Lozovik, Y. E. & Sokolik, A. A. Inuence of Landau level mixing on the properties of elementary excitations in graphene in strong magnetic field. Nanoscale research letters, 7, 134(2012).

[28] Ohta, T. et al. Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Physical Review Letters, 98, 206802(2007).

[29] Koshino, M. & Ando, T. Magneto-optical properties of multilayer graphene. Physical Review B, 77, 115313(2008).

[30] Mucha-Kruczynski, M., Abergel, D. S. L., McCann, E. & Falko, V. I. On spectral properties of bilayer graphene: the e_ect of an SiC substrate and infrared magnetospectroscopy. Journal of Physics: Condensed Matter, 21, 344206(2009).

[31] Mucha-Kruczynski, M., McCann, E. & Fal_ko, V. I. The inuence of interlayer asymmetry on the magnetospectroscopy of bilayer graphene. Solid State Communications, 149, 1111-1116(2009).

[32] Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438, 197(2005).

[33] Chen, J. H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO 2. Nature Nanotechnology, 3, 206(2008).

[34] Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321, 385-388(2008).

[35] Lee, J. K., et al. The growth of AA graphite on (111) diamond. The Journal of chemical physics, 129, 234709(2008).

[36] Jin, C., Lan, H., Peng, L., Suenaga, K. & Iijima, S. Deriving carbon atomic chains from graphene. Physical review letters, 102, 205501(2009).

[37] Lui, C. H. et al. Imaging stacking order in few-layer graphene. Nano Letters, 11, 164-169(2010).

[38] Cancado, L. G. et al. Measuring the degree of stacking order in graphite by Raman spectroscopy. Carbon, 46, 272-275(2008).

[39] Lui, C. H. et al. Observation of layer-breathing mode vibrations in few-layer graphene through combination Raman scattering. Nano Letters, 12, 5539-5544(2012).

[40] Zandiatashbar, A. et al. Effect of defects on the intrinsic strength and stifness of graphene. Nature Communications, 5, 3186(2014).

[41] Pereira, V. M. & Neto, A. C. Strain engineering of graphene?s electronic structure. Physical Review Letters, 103, 046801(2009).

[42] Wong, J. H., Wu, B. R. & Lin, M. F. Strain effect on the electronic properties of single layer and bilayer graphene. The Journal of Physical Chemistry C, 116, 8271-8277(2012).

[43] Liu, Y., Liu, X., Zhang, Y., Xia, Q. & He, J. Effect of magnetic field on electronic transport in a bilayer graphene nanomesh. Nanotechnology, 28, 235303(2017).

[44] Lai, Y. H., Ho, J. H., Chang, C. P. & Lin, M. F. Magnetoelectronic properties of bilayer Bernal graphene. Physical Review B, 77, 085426(2008).

[45] Liu, H., Liu, Y. & Zhu, D. Chemical doping of graphene. Journal of materials chemistry, 21, 3335-3345(2011).

[46] Chan, K. T., Neaton, J. B. & Cohen, M. L. First-principles study of metal adatom adsorption on graphene. Physical Review B, 77, 235430(2008).

[47] Garcia, J. C., de Lima, D. B., Assali, L. V. & Justo, J. F. Group IV graphene and graphane-like nanosheets. The Journal of Physical Chemistry C, 115, 13242-13246(2011).

[48] Liu, H. Y., Hou, Z. F., Hu, C. H., Yang, Y. & Zhu, Z. Z. Electronic and magnetic properties of fuorinated graphene with different coverage of fuorine. The Journal of Physical Chemistry C, 116, 18193-18201(2012).

[49] Crook, C. B. et al. Proximity-induced magnetism in transition-metal substituted graphene. Scientific reports, 5, 12322(2015).

[50] Wu, J., Rodrigues, M. T. F., Vajtai, R. & Ajayan, P. M. Tuning the Electrochemical Reactivity of Boron-and Nitrogen-Substituted Graphene. Advanced Materials, 28, 6239-6246(2016).

[51] Santos, E. J., Ayuela, A. & Sanchez-Portal, D. First-principles study of substitutional metal impurities in graphene: structural, electronic and magnetic properties. New Journal of Physics, 12, 053012(2010).

[52] Takahashi, T., Sugawara, K., Noguchi, E., Sato, T. & Takahashi, T. Band-gap tuning of monolayer graphene by oxygen adsorption. Carbon, 73, 141-145(2014).

[53] Sun, M. et al. First-principles study of the alkali earth metal atoms adsorption on graphene. Applied Surface Science, 356, 668-673(2015).

[54] Gao, H. & Liu, Z. DFT study of NO adsorption on pristine graphene. RSC Advances, 7, 13082-13091(2017).

[55] Yan, J. A. & Chou, M. Y. Oxidation functional groups on graphene: Structural and electronic properties. Physical Review B, 82, 125403(2010).

[56] Cortes-Arriagada, D., Gutierrez-Oliva, S., Herrera, B., Soto, K. & Toro-Labbe, A. The mechanism of chemisorption of hydrogen atom on graphene: Insights from the reaction force and reaction electronic ux. The Journal of chemical physics, 141, 134701(2014).

[57] Lee, G., Lee, B., Kim, J. & Cho, K. Ozone adsorption on graphene: ab initio study and experimental validation. The Journal of Physical Chemistry C, 113, 14225-14229(2009).

[58] Ivanovskaya, V. V. et al. Hydrogen adsorption on graphene: a first principles study. The European Physical Journal B, 76, 481-486(2010).

[59] Yan, H. J., Xu, B., Shi, S. Q. & Ouyang, C. Y. First-principles study of the oxygen adsorption and dissociation on graphene and nitrogen doped graphene for Li-ion batteries. Journal of Applied Physics, 112, 104316(2012).

[60] Beheshti, E., Nojeh, A. & Servati, P. A _rst-principles study of calcium-decorated, boron-doped graphene for high capacity hydrogen storage. Carbon, 49, 1561-1567(2011).

[61] Wu, M., Liu, E. Z., Ge, M. Y. & Jiang, J. Z. Stability, electronic, and magnetic behaviors of Cu adsorbed graphene: A _rst-principles study. Applied Physics Letters, 94, 102505(2009).

[62] Lin, S. Y., Lin, Y. T., Tran, N. T. T., Su, W. P. & Lin, M. F. Feature-rich electronic properties of aluminum-adsorbed graphenes. Carbon, 120, 209-218(2017).

[63] Tran, N. T. T., Nguyen, D. K., Glukhova, O. E. & Lin, M. F. Coverage-dependent essential properties of halogenated graphene: A DFT study. Scienti_c reports, 7, 17858(2017).

[64] Hu, C. H. et al. Electronic and magnetic properties of silicon adsorption on graphene. Solid State Communications, 151, 1128-1130(2011).

[65] Yoshioka, T., Suzuura, H. & Ando, T. Electronic states of BCN alloy nanotubes in a simple tight-binding model. Journal of the Physical Society of Japan, 72, 2656-2664(2003).

[66] da Rocha Martins, J. & Chacham, H. Disorder and segregation in B-C-N graphene-type layers and nanotubes: tuning the band gap. ACS Nano, 5, 385-393(2010).

[67] Cortes-Arriagada, D., Miranda-Rojas, S., Ortega, D. E. & Toro-Labbe, A. Oxidized and Si-doped graphene: emerging adsorbents for removal of dioxane. Physical Chemistry Chemical Physics, 19, 17587-17597(2017).

[68] Ain, Q. T., Al-Modlej, A., Alshammari, A. & Anjum, M. N. Effect of solvents on optical band gap of silicon-doped graphene oxide. Materials Research Express, 5, 035017(2018).

[69] Tang, Y. B. et al. Tunable band gaps and p-type transport properties of boron-doped graphenes by controllable ion doping using reactive microwave plasma. ACS Nano, 6, 1970-1978(2012).

[70] Lin, S. Y., Chang, S. L., Tran, N. T. T., Yang, P. H. & Lin, M. F. H?Si bonding-induced unusual electronic properties of silicene: a method to identify hydrogen concentration. Physical Chemistry Chemical Physics, 17, 26443-26450(2015).

[71] Li, S. S. et al. Tunable electronic and magnetic properties in germanene by alkali, alkaline-earth, group III and 3d transition metal atom adsorption. Physical Chemistry Chemical Physics, 16, 15968-15978(2014).

[72] Chen, R. B., Chen, S. C., Chiu, C. W. & Lin, M. F. Optical properties of monolayer tinene in electric fields. Scienti_c Reports, 7, 1849(2017).

[73] Sahin, H. & Peeters, F. M. Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene. Physical Review B, 87, 085423(2013).

[74] Davila, M. E., Xian, L., Cahangirov, S., Rubio, A. & Le Lay, G. Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New Journal of Physics, 16, 095002(2014).

[75] Cai, B. et al. Tinene: a two-dimensional Dirac material with a 72 meV band gap. Physical Chemistry Chemical Physics, 17, 12634-12638(2015).

[76] Nie, S. Scanning tunneling microscopy study of graphene on Au (111): Growth mechanisms and substrate interactions. Physical Review B, 85, 205406(2012).

[77] Biro, L. Scanning tunnelling microscopy (STM) imaging of carbon nanotubes. Carbon, 36, 689-696(1998).

[78] Chen, X., Wan, H., Song, K., Tang, D. & Zhou, G. Scanning tunneling microscopy image modeling for zigzag-edge graphene nanoribbons. Applied Physics Letters, 98, 263103(2011).

[79] Wang, W. X., Scanning tunneling microscopy and spectroscopy of finite-size twisted
bilayer graphene. Physical Review B, 96, 115434(2017).

[80] Hattendorf, S., Georgi, A., Liebmann, M. & Morgenstern, M. Networks of ABA and
ABC stacked graphene on mica observed by scanning tunneling microscopy. Surface Science, 610, 53 58(2013).

[81] Ortolani, L., Catherine, A., Morandi, V. & P_enicaud, A. Transmission Electron Microscopy Study of Graphene Solutions. Springer, Berlin, Heidelberg, 610, 157-163(2012).

[82] Kasumov, Y. A., Khodos, I. I., Kociak, M. & Kasumov, A. Y. Scanning and transmission electron microscope images of a suspended single-walled carbon nanotube. Applied physics letters, 89, 013120(2006).

[83] Elias, D. C. et al. Control of graphene's properties by reversible hydrogenation: evidence for graphene. Science, 323, 610-613(2009).

[84] Kim, K. et al. Multiply folded graphene. Physical Review B, 83, 245433(2011).

[85] Xie, X. et al. Controlled fabrication of high-quality carbon nanoscrolls from monolayer graphene. Nano Letters, 9, 2565-2570(2009).

[86] Liu, X. H. et al. In situ transmission electron microscopy of electrochemical lithiation, delithiation and deformation of individual graphene nanoribbons. Carbon, 50, 3836-3844(2012).

[87] Warner, J. H., Rummeli, M. H., Gemming, T., Buchner, B. & Briggs, G. A. D. Direct imaging of rotational stacking faults in few-layer graphene. Nano Letters, 9, 102-106(2008).

[88] Norimatsu, W. & Kusunoki, M. Selective formation of ABC-stacked graphene layers on SiC (0001). Physical Review B, 81, 161410(2010).

[89] Lucian, A., Li, G. & Andrei, E. Y. Quantized Landau level spectrum and its density dependence in graphene. Physical Review B, 83, 041405(2011).

[90] Qiao, Z. et al. Quantum anomalous Hall effect in graphene from Rashba and exchange. Physical Review B, 82, 161414(2010).

[91] Katsnelson, M. I. Optical properties of graphene: The Fermi-liquid approach. EPL(Europhysics Letters), 84, 37001(2008).

[92] Kralj, M. et al. Graphene on Ir (111) characterized by angle-resolved photoemission. Physical Review B, 84, 075427(2011).

[93] Tran, N. T. T., Lin, S. Y., Lin, C. Y. & Lin, M. F. Geometric and electronic properties of graphene-related systems: Chemical bonding schemes. CRC Press, book, ISBN:9781138556522(2018).

[94] Lin, C. Y., Chen, R. B., Ho, Y. H. & Lin, M. F. Electronic and optical properties of graphite-related systems. CRC Press, book, ISBN 9781138571068(2017).

[95] Son, Y. W., Cohen, M. L. & Louie, S. G. Energy gaps in graphene nanoribbons. Physical review letters, 97, 216803(2006).

[96] Rueux, P. et al. Electronic structure of atomically precise graphene nanoribbons. ACS Nano, 6, 6930-6935(2012).

[97] Senkovskiy, B. V. et al. Finding the hidden valence band of N= 7 armchair graphene nanoribbons with angle-resolved photoemission spectroscopy. 2D Materials, 5, 035007(2018).

[98] Nigar, S., Zhou, Z., Wang, H. & Imtiaz, M. Modulating the electronic and magnetic properties of graphene. RSC Advances, 7, 51546-51580(2017).

[99] Medeiros, P. V., de Brito Mota, F., Mascarenhas, A. J. & de Castilho, C. M. Adsorption of monovalent metal atoms on graphene: a theoretical approach. Nanotechnology, 21, 115701(2010).

[100] Lu, C. L., Chang, C. P., Huang, Y. C., Lu, J. M., Hwang, C. C. & Lin, M. F. Lowenergy electronic properties of the AB-stacked few-layer graphites. Journal of Physics: Condensed Matter, 18, 5849(2006).

[101] L. Lu, C., P. Chang, C., C. Huang, Y., H. Ho, J., C. Hwang, C. & F. Lin, M. Electronic properties of AA-and ABC-stacked few-layer graphites. Journal of the Physical Society of Japan, 76, 024701(2007).

[102] Lin, M. F. Low-frequency-electronic excitations of simple hexagonal graphite. Journal of the Physical Society of Japan, 70, 897-901(2001).

[103] Choi, J., Lee, H. & Kim, S. Atomic-scale investigation of epitaxial graphene grown on 6H-SiC (0001) using scanning tunneling microscopy and spectroscopy. The Journal of Physical Chemistry C, 114, 13344-13348(2010).

[104] Lucian, A., Li, G. & Andrei, E. Y. Scanning tunneling microscopy and spectroscopy of graphene layers on graphite. Solid State Communications, 149, 1151-1156(2009).

[105] LeRoy, B. J., Lemay, S. G., Kong, J. & Dekker, C. Scanning tunneling spectroscopy of suspended single-wall carbon nanotubes. Applied physics letters, 84, 4280-4282(2004).

[106] Odom, T. W., Huang, J. L., Kim, P., Ouyang, M. & Lieber, C. M. Scanning tunneling microscopy and spectroscopy studies of single-wall carbon nanotubes. textitJournal of materials research, 13, 2380-2388(1998).

[107] Niimi, Y. et al. Scanning tunneling microscopy and spectroscopy studies of graphite edges. Applied surface science, 241, 43-48(2005).

[108] Sforzini, J., et al. Structural and electronic properties of nitrogen-doped graphene. Physical review letters, 116, 126805(2016).

[109] Dimakis, N. et al. Density functional theory calculations on alkali and the alkaline Ca atoms adsorbed on graphene monolayers. Applied surface science, 413, 197-208(2017).

[110] Kong, X. Metal-free Si-doped graphene: A new and enhanced anode material for Li-ion battery. Journal of Alloys and Compounds, 687, 534-540(2016).

[111] Liu, X., Zhu, X. & Pan, D. Solutions for the problems of silicon-carbon anode materials for lithium-ion batteries. Royal Society Open Science, 5, 172370(2018).

[112] Sivek, J., Sahin, H., Partoens, B. & Peeters, F. M. Adsorption and absorption of boron, nitrogen, aluminum, and phosphorus on silicene: Stability and electronic and phonon properties. Physical Review B, 87, 085444(2013).

[113] Kaloni, T. P. Tuning the structural, electronic, and magnetic properties of germanene by the adsorption of 3d transition metal atoms. The Journal of Physical Chemistry C, 118, 25200-25208(2014).

[114] Zhu, F. F. et al. Epitaxial growth of two-dimensional stanene. Nature Materials, 14, 1020(2015).

[115] Srivastava, P. et al. Tuning the electronic and magnetic properties of phosphorene by vacancies and adatoms. The Journal of Physical Chemistry C, 119, 6530-6538(2015).

[116] Akturk, E., Akturk, O. U. & Ciraci, S. Single and bilayer bismuthene: Stability at high temperature and mechanical and electronic properties. Physical Review B, 94, 014115(2016).


Chapter 3:

[1] Novoselov, K. S. et al. Electric field effect in atomically thin carbon. Science, 306, 666-669(2004).

[2] Zhang, Y., Tan, Y. W., Stormer, H. L., & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 438, 201(2005).

[3] Duplock, E. J., Schefer, M., & Lindan, P. J. Hallmark of perfect graphene. Physical Review Letters, 92, 225502(2004).

[4] Jiao, L., Wang, X., Diankov, G., Wang, H., & Dai, H. Facile synthesis of high-quality graphene nanoribbons. Nature Nanotechnology, 5, 321(2010).

[5] D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, et al, Nature, 2009, 458, 872-876.

[6] Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 458, 872(2009).

[7] Han, M. Y., Ozyilmaz, B., Zhang, Y., & Kim, P. Energy band-gap engineering of graphene nanoribbons. Physical review letters, 98, 206805(2007).

[8] Chen, Z., Lin, Y. M., Rooks, M. J., & Avouris, P. Graphene nano-ribbon electronics. Physica E: Low-dimensional Systems and Nanostructures, 40, 228-232(2007).

[9] Li, X., Wang, X., Zhang, L., Lee, S., & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science, 319, 1229-1232(2008).

[10] Datta, S. S., Strachan, D. R., Khamis, S. M., & Johnson, A. C. Crystallographic etching of few-layer graphene. Nano Letters, 8, 1912-1915(2008).

[11] Elias, A. L. et al. Longitudinal cutting of pure and doped carbon nanotubes to form graphitic nanoribbons using metal clusters as nano scalpels. Nano Letters, 10, 366-372(2009).

[12] Kosynkin, D. V. et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature, 458, 872(2009).

[13] Campos-Delgado, J. et al. Bulk production of a new form of sp2 carbon: crystalline graphene nanoribbons. Nano Letters, 8, 2773-2778(2008).

[14] Barone, V., Hod, O., & Scuseria, G. E. Electronic structure and stability of semiconducting graphene nanoribbons. Nano Letters, 6, 2748-2754(2006).

[15] Yan, Q. et al. Intrinsic current-voltage characteristics of graphene nanoribbon transistors effect of edge doping. Nano Letters, 7, 1469-1473(2007).

[16] Pak, Y. et al. Palladium-decorated hydrogen-gas sensors using periodically aligned graphene nanoribbons. ACS applied materials & interfaces, 6, 13293-13298(2014).

[17] Rafee, M. A. et al. Graphene nanoribbon composites. ACS nano, 4, 7415-7420(2010).

[18] Li, Y., Zhou, Z., Shen, P., & Chen, Z. Spin gapless semiconductor-metal-half-metal properties in nitrogen-doped zigzag graphene nanoribbons. ACS Nano, 3, 1952-1958(2009).

[19] Chang, C. P., Wu, B. R., Chen, R. B., & Lin, M. F. Deformation effect on the electronic and optical properties of nanographite ribbons. Journal of applied physics, 101,063506(2007).

[20] Lin, S. Y., Chang, S. L., Shyu, F. L., Lu, J. M., & Lin, M. F. Feature-rich electronic properties in graphene ripples. Carbon, 86, 207-216(2015).

[21] Huang, Y. C., Chang, C. P., & Lin, M. F. Magnetoabsorption spectra of bilayer graphene ribbons with Bernal stacking. Physical Review B, 78, 115422(2008).

[22] Chang, S. L., Wu, B. R., Wong, J. H., & Lin, M. F. Configuration-dependent geometric and electronic properties of bilayer graphene nanoribbons. Carbon, 77, 1031-1039(2014).

[23] Lin, C. Y., Wu, J. Y., Ou, Y. J., Chiu, Y. H., & Lin, M. F. Magneto-electronic properties of multilayer graphenes. Physical Chemistry Chemical Physics, 17, 26008-26035(2015).

[24] Chang, S. L., Lin, S. Y., Lin, S. K., Lee, C. H., & Lin, M. F. Geometric and electronic properties of edge-decorated graphene nanoribbons. Scientific reports, 4, 6038(2014).

[25] Lin, Y. T., Chung, H. C., Yang, P. H., Lin, S. Y., & Lin, M. F. Adatom bond-induced geometric and electronic properties of passivated armchair graphene nanoribbons. Physical Chemistry Chemical Physics, 17, 16545-16552(2015).

[26] Sadeghi, H., Ahmadi, M. T., Mousavi, S. M., Ismail, R., & Ghadiry, M. H. Channel conductance of ABA stacking trilayer graphene nanoribbon field effect transistor. Modern Physics Letters B, 26, 1250047(2012).

[27] Chang, C. P., Electronic and optical properties of a nanographene ribbon in an electric field. Carbon, 44, 508-515(2006).

[28] Kan, E. J., Li, Z., Yang, J., & Hou, J. G. Will zigzag graphene nanoribbon turn to half metal under electric _eld? Applied physics letters, 91, 243116(2007).

[29] Lin, M. F. & Shyu, F. L. Optical properties of nanographite ribbons. Journal of the Physical Society of Japan, 69, 3529-3532(2000).

[30] Huang, Y. C., Chang, C. P., & Lin, M. F. Magnetic and quantum confinement effects on electronic and optical properties of graphene ribbons. Nanotechnology, 18, 495401(2007).

[31] Han, M. Y., Brant, J. C., & Kim, P. Electron transport in disordered graphene nanoribbons. Physical review letters, 104, 056801(2010).

[32] Poklonski, N. A., Kislyakov, E. F., Vyrko, S. A., Bubel, O. N., & Ratkevich, S. V. Electronic band structure and magnetic states of zigzag graphene nanoribbons: quantum chemical calculations. Journal of Nanophotonics, 6, 061712.(2012).

[33] Wang, Z., Xiao, J., & Li, M. Adsorption of transition metal atoms (Co and Ni) on zigzag graphene nanoribbon. Applied Physics A, 110, 235-239(2013).

[34] Krepel, D., & Hod, O. Lithium adsorption on armchair graphene nanoribbons. Surface Science, 605, 1633-1642(2011).

[35] da Rocha, C. G., Clayborne, P. A., Koskinen, P., & Hakkinen, H. Optical and electronic properties of graphene nanoribbons upon adsorption of ligand-protected aluminum clusters. Physical Chemistry Chemical Physics, 16, 3558-3565(2014).

[36] Huang, B. et al. Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor. The Journal of Physical Chemistry C, 112, 13442-13446(2008).

[37] Johnson, J. L., Behnam, A., Pearton, S. J., & Ural, A. Hydrogen Sensing Using Pd-Functionalized Multi-Layer Graphene Nanoribbon Networks. Advanced materials, 22, 954877-4880(2010).

[38] Lin, J. et al. Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium-ion batteries. ACS Nano, 7, 6001-6006(2013).

[39] Jeon, I. Y. et al. Fluorine: Edge-Fluorinated Graphene Nanoplatelets as High-Performance Electrodes for Dye?Sensitized Solar Cells and Lithium-Ion Batteries. Advanced Functional Materials, 25, 1328-1328(2015).

[40] Sun, C. et al. Solvothermally exfoliated uorographene for high-performance lithium primary batteries. Nanoscale, 6, 2634-2641(2014).

[41] Kresse, G., & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54, 11169(1996).

[42] Perdew, J. P., Burke, K., & Ernzerhof, M. Generalized gradient approximation made simple. Physical review letters, 77, 3865(1996).

[43] Bloch, P. E. Projector augmented-wave method. Physical Review B, 50, 17953(1994).

[44] Son, Y. W., Cohen, M. L., & Louie, S. G. Energy gaps in graphene nanoribbons. Physical review letters, 97, 216803(2006).

[45] Cervenka, J., Katsnelson, M. I., & Flipse, C. F. J. Room-temperature ferromagnetism in graphite driven by two-dimensional networks of point defects. Nature Physics, 5, 840(2009).

[46] Meng, L. et al. Strain-induced one-dimensional Landau level quantization in corrugated graphene. Physical Review B, 87, 205405(2013).

[47] Pandey, D., Reifenberger, R., & Piner, R. Scanning probe microscopy study of exfoliated oxidized graphene sheets. Surface Science, 602, 1607-1613(2008).

[48] Ru_eux, P. et al. Electronic structure of atomically precise graphene nanoribbons. ACS Nano, 6, 6930-6935(2012).

[49] Tao, C. et al. Spatially resolving edge states of chiral graphene nanoribbons. Nature Physics, 7, 616(2011).
[50] Wilder, J. W., Venema, L. C., Rinzler, A. G., Smalley, R. E., & Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature, 391, 59(1998).

[51] Ohta, T., Bostwick, A., McChesney, J. L., Seyller, T., Horn, K., & Rotenberg, E. Interlayer interaction and electronic screening in multilayer graphene investigated with angle-resolved photoemission spectroscopy. Physical Review Letters, 98, 206802(2007).

[52] Ohta, T., Bostwick, A., Seyller, T., Horn, K., & Rotenberg, E. Controlling the electronic structure of bilayer graphene. Science, 313, 951-954(2006).

[53] Gruneis, A. et al. Electron-electron correlation in graphite: combined angle-resolved photoemission and _first-principles study. Physical review letters, 100, 037601(2008).

[54] Sugawara, K., Sato, T., Souma, S., Takahashi, T., & Suematsu, H. Fermi surface and edge-localized states in graphite studied by high-resolution angle-resolved photoemission spectroscopy. Physical Review B, 73, 045124(2006).

[55] Usachov, D. et al. Observation of single-spin Dirac fermions at the graphene/ferromagnet interface. Nano Letters, 15, 2396-2401(2015).

[56] Klusek, Z. Investigations of splitting of the bands in graphite by scanning tunneling spectroscopy. Applied surface science, 151, 251-261(1999).

[57] Lucian, A. et al. Single-layer behavior and its breakdown in twisted graphene layers. Physical review letters, 106, 126802(2011).

[58] Que, Y., Xiao, W., Chen, H., Wang, D., Du, S., & Gao, H. J. Stacking-dependent electronic property of trilayer graphene epitaxially grown on Ru (0001). Applied Physics Letters, 107, 263101(2015).

[59] Odom, T. W., Huang, J. L., Kim, P., & Lieber, C. M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature, 391, 62(1998).

Chapter 4:

[1] Tapaszt_o, L., Dobrik, G., Lambin, P. & Bir, L. P. Tailoring the atomic structure of graphene nanoribbons by scanning tunneling microscope lithography. Nature Nanotechnology. 3, 397-401(2008).

[2] Wagner, P. et al. Band gap engineering via edge-functionalization of graphene nanoribbons. J. Phys. Chem. C. 117, 26790-26796(2013).

[3] Shinde, D. B., Debgupta, J., Kushwaha, A., Aslam, M. & Pillai, V. K. Electrochemical unzipping of multi-walled carbon nanotubes for facile synthesis of high-quality graphene nanoribbons. Journal of the American Chemical Society. 133, 4168-4171(2011).

[4] Wu, Z. S, et al. E_cient synthesis of graphene nanoribbons sonochemically cut from graphene sheets. Nano Research. 3, 16-22(2010).

[5] Li, X., Wang, X., Zhang, L., Lee, S. & Dai, H. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science. 319, 1229-1232(2008).

[6] Wang, H., Maiyalagan, T. & Wang, X. Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catalysis, 2, 781-794(2012).

[7] Cervantes-Sodi, F., Csanyi, G., Piscanec, S. & Ferrari, A. C. Edge-functionalized and substitutionally doped graphene nanoribbons: Electronic and spin properties. Physical Review B. 77, 165427(2008).

[8] Tran, N. T. T., Lin, S. Y., Lin, C. Y. & Lin, M. F. Geometric and electronic properties of graphene-related systems: Chemical bonding schemes. CRC Press, book, ISBN:9781138556522(2018).

[9] Chang, C. P. et al. Electronic and optical properties of a nanographene ribbon in an electric field. Carbon. 44, 508-515(2006).

[10] Huang, Y. C., Chang, C. P. & Lin, M. F. Magnetic and quantum confinement effects on electronic and optical properties of graphene ribbons. Nanotechnology, 18, 495401(2007).

[11] Chung, H. C., Chang, C. P., Lin, C. Y. & Lin, M. F. Electronic and optical properties of graphene nanoribbons in external _elds. Phys. Chem. Chem. Phys, 18, 7573-7616(2016).

[12] Chang, C. P., Wu, B. R., Chen, R. B. & Lin, M. F. Deformation effect on the electronic and optical properties of nanographite ribbons. Journal of Applied Physics, 101,063506(2007).

[13] Brey, L. & Fertig, H. A. Electronic states of graphene nanoribbons studied with the Dirac equation. Physical Review B, 73, 235411(2006).

[14] Son, Y. W., Cohen, M. L. & Louie, S. G. Energy gaps in graphene nanoribbons. Physical Review Letters. 97, 216803(2006).

[15] Han, M. Y., Ozyilmaz, B., Zhang, Y. & Kim, P. Energy band-gap engineering of graphene nanoribbons. Physical Review Letters. 98, 206805(2007).

[16] Wu, C. S. & Chai, J. D. Electronic properties of zigzag graphene nanoribbons studied by TAO-DFT. Journal of chemical theory and computation. 11, 2003-2011(2015).

[17] Kan, E. J., Li, Z., Yang, J. & Hou, J. G. Will zigzag graphene nanoribbon turn to half metal under electric _eld? Applied Physics Letters. 91, 243116(2007).

[18] Lin, Y. T., Lin, S. Y., Huang, Y. C. & Lin, M. F. Alkali-created rich properties in graphene nanoribbons: Chemical bondings. Scientific Reports. 7, 1722(2017).

[19] Nguyen, D. K. et al. Fluorination-enriched electronic and magnetic properties in graphene nanoribbons. Phys. Chem. Chem. Phys. 19, 20667-20676(2017).

[20] Wang, Z., Xiao, J. & Li, M. Adsorption of transition metal atoms (Co and Ni) on zigzag graphene nanoribbon. Applied Physics A. 110, 235-239(2013).

[21] Huang, B. et al. Adsorption of gas molecules on graphene nanoribbons and its implication for nanoscale molecule sensor. The Journal of Physical Chemistry C. 112, 13442-13446(2008).

[22] Xue, Y., Baek, J. M., Chen, H., Qu, J. & Dai, L. N-doped graphene nanoribbons as efficient metal-free counter electrodes for disul_de/thiolate redox-mediated DSSCs. Nanoscale. 7, 7078-7083(2015).

[23] Lin, J. et al. Graphene nanoribbon and nanostructured SnO2 composite anodes for lithium-ion batteries. ACS Nano. 7, 6001-6006(2013).

[24] Johnson, J. L., Behnam, A., Pearton, S. J. & Ural, A. Hydrogen Sensing Using Pd-Functionalized Multi-Layer Graphene Nanoribbon Networks. Advanced Materials. 22, 4877-4880(2010).

[25] Tao, C. et al. Spatially resolving edge states of chiral graphene nanoribbons. Nature Physics. 7, 616 620(2011).

[26] Zhang, X. et al. Experimentally engineering the edge termination of graphene nanoribbons. ACS Nano. 7, 198-202(2012).

[27] Talirz, L. et al. On-surface synthesis and characterization of 9-atom wide armchair graphene nanoribbons. ACS Nano. 12, 1380-1388(2017).

[28] Li, G., Lucian, A. & Andrei, E. Y. Scanning tunneling spectroscopy of graphene on graphite. Physical Review Letters. 102, 176804(2009).

[29] Merino-Dez, N. et al. Width-Dependent Band Gap in Armchair Graphene Nanoribbons Reveal Fermi Level Pinning on Au (111). ACS Nano. 11, 11661-11668(2017).

[30] Lee, C. et al. Optical spectroscopy study on the effect of hydrogen adsorption on graphene. Carbon. 103, 109-114(2016).

[31] Velasco, J. et al. Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. Nature Nanotechnology. 7, 156-160(2012).

[32] Hafner, J. Ab-initio simulations of materials using VASP: Density-functional theory and beyond. Journal of Computational Chemistry. 29, 2044-2078(2008).

[33] Robles, J. & Bartolotti, L. J. Electronegativities, electron affinities, ionization potentials, and hardnesses of the elements within spin-polarized density functional theory. Journal of the American Chemical Society. 106, 3723-3727(1984).

[34] Perdew, J. P. & Burke, K. Generalized gradient approximation made simple. Physical Review Letters. 77, 3865(1996).

[35] Bloch, P. E. Projector augmented-wave method. Physical Review B. 50, 17953(1994).

[36] Alfonsi, J. & Meneghetti, M. Excitonic properties of armchair graphene nanoribbons from exact diagonalization of the Hubbard model. New Journal of Physics. 14, 053047(2012).

[37] Baringhaus, J., Edler, F. & Tegenkamp, C. Edge-states in graphene nanoribbons: a combined spectroscopy and transport study. Journal of Physics: Condensed Matter.25, 392001(2013).

[38] Sode, H. et al. Electronic band dispersion of graphene nanoribbons via Fouriertransformed
scanning tunneling spectroscopy. Physical Review B. 91, 045429(2015).

[39] Rufeux, P. et al. Electronic structure of atomically precise graphene nanoribbons. ACS Nano. 6, 6930-6935(2012).

[40] Zheng, H., Wang, Z. F., Luo, T., Shi, Q. W. & Chen, J. Analytical study of electronic structure in armchair graphene nanoribbons. Physical Review B. 75, 165414(2007).

[41] Zhong, H. et al. Charge transport mechanisms of graphene/semiconductor Schottky barriers: A theoretical and experimental study. Journal of Applied Physics. 115, 013701(2014).

[42] Gusynin, V. P., Sharapova, S. G. & Carbotte, J. P. Magneto-optical conductivity in graphene. Journal of Physics: Condensed Matter. 19, 026222(2006).

[43] Zheng, F. B., Zhang, C. W., Yan, S. S. & Li, F. Novel electronic and magnetic properties in N or B doped silicene nanoribbons. Journal of Materials Chemistry C. 1, 2735-2743(2013).

[44] Depadova, P., Quaresima, C., Olivieri, B., Perfetti, P. & Le, G. sp2-like hybridization of silicon valence orbitals in silicene nanoribbons Applied Physics Letters. 98, 081909(2011).

[45] Pang, Q., Zhang, Y., Zhang, J. M., Ji, V. & Xu, K. W. Electronic and magnetic properties of pristine and chemically functionalized germanene nanoribbons. Nanoscale. 3, 4330-4338(2011).

[46] Monshi, M. M., Aghaei, S. M. & Calizo, I. Edge functionalized germanene nanoribbons: impact on electronic and magnetic properties. RSC Advances. 7, 18900-18908(2017).

[47] Ataca, C., Sahin, H., Akturk, E. & Ciraci, S. Mechanical and electronic properties of MoS2 nanoribbons and their defects. The Journal of Physical Chemistry C. 115, 3934-3941(2011).


Chapter 5:

[1] Novoselov, K. et al. Electric field effect in atomically thin carbon films. Science, 306, 666-669(2004).

[2] Geim, A. K., Novoselov, K. S. The rise of graphene, Nature Mater, 6, 183-191(2007).

[3] Katsnelson, M. I., Novoselov, K. S., Geim, A. K. Chiral tunneling and the Klein paradox in graphene. Nature Physics, 9, 620-625(2006).

[4] Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science, 312, 1191-1196(2006).

[5] Zhang, Y., Tan, Y. W., Stormer, H. L., Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature, 438, 201-204(2005).

[6] Eda, G., Fanchini, G., Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnology, 3, 270-274(2008).

[7] Robinson, J. T., Perkins, F. K., Snow, E. S., Wei, Z., Sheehan, P. E. Reduced graphene oxide molecular sensors. Nano Letters, 9, 3137-3140(2008).

[8] Elias, D. C. et al. Control of graphene's properties by reversible hydrogenation: evidence for graphene. Science, 323, 610-613(2009).

[9] Sahin, H., Ataca, C., Ciraci, S. Magnetization of graphene by dehydrogenation. Applied Physics Letters, 95, 222510(2009).

[10] Topsakal, M., Cahangirov, S., Ciraci, S. The response of mechanical and electronic properties of graphene to the elastic strain. Applied Physics Letters, 96, 091912(2010).

[11] Robinson, J. T. et al. Properties of fluorinated graphene films. Nano Letters, 10, 3001-3005(2010).

[12] Sahin, H., Topsakal, M., Ciraci, S. Structures of fluorinated graphene and their signatures. Physical Review B, 83, 115432(2011).

[13] Li, B., et al. Photochemical chlorination of graphene. ACS Nano, 5, 5957-5961(2011).

[14] Sahin, H., Ciraci, S. Chlorine adsorption on graphene: Chlorographene. The Journal of Physical Chemistry C, 116, 24075-24083(2012).

[15] Jin, C., Lin, F., Suenaga, K., Iijima, S. Fabrication of a freestanding boron nitride single layer and its defect assignments. Physical review letters, 102, 195505(2009).

[16] Ci, L. et al. Atomic layers of hybridized boron nitride and graphene domains. Nature
materials, 9, 430(2010).

[17] Topsakal, M., Akturk, E., Ciraci, S. First-principles study of two-and one-dimensional honeycomb structures of boron nitride. Physical Review B, 79, 115442(2009).

[18] Novoselov, K. S. Graphene: materials on the island (Nobel Lecture). Angewandte Chemie International Edition, 50, 6986-7002(2011).

[19] Davila, M. E., Le Lay, G. Few layer epitaxial germanene: a novel two-dimensional Dirac material. Scientic reports, 6, 20714(2016).

[20] Nijamudheen, A., Bhattacharjee, R., Choudhury, S., Datta, A. Electronic and chemical properties of germanene: the crucial role of buckling. The Journal of Physical Chemistry C, 119, 3802-3809(2015).

[21] Zhu, F. F. et al. Epitaxial growth of two-dimensional stanene. Nature Materials, 14, 1020(2015).

[22] Saxena, S., Chaudhary, R. P., Shukla, S. Stanene: the atomically thick free-standing layer of 2D hexagonal tin. Scientific reports, 6, 31073(2016).

[23] Rivero, P., Yan, J. A., Garcia-Su_arez, V. M., Ferrer, J., Barraza-Lopez, S. Stability and properties of high-buckled two-dimensional tin and lead. Physical Review B, 90, 241408(2014).

[24] Perepichka, D. F., Rosei, F. Silicon nanotubes. Small, 2, 22-25(2006).

[25] Martin, B., Sattler, K. Fullerene-structured nanowires of silicon. Physical Review B, 60, 11593(1999).

[26] Vogt, P. et al. Silicene: compelling experimental evidence for graphene-like two-dimensional silicon. Physical review letters, 108, 155501(2012).

[27] Feng, B. et al. Evidence of silicene in honeycomb structures of silicon on Ag (111). Nano Letters, 12, 3507-3511(2012).

[28] Gao, J., Zhao, J. Initial geometries, interaction mechanism and high stability of silicene on Ag (111) surface. Scientific reports, 2, 861(2012).

[29] Meng, L. et al. Buckled silicene formation on Ir (111). Nano Letters, 13, 685-690(2013).

[30] Takeda, K., Shiraishi, K. Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Physical Review B, 50, 14916(1994).

[31] Cahangirov, S., Topsakal, M., Akturk, E., Sahin, H., Ciraci, S. Two-and one-dimensional honeycomb structures of silicon and germanium. Physical review letters, 102, 236804(2009).

[32] Lee, C. C., Florence, A., Yamada-Takamura, Y., Ozaki, T., Friedlein, R. Band structure of silicene on zirconium diboride (0001) thin-_lm surface: Convergence of experiment and calculations in the one-Si atom Brillouin zone. Physical Review B, 90, 075422(2014).

[33] Chen, L. et al. Evidence for Dirac fermions in a honeycomb lattice based on silicon. Physical review letters, 109, 056804(2012).

[34] Tao, L. et al. Silicene field-effect transistors operating at room temperature. Nature Nanotechnology, 10, 227(2015).

[35] Liu, C. C., Jiang, H., Yao, Y. Low-energy effective Hamiltonian involving spin-orbit coupling in silicene and two-dimensional germanium and tin. Physical Review B, 84,195430(2011).

[36] Liu, C. C., Feng, W., Yao, Y. Quantum spin Hall effect in silicene and two-dimensional germanium. Physical review letters, 107, 076802(2011).

[37] Ezawa, M. A topological insulator and helical zero modes in silicene under an inhomogeneous
electric field. New Journal of Physics, 14, 033003(2012).

[38] Drummond, N. D., Zolyomi, V., Falko, V. I. Electrically tunable band gap in silicene. Physical Review B, 85, 075423(2012).

[39] Ezawa, M. Valley-polarized metals and quantum anomalous Hall effect in silicene. Physical review letters, 109, 055502(2012).

[40] Lin, S. Y., Chang, S. L., Tran, N. T. T., Yang, P. H., Lin, M. F. H-Si bonding-induced unusual electronic properties of silicene: a method to identify hydrogen concentration. Physical Chemistry Chemical Physics, 17, 26443-26450(2015).

[41] Sahin, H., Peeters, F. M. Adsorption of alkali, alkaline-earth, and 3d transition metal atoms on silicene. Physical Review B, 87, 085423(2013).

[42] Sivek, J., Sahin, H., Partoens, B., Peeters, F. M. Adsorption and absorption of boron, nitrogen, aluminum, and phosphorus on silicene: Stability and electronic and phonon properties. Physical Review B, 87, 085444(2013).

[43] Gao, N., Zheng, W. T., Jiang, Q. Density functional theory calculations for two-dimensional silicene with halogen functionalization. Physical Chemistry Chemical Physics, 14, 257-261.(2012).

[44] Zhang, W. B., Song, Z. B., Dou, L. M. The tunable electronic structure and mechanical properties of halogenated silicene: a first-principles study. Journal of Materials Chemistry C, 3, 3087-3094(2015).

[45] Li, W., Sheng, S., Chen, J., Cheng, P., Chen, L., Wu, K. Ordered chlorinated monolayer silicene structures. Physical Review B, 93, 155410(2016).

[46] Kresse, G., Furthmuller, J. E_cient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B, 54, 11169(1996).

[47] Perdew, J. P., Burke, K., Ernzerhof, M. Generalized gradient approximation made simple. Physical review letters, 77, 3865(1996).

[48] Tran, N. T. T., Nguyen, D. K., Glukhova, O. E., Lin, M. F. Coverage-dependent essential properties of halogenated graphene: A DFT study. Scientific reports, 7, 17858(2017).

[49] Xue, J. et al. Scanning tunneling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nature Materials, 10, 282(2011).

[50] Biedermann, L. B., Bolen, M. L., Capano, M. A., Zemlyanov, D., Reifenberger, R. G. Insights into few-layer epitaxial graphene growth on 4H-SiC(0001) substrates from STM studies. Physical Review B, 79, 125411(2009)

[51] Balog, R. et al. Atomic hydrogen adsorbate structures on graphene. Journal of the American Chemical Society, 131, 8744-8745(2009).

[52] Johns, J. E., Hersam, M. C. Atomic covalent functionalization of graphene. Accounts of chemical research, 46, 77-86(2012).

[53] Tao, C. et al. Spatially resolving edge states of chiral graphene nanoribbons. Nature Physics, 7, 616(2011).

[54] Aufray, B. et al. Graphene-like silicon nanoribbons on Ag (110): A possible formation of silicene. Applied Physics Letters, 96, 183102(2010).

[55] Medina, D. B., Salomon, E., Le Lay, G., Angot, T. Hydrogenation of silicene films grown on Ag (111). Journal of Electron Spectroscopy and Related Phenomena, 219, 57-62(2017).

[56] Chen, H. D., Chien, K. H., Lin, C. Y., Chiang, T. C., Lin, D. S. Few-layer silicon films on the Ag (111) surface. The Journal of Physical Chemistry C, 120, 2698-2702(2016).

[57] Pletikosic, I. et al. Dirac cones and minigaps for graphene on Ir (111). Physical Review Letters, 102, 056808(2009).

[58] Sutter, P., Hybertsen, M. S., Sadowski, J. T., Sutter, E. Electronic structure of few-layer epitaxial graphene on Ru (0001). Nano Letters, 9, 2654-2660(2009).

[59] Walter, A. L. et al. Highly p-doped epitaxial graphene obtained by urine intercalation. Applied Physics Letters, 98, 184102(2011).

[60] Rufeux, P. et al. Electronic structure of atomically precise graphene nanoribbons. ACS Nano, 6, 6930-6935(2012).

[61] Lee, C. C., Florence, A., Yamada-Takamura, Y., Ozaki, T., Friedlein, R. Band structure of silicene on zirconium diboride (0001) thin-film surface: Convergence of experiment and calculations in the one-Si atom Brillouin zone. Physical Review B, 90, 075422(2014).

[62] Wang, W., Olovsson, W., Uhrberg, R. I. G. Band structure of hydrogenated silicene on Ag (111): Evidence for half-silicane. Physical Review B, 93, 081406(2016).

[63] De Padova, P. et al. Multilayer silicene nanoribbons. Nano letters, 12, 5500-5503(2012).

[64] Gao, L. Probing Electronic Properties of Graphene on the Atomic Scale by Scanning Tunneling Microscopy and Spectroscopy. Graphene and 2D Materials, 1, 1(2014).

[65] Lauer, P. et al. Atomic and electronic structure of few-layer graphene on SiC(0001) studied with scanning tunneling microscopy and spectroscopy. Physical Review B, 77, 155426(2008).

[66] Yankowitz, M., Wang, F., Lau, C. N., LeRoy, B. J. Local spectroscopy of the electrically tunable band gap in trilayer graphene. Physical Review B, 87, 165102(2013).

[67] Pierucci, D. et al. Evidence for at bands near the Fermi level in epitaxial rhombohedral multilayer graphene. ACS Nano, 9, 5432-5439(2015).

[68] Huang, H. et al. Spatially resolved electronic structures of atomically precise armchair graphene nanoribbons. Scientific reports, 2, 983(2012).

[69] Sode, H. et al. Electronic band dispersion of graphene nanoribbons via Fouriertransformed scanning tunneling spectroscopy. Physical Review B, 91, 045429(2015).

[70] Guam, M., Eelbo, T., Wa_sniowska, M., Wiesendanger, R. Fe adatoms on graphene/Ru (0001): Adsorption site and local electronic properties. Physical Review B, 84, 113403(2011).

[71] Chiappe, D., Grazianetti, C., Tallarida, G., Fanciulli, M., Molle, A. Local electronic properties of corrugated silicene phases. Advanced Materials, 24, 5088-5093(2012).

[72] Lin, C. et al. Direct observation of ordered configurations of hydrogen adatoms on graphene. Nano Letters, 15, 903-908(2015).

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-04-04起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-04-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw