進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0402201618263500
論文名稱(中文) 台灣嘉南平原新生岩芯沉積物砷富集機制之地球化學證據
論文名稱(英文) Geochemical evidence of arsenic enrichment mechanisms for sediments in Hsin-Sheng core from Chia-Nan plain at SW Taiwan
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 104
學期 1
出版年 105
研究生(中文) 江育儒
研究生(英文) Yu-Ju Chiang
學號 l46001036
學位類別 碩士
語文別 中文
論文頁數 84頁
口試委員 指導教授-楊懷仁
口試委員-何恭算
口試委員-蕭炎宏
中文關鍵字   沉積物  黏土礦物  有機物 
英文關鍵字 Arsenic  sediment  clay mineral  organic substance 
學科別分類
中文摘要 臺灣嘉南平原地下水具高砷含量之特性是國際專注的地質現象,諸多分析資料顯示砷濃度平均值為0.35 ppm,遠高於世界衛生組織(World Health Organization)所規範的飲用水標準(0.01 ppm)35倍,飲用高砷地下水已被證實是罹患烏腳病與皮膚癌之肇因,且可能與心血管及呼吸疾病有關。地下水與地層沉積物的高度地質相關性,沉積物的化學特徵可能對地下水中砷之來源提供制約。因此本研究分析嘉南平原新營地區之158個新生岩芯沉積物樣本之砷濃度、礦物組成、總碳總有機碳含量及87Sr/86Sr與143Nd/144Nd同位素比值,以建立新生岩芯沉積物砷含量之垂直剖面,釐清砷於沉積物中之寄主物質,推測有利砷於沉積物中富集之沉積環境,並建構砷由沉積物釋入地下水之模式。
本研究所分析的樣本中砷濃度平均為15.8 ppm,約為一般沉積物平均值兩倍,主要礦物為石英、斜長石、綠泥石及依萊石。以「移動平均法」解析新生岩芯砷濃度數據,建立60–80及190–225公尺深之區段為高砷區段,亦呈現150公尺與160–180公尺有兩個不易辨識的砷富集區域。依吳琮壬(2007)的區分與砷與有機碳含量的相關圖中,推測60–80公尺、160–180公尺與195–225公尺等深富集區段為潟湖或沼澤沉積環境,此兩種環境之特點為相對封閉的環境與高有機物質含量。其中兩個高砷區段砷與有機碳含量呈明顯正相關,相關係數大於0.41。而160–180公尺則高達0.86,顯示於新生岩芯沉積物中有機物質強烈影響所含之砷含量。參考畢如蓮(1995)、陳冠宇(2007)與黃姿勳(2009)對於嘉南平原岩芯之連續萃取資料,砷於新生岩芯沉積物中主要是被吸附質,進入礦物晶格者為數極低。黏土礦物與隱晶質相(最可能者為氫氧化鐵)是主要介質。有機碳亦扮演重要角色,可能促進砷吸附於黏土礦物或隱晶質上,亦可能為吸附砷的另一介質。
綜合以上分析,建議以下一嘉南平原沉積物砷釋入地下水之模式,沉積物中之鐵鎂礦物等原始礦物風化成含砷的綠泥石,將部分砷與鐵釋入水中。當水體達針鐵礦及氫氧化鐵飽合,此二相由水中沉澱,並將砷移出水體。於潟湖環境沉積時,有機物質加入沉積系統,使綠泥石風化而釋出砷,為地下水中砷之主要來源。針鐵礦及隱晶質氫氧化鐵亦被還原而溶解釋出砷。所釋出的砷,部分又可被有機物質吸附,形成沉積物中砷含量與有機碳含量間的正相關。
在所提之模式中,砷含量與有機物碳含量的正相關是一系列礦物風化、分解、溶解、沉澱、砷釋出、脫附與吸附之最終現象。這些高砷含量的沉積物在適當還原環境下,應仍可持續釋出砷,而為目前地下水砷汙染之來源。
英文摘要 Groundwaters in southern Taiwan have been known for high arsenic concentrations with a mean of 0.35 ppm. Drinking high-arsenic groundwater has been accused as a major cause for skin-cancer and blackfoot disease. Given their close spatial connection, the aquifer and aquitard sediments that closely associate with the groundwaters should be firstly considered as the most potential sources for arsenic in groundwaters. In this study, 158 sediment samples from the Hsin-Sheng core drilled at the Xin-Ying District were analyzed for concentrations of arsenic, constituting minerals, total carbon, and total organic carbon as well as 87Sr/86Sr and 143Nd/144Nd isotope ratios to investigate the vertical distribution of arsenic in the Chia-Nan plain sediments and to further infer the mechanisms for arsenic enrichment.
The major constituting minerals of Hsin-Sheng core sediments are quartz, feldspar, chlorite and illite. Three major high arsenic zones are identified (60–80 m, 160–180 m, and 190–225 m). The positive correlation between the concentrations of arsenic and TOC indicates the role of organic matter on concentrating arsenic. Combining the results from this study and other researches, a model of releasing arsenic into groundwater is proposed as following. The mafic minerals, such as biotite and amphibole, in the source rocks were weathered to form arsenic-containing chlorite. Further decomposition of chlorite formed arsenic-enriched iron- oxyhydroxide along its cleavage. Upon the introduction of organic matter into the deposition environment, the iron-oxyhydroxide was reductively dissolved and released arsenic into the groundwater. In response to fluctuation of redox condition, organic matter adsorbed and then desorbed the arsenic in groundwater. The observed arsenic–TOC position correlation represents an integral consequence from mineral weathering, decomposition, dissolution, precipitation, adsorption, and desorption. Under suitable redox condition, the cored sediments can still release arsenic; therefore, they are a potential source for arsenic in the groundwater.
論文目次 中文摘要 III
Abstract V
誌謝 X
表目錄 XIII
圖目錄 XIV
第一章 序論 1
1.1環境中砷對人體健康之影響層面 1
1.2嘉南平原地下水砷含量 2
1.3固態地球物質之砷含量與地下水砷之可能來源 4
1.4固態地質物質的砷釋入地下水之機制 6
1.5研究動機與目的 7
第二章 地質概況 8
2.1砷的化學特性、來源與分佈 8
2.2地質環境中砷可能釋出機制 10
2.3嘉南平原岩芯沉積物中砷之相關研究 11
第三章 分析方法 11
3.1樣本採集 14
3.1.1新生岩芯概述 24
3.2分析方法 26
3.2.1沉積物總砷含量分析 27
3.2.2 X-光繞射分析 30
3.2.3總碳與總有機碳分析 31
3.2.4鍶釹同位素分析 32
3.2.5 SEM /EDS之觀察與成分分析 34
第四章 分析結果 35
4.1砷濃度 35
4.2總碳含量 39
4.3總有機碳含量 41
4.4 87Sr/86Sr與143Nd/144Nd比值 42
4.5 X-光繞射圖譜 45
4.6 SEM /EDS之觀察與成分分析 51
第五章 討論 59
5.1高密度採樣解析新生岩芯沉積物之砷富集深度 59
5.2新生岩芯沉積物砷富集機制 63
5.3新生岩芯沉積物砷含量變化對嘉南平原沉積物砷分布之意義 66
5.4沉積物砷濃度、碳含量、87Sr/86Sr比值與沉積環境之關連 68
5.5沉積環境與砷的地質循環之關連 71
第六章 結論 73
參考文獻 74
中文文獻 74
英文文獻 77
參考文獻 中文文獻
中央地調所網站 http://www.moeacgs.gov.tw/。
中央地質調查所水文地質資料庫網站 http://hydro.moeacgs.gov.tw/。
李志威 台灣西南港尾及新塭鑽井岩心地球化學特性之探討。國立台灣大學地質學研究所碩士論文,2000。
呂鋒洲、楊重光與林國煌 嘉南烏腳病患區飲用地下水之理化特徵。台灣醫誌,74;596-605,1975。
呂鋒洲、謝宏濱、吳新英、孫金財、郭宗禮、李俊仁與胡惠德 烏腳病流行區井水中螢光強度、砷濃度、pH 值和總溶解固體物彼此相關性及與烏腳病流行之探討。經濟部中央地質調查所水文地質研討會論文專集,頁: 151-164,1989。
林朝棨 台灣地形。台灣省文獻委員會,共242 頁,1957。
林朝棨 台灣西南部之貝塚與其地史學意義,考古人類學刊,第15期,49-94頁1961。
吳樂群 嘉南平原沉積物與沉積環境分析及地層對比研究 水文地質調查研究:八十八年度報告,1999。
吳琮壬 嘉義海岸平原區末次冰期以來古沉積環境之研究,國立台灣大學地質科學所碩士論文,2007。
陳文山、宋時驊、吳樂群、徐澔德與楊小青 末代冰期以來台灣海岸平原區的海岸線變遷。國立台灣大學考古人類學刊,62期40-55頁,2004。
陳文福 台灣的地下水,遠足文化出版,2005。
陳于高 晚更新世以來南台灣地區海水面變化與新構造運動研究。國立台灣大學地質學研究所博士論文,1993。
陳冠宇 台灣西南海岸平原地下水砷之遷移與富集。國立台灣大學理學院地質科學系博士論文,2007。
陳華玟,吳樂群 嘉南平原晚第四紀沉積物的異體地層分層建議及其古地理意義。經濟部中央地質調查所特刊,第二十五號,第59-87頁,2011。
陳鎮東 海洋化學,國立編譯館,1994。
陳麒全 台灣嘉南平原新東及錦湖兩地沉積物砷富集與釋出之研究,國立台灣大學地質科學所碩士論文,2003。
夏明鴻 台灣西南海岸平原義竹岩心地球化學研究。國立台灣大學地質學研究所碩士論文,1998。
黃姿勳 台灣布袋岩芯中沉積物砷含量分布變化及其地質意義。國立成功大學地球科學所碩士論文,2009。
畢如蓮 台灣嘉南平原地下水砷生成途徑與地質環境之初步探討。國立台灣大學地質科學所碩士論文,1995。
張瑞津、石再添、陳翰霖 古倒風內海地形變遷之研究。台灣之第四紀第六次研討會暨台北盆地地下地質與工程環境綜合研究成果發表會,第159-163頁,1996。
張瑞津、鄧國雄、劉明錡 苗栗丘陵紅壤階地之地形學研究,中國地質學會八十七年年會暨學術研討會論文集,1998。
經濟部水利署 台灣地區地下水觀測網水質常態監測與調查分析(2/2),2005。
經濟部水利署 水利規劃試驗所 95 年度台灣地區地下水水質檢測分析與評估專題報告書,2006。
經濟部水利署 臺灣地區地下水文圖圖集繪製工作(4/4)。經濟部水利署,2006。
經濟部水利署 台灣地區地下水觀測網整體計畫精要成果彙編(81-100年),2012。
潘友錫 台灣西南部嘉南平原沉積物砷富集機制:錦湖岩芯高解析採樣之地球化學與礦物組成證據,國立成功大學地球科學所碩士論文,2010。
歐東坤 地下水定年分析硏究:屏東平原. (三)[含嘉南平原(一)] : 地下水定年分析硏究:經濟部水資源局臺灣地區地下水觀測網第一期計畫:地下水觀測網之建立及運作管理,1998。
劉聰桂 台灣地區新建地下水觀測井之地下水定年分析及垂向水質變化調查(1/4)曁台灣地區鑽井岩心沉積物及萃取液分析-嘉南平原(三)與蘭陽平原(一) 經濟部水資源局台灣地區地下水觀測網整體計畫,2000。
劉聰桂 台灣地區新建地下水觀測井之地下水定年分析及垂向水質變化調查(3/4)嘉南與蘭陽平原 3/4經濟部水利署計畫報告,2003。
顏富士、龍村倪與呂泰華 台灣省地下水含砷異常之環境模式初議,台灣環境衛生,第12卷,第1期,1980。
顏富士 曾文溪下游之砷異常及板岩屑與漂砂,科學發展月刊,第6卷,第3期,1978。


















英文文獻
Alam, S., Wu, Y., Cheng, T. Silicate minerals as a source of arsenic contamination in groundwater. Water Air Soil Pollution 225:2201. DOI 10.1007/s11270-014-2201-9, 2014.
Anawar, H., Tareq, S.M., Ahmed, G. Is organic matter a source or redox driver or both for arsenic release in groundwater? Physics and Chemistry of the Earth 58–60 (2013) 49–56, 2013.
Andreae, M.O., Arsenic in rain and the atmospheric mass balance of arsenic. J. Geophys. Res. 85, 4512–4518, 1980.
Arehart, G.B., Chryssoulis, S.L., Kesler, S.E., Gold and arsenic in iron sulfides from sediment-hosted disseminated gold deposits-implications for depositional processes. Econ. Geol. Bull. Soc. Econ. Geol. 88, 171–185, 1993.
Baur, W.H., Onishi, B.-M.H., Arsenic. In: Wedepohl, K.H. (Ed.), Handbook of Geochemistry. Springer-Verlag, Berlin. pp. 33-A-1–33-0-5, 1969.
Belkin, H.E., Zheng, B., Finkelman, R.B., Human health effects of domestic combustion of coal in rural China: a causal factor for arsenic and fluorine poisoning. In: 2nd World Chinese Conf. Geological Sciences, Extended Abstr., August 2000, Stanford Univ., pp. 522–524, 2000.
Berg, M., Trang, P.T.K., Stengel, C., Buschmann, J., Viet, P.H., Van Dan, N., Giger, W., Stuben, D. Hydrological and sedimentary controls leading to arsenic contamination of groundwater in the Hanoi area, Vietnam: The impact of iron-arsenic ratios, peat, river bank deposits, and excessive groundwater abstraction. Chemical Geology 249 (1–2), 91–112, 2008.
Boyle, R.W., Jonasson, I.R., The geochemistry of As and its use as an indicator element in geochemical prospecting. J. Geochem. Explor. 2, 251–296, 1973.
Bose, P. and Sharma, A., Role of iron in controlling speciation and mobilization of arsenic in subsurface environment. Water Research, 36, 4916–4926, 2002.
BGS, DPHE, Arsenic contaminated groundwater in Bangladesh, vol. 2. Final Report, BGS Technical Report WC/00/19, 2002.
Chang, J.C., Chen, H.L. Geomorphological changes on coastal plain in southwestern Taiwan: Western Pacific Earth Sciences 1 (1), 107–114, 2001.
Cronan, D.S., The mid-Atlantic Ridge near 45_N, XVII: Al, As, Hg, and Mn in ferriginous sediments from the median valley. Can. J. Earth Sci. 9, 319–323, 1972.
Dissanayake, C. B. and Chandrajith, R. Introduction to Medical Geology, Ch 7, 2009.
Dhar, R.K., Biswas, B.K., Samanta, G., Mandal, B.K., Chakraborti, D., Roy, S., Jafar, A., Islam, A., Ara, G., Kabir, S., Khan, A.W., Ahmed, S.A. and Hadi, S.A., Groundwater arsenic calamity in Bangladesh. Current Science, 73(1), 48–59, 1997.
Fleet, M.E., Mumin, A.H., Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis. Am. Mineral. 82, 182–193, 1997.
Hsu, L. M., Pleistocene formation with dissolved-in-water type gas in the Chianan Plain, Taiwan. Petrolum Geology of Taiwan 11, 27-39, 1984.
Itai, T., Masuda, H., Seddique, A.A., Mitamura, M., Maruoka, T., Li, X.D., Kusakabe, M., Dipak, B.K., Farooqi, A., Yamanaka, T., Nakaya, S., Matsuda, J., Ahmed, K.M. Hydrological and geochemical constraints on the mechanism of formation of arseniccontaminated groundwater in Sonargaon, Bangladesh. Applied Geochemistry 23(11), 3155–3176, 2008.
Keon, N.E., Swartz, C.H., Brabander, D.J., Harvey, C., Hemond, H.F. Validation of arsenic sequential extraction method for evaluating mobility in sediments. Environment Science & Technology, 35(13), 2778–2784, 2001.
Kim, M.J., Nriagu, J. and Haack, S., Carbonate ions and arsenic dissolution by groundwater. Environmental Science and Technology, 34(15), 3094–3100, 2000.
Kim, M.J., Nriagu, J. and Haack, S., Arsenic species and chemistry in groundwater of southeast Michigan. Environmental Pollution, 120(2), 379–390, 2002.
Mandal, B.K. Chowdhury, T.R., Samanta, G., Mukherjee, D.P., Chanda, C.R., Saha, K. C. and Chakraborti, D., Impact of safe water for drinking and cooking on five arsenic-affected families for 2 years in West Bengal, India. Science of the Total Environment, 218(2–3), 185–201, 1998.
Mandal, B. K., Suzuki, K. T., Arsenic round the world: a review, Talanta, Volume 58, Issue 1, pp. 201–235, 2002.
Masuda, H., Shinoda, K., Okudaira, T., Takahashi, Y., Noguchi, N. Chlorite --- source of arsenic groundwater pollution in the Holocene aquifer of Bangladesh. Geochemical Journal 46, 381–392, 2012.
McArthur, J.M., Ravenscroft, P., Safiulla, S., Thirlwall, M.F. Arsenic in groundwater: testing pollution mechanisms for sedimentary aquifers in Bangladesh. Water Resource Research 37, 109 – 117, 2001.
Nath, B., Jean, J.-S., Lee, M.-K., Yang, H.-J., Liu, C.-C. Geochemistry of high arsenic groundwater in Chia-Nan plain, southwestern Taiwan: possible sources and reactive transport of arsenic. Journal of Contaminant Hydrology 99, 85–96, 2008.
Nickson, R. T., McArthur, J. M., Ravenscroft, P., Burgess, W. G. and Ahmed, K. M., Mechanism of arsenic release to groundwater, Bangladesh and West Bengal. Applied Geochemistry 15 (4), 403-413, 2000.
Nordstrom, D.K. Public health – Worldwide occurrences of arsenic in ground water. Science 296, 2143–2145, 2002.
Onishi, H., Sandell, E.B., Geochemistry of arsenic. Geochim. Cosmochim. Acta 7, 1–33, 1955.
Pichler, T., Veizer, J., Hall, G. E. M., Natural input of arsenic into a coral reef ecosystem by hydrothermal fluids and its removal by Fe (III) oxyhydroxides. Environ. Science Technol. 33, 1373-1378, 1999.
Seddique, A.A., Masuda, H., Mitamura, M., Shinoda, K., Yamanaka, T., Nakaya, S., Ahmed, K.M. Mineralogy and geochemistry of shallow sediments of Sonargaon, Bangladesh and implications for arsenic dynamics: Focusing on the role of organic matter. Applied Geochemistry 26, 587–599, 2011.
Sengupta, S., Sracek, O., Jean, J.-S., Lu, H.-Y., Wang, C.-H., Palcsu, L., Liu, C.-C., Jen, C.-H. Spatial variation of groundwater arsenic distribution in the Chianan plain, SW Taiwan: Role of local hydrogeological factors and geothermal sources. Journal of Hydrology 518 (2014) 393–409, 2014.
Shamsudduha, M., Uddin, A., Saunders, J.A., Lee, M.-K. Quaternary stratigraphy, sediment characteristics and geochemistry ofarsenic-contaminated alluvial aquifers in the Ganges–Brahmaputra floodplain in central Bangladesh. Journal of Contaminant Hydrology 99, 112–136, 2008.
Shibasaki, N., Lei, P., Kamata, A. Evaluation of deep groundwater development for arsenic mitigation in western Bangladesh. Journal of Environmental Science and Health, Part A 42: 12, 1919–1932, 2007.
Smedley, P. L., Kinniburgh, D. G., A review of the soure, behaviour and distribution of arsenic in natural waters. Applied Geochemistry 17, 517-568, 2002.
Steven, FJ. Humus Chemistry; Genesis, Composition, Reactions. New York: Wiley-Inter-science, 1982.
Uddin, A., Shamsudduha, M., Saunders, J.A., Lee, M.-K., Ahmed, K.M., Chowdhury, M.T. Mineralogical profiling of alluvial sediments from arsenic-affected Ganges–Brahmaputra floodplain in central Bangladesh. Applied Geochemistry 26, 470–483, 2011.
Wang, Suiling, Mulligan, Catherine N., Effect of natural organic matter on arsenic release from soils and sediment into groundwater, Environment Geochemistry and Health, 2006.
Wang, S. W., Liu, C. W., Jang C. S., Factors responsible for high arsenic concentrations in two groundwater catchments in Taiwan. Applied Geochemistry 22, 460-476, 2007.
Webster, J. G., Arsenic. In: Marshall, C. P., Fairbridge, R. W. (Eds.), Encyclopaedia of Feochemistry. Chapman Hall, London, pp. 21-22, 1999.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2021-02-17起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw