進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0402201615401700
論文名稱(中文) 台灣南部寶來玄武岩地球化學特徵及成因
論文名稱(英文) Geochemical characteristics and petrogenesis of basalts from Baolai in southern Taiwan
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 104
學期 1
出版年 105
研究生(中文) 劉芷均
研究生(英文) Chih-Chun Liu
電子信箱 lchihchun@gmail.com
學號 L46011099
學位類別 碩士
語文別 中文
論文頁數 108頁
口試委員 指導教授-楊懷仁
口試委員-何恭算
口試委員-蕭炎宏
中文關鍵字 寶來  玄武岩  蝕變作用  同位素  微量元素  地函  海洋地殼 
英文關鍵字 Baolai  basalt  alteration  isotope  trace element  mantle  oceanic crust 
學科別分類
中文摘要   寶來位於台灣南部西部麓山帶與中央山脈之邊界,沿南部橫貫公路80至90公里出露玄武岩,Smith & Lewis(2007)以微量元素Th/Ce比值與南中國海盆玄武岩(Tu et al., 1992)比值相似,推論兩者均有鉛同位素異常的現象,卻無鉛同位素的資料支持此論點。本研究採集寶來玄武岩樣本43件與石門及墾丁保力溪火成岩樣本3件,分析樣本中主要與微量元素含量及Sr、Nd、Hf、Pb同位素組成,輔以岩象與礦物化學分析,探討寶來玄武岩岩漿演化過程及源區特性。
  寶來玄武岩中組成礦物為鈉長石、鉀長石、斜輝石、綠泥石、鈦鐵礦、磷灰石、方解石及石英。L.O.I.含量介於4-14 wt.% 之間,明顯高於澎湖(Wang et al., 2012)、南中國海(Tu et al., 1992;Yan, 2008;Wang et al., 2012)、海南島(Wang et al., 2011)、廣東(Huang et al., 2013)玄武岩之L.O.I.含量。依主要氧化物與L.O.I.含量的關係圖,可將蝕變作用分成三個階段,分別為斜長石鈉長石化、鐵鎂質礦物綠泥石化、次生方解石填充裂隙與氣孔,並伴隨L.O.I.含量的上升。斜長石鈉長石化:樣本中鈣斜長石受蝕變影響轉變成鈉長石,使Na2O含量隨著MgO含量下降而上升,此現象反映細碧岩化作用。EDS分析顯示寶來玄武岩中斜長石均已轉變為鈉長石。鐵鎂質礦物綠泥石化:樣本中橄欖石、輝石受蝕變作用影響轉變成綠泥石,導致MgO及SiO2含量隨L.O.I.含量上升而下降。次生方解石填充:樣本中裂隙與氣孔填充次生方解石,造成CaO含量隨L.O.I.含量上升。不相容元素經過原始地函標準化分布圖中,寶來、澎湖、南中國海、海南島、廣東玄武岩,均有Nb、Ta富集的特徵,此為板內玄武岩的元素分布特徵。而寶來玄武岩則另外存在Cs、Rb、Ba、U、Sr、Pb含量遷移,反映海水參與蝕變作用造成元素遷移現象。
  208Pb/204Pb及207P/204Pb對206Pb/204Pb比值作圖中,西北台灣(Chung et al., 1995)、東台灣蛇綠岩套(Jahn et al., 1986)、澎湖(Wang et al., 2012)、南中國海盆(Tu et al., 1992;Yan, 2008;Wang et al., 2012)、海南島(Wang et al., 2013)、廣東(Huang et al., 2013)及菲律賓(Hicky-Vagras, 1991;Castillo et al., 2007)的火成岩中,鉛同位素分布均位於北半球參考線之上,指示以上區域火成岩均有鉛同位素異常的現象。以206Pb/204Pb比值而言,菲律賓海板塊內的火成岩相較於其他區域火成岩明顯較低;加入208Pb/204Pb及207Pb/204Pb比值比較,寶來玄武岩的分布範圍位於南中國海玄武岩之間,並與廣東玄武岩完全重疊。鉛同位素比值指示菲律賓與寶來火成岩鉛同位素異常現象的形成機制不同。模擬計算143Nd/144Nd及206Pb/204Pb比值顯示寶來玄武岩的源區為具有FOZO特徵的地函與一億到六億年前形成的海洋地殼隱沒後混合而成。
  寶來玄武岩的La/Nb、Th/Nb、Zr/Nb比值均偏低,指示富集Nb元素。以批次熔融方式模擬計算寶來玄武岩中Nb-Yb含量變化,顯示寶來玄武岩的源區地函以~2.5 %的海洋地殼隱沒與~97.5 %的原始地函混合而成,此混合地函之礦物組成為:~12 %斜輝石、~26 %直輝石、~57 %橄欖石、~2 %尖晶石及~3 %石榴子石,經0.1~2 %的部分熔融後產生寶來玄武岩質岩漿。
英文摘要 Forty-three samples collected from Baolai at southern Taiwan were analyzed for aboundances of major and trace elements, as well as ratios of Sr, Nd, Hf, and Pb isotopes. The results show that the samples were subjected to albitization, chloritization and calcite carbonation. Alteration significantly varies the abundances of Cs, Rb, Sr, and Ba with lesser extents to U and Pb concentrations, and imposed limited impacts on the variatios of Pb isotope compositions. Characterized by Dupal anomaly, the 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios of the Baolai basalts are at the high end of the field for the South China Sea (SCS) basalts and slightly higher than those the Hainan basalts, but complete cover the ranges of the Guangdong basalts. Model calculations show that the Nd and Pb isotope compositions of the source of the Baolai basalts can be explained by addition of 0.1–0.6 Ga recycled oceanic crust into a FOZO mantle. The Nb and Yb concentrations of the Baolai basalts can be modeled by partial melt from a source composed of ~12% clinopyroxene, ~26% orthopyroxene, ~57% olivine, ~2% spinel, and ~3% garnet, with Nb and Yb initial concentrations of 0.753 ppm and 0.557 ppm, respectively. Such a source can be represented by a mixture of ~2.5 % recycle oceanic crust and ~97.5 % primitive mantle.

Keywords: Baolai, basalt, alteration, isotope, trace element, mantle, oceanic crust
論文目次 目錄
摘要 I
Abstract III
致謝 VI
目錄 VII
章節目錄 VII
表目錄 IX
圖目錄 IX
章節目錄
第一章 緒論 1
1.1前言 1
1.2地質背景 3
1.3文獻分析 5
1.4研究目的 9
第二章 分析方法與原理 10
2.1野外調查與樣本採集編號及分類 10
2.2岩象觀察 13
2.3礦物化學分析 13
2.4全岩地球化學分析 14
2.4.1主要氧化物含量分析 14
2.4.2 微量元素含量分析 15
2.5 Sr-Nd-Hf-Pb同位素分析 18
2.5.1 Sr-Nd元素萃取 19
2.5.2熱離子源質譜儀分析(TIMS)20
2.5.3 Hf元素萃取 22
2.5.4 Pb元素萃取 25
2.5.5多接收器感應耦合電漿質譜儀分析(MC-ICP-MS)26
第三章 分析結果 28
3.1岩象描述 28
3.2礦物化學 32
3.3全岩地球化學分析 39
3.3.1主要氧化物 39
3.3.2微量元素 49
3.4鍶、釹、鉿、鉛同位素分析 62
第四章 討論 68
4.1蝕變作用(Alteration)對玄武岩特性之影響 68
4.1.1以岩象資料證實蝕變作用現象 69
4.1.2蝕變作用對寶來玄武岩主要氧化物之影響 70
4.1.3蝕變作用對寶來玄武岩微量元素之影響 74
4.2 放射性同位素所指示之意義 76
4.2.1寶來玄武岩與鄰近地區玄武岩之Pb同位素親緣性 80
4.2.2岩漿來源之推測 81
4.3富含Nb元素之可能形成條件 87
4.3.1 寶來玄武岩之高Nb特性 88
4.3.2 以部分熔融模擬計算寶來樣本Nb元素的變化 88
4.4 構造判示圖之意義 95
第五章 結論 99
參考文獻 101
中文文獻 101
英文文獻 102

參考文獻 參考文獻
中文文獻
中國石油公司(1989)台南十萬分之一地質圖。
中國石油公司(1992)高雄-屏東十萬分之一地質圖。
何春蓀,台灣地質概論:台灣地質圖說明書,經濟部中央地質調查所,1986年。
汪雲亮、張成江、修淑芝,玄武岩類形成的大地構造環境的Th/Hf-Ta/Hf圖解判別。岩石學報,第413-421頁,2001年。
洪國騰、江威德,臺灣南部寶來枕狀玄武岩綠泥石質及伴生礦物之轉變及其對單一露頭細碧岩化環境變化之隱示,九十三年度中國地質學會年會暨學術研討會論文摘要,2004年。
莊文星,台灣之火山活動與火成岩,國立自然科學博物館,1992年。
莊雅芬,高雄內門玄武岩之蝕變作用與次生礦物之研究,國立中山大學海洋生物科技暨資源學系研究所碩士論文,共109頁,2012年。
郭景聖,寶來地區細碧岩之地球化學及同位素研究,國立台灣大學海洋研究所碩士論文,共96頁,1984年。
陳正宏,台灣之火成岩,經濟部中央地質調查所,1990年。
鳥居敬造(1933)高雄洲旗山油田調查報告。台灣總督府殖產局出版。第633號,共36頁。
賀囿華,台灣第三紀玄武質岩中次生綠泥石質礦物的特徵與成因,國立中山大學海洋生物科技暨資源學系研究所碩士論文,共225頁,2010年。

英文文獻
Alt, J. C., & Teagle, D. A. (1999). The uptake of carbon during alteration of ocean crust. Geochimica et Cosmochimica Acta, 63(10), 1527-1535.
Alt, J. C., & Teagle, D. A. (2003). Hydrothermal alteration of upper oceanic crust formed at a fast-spreading ridge: mineral, chemical, and isotopic evidence from ODP Site 801. Chemical Geology, 201(3), 191-211.
Alt, J. C., Honnorez, J., Laverne, C., & Emmermann, R. (1986). Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B: Mineralogy, chemistry and evolution of seawater‐basalt interactions. Journal of Geophysical Research: Solid Earth (1978–2012), 91(B10), 10309-10335.
Alt, J. C., Laverne, C., Vanko, D. A., Tartarotti, P., Teagle, D. A., Bach, W., Zuleger, E., Erzinger, J., Honnorez, J. Pezard, A., & Becker, K. H. S. M. (1996). Hydrothermal alteration of a section of upper oceanic crust in the eastern equatorial Pacific: A synthesis of results from Site 504 (DSDP Legs 69, 70, and 83, and ODP Legs 111, 137, 140, and 148). In proceedings-ocean drilling program scientific results. National Science Foundation, 417-434.
Bach, W., Peucker‐Ehrenbrink, B., Hart, S. R., & Blusztajn, J. S. (2003). Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP Hole 504B–Implications for seawater‐crust exchange budgets and Sr‐and Pb‐isotopic evolution of the mantle. Geochemistry, Geophysics, Geosystems, 4(3), 8904.
Blatt, H., Tracy, R., & Owens, B. (2006). Petrology: igneous, sedimentary, and metamorphic(3rd ed.). Macmillan.
Cann, J. R. (1969). Spilites from the Carlsberg Ridge, Indian Ocean. Journal of Petrology, 10(1), 1-19.
Castillo, P. R. (1996). Origin and geodynamic implication of the Dupal isotopic anomaly in volcanic rocks from the Philippine island arcs. Geology, 24(3), 271-274.
Castillo, P. R. (2008). Origin of the adakite–high-Nb basalt association and its implications for postsubduction magmatism in Baja California, Mexico. Geological Society of America Bulletin, 120(3-4), 451-462.
Castillo, P. R., Rigby, S. J., & Solidum, R. U. (2007). Origin of high field strength element enrichment in volcanic arcs: Geochemical evidence from the Sulu Arc, southern Philippines. Lithos, 97(3), 271-288.
Chung, S. L., & Sun, S. S. (1992). A new genetic model for the East Taiwan Ophiolite and its implications for Dupal domains in the Northern Hemisphere. Earth and Planetary Science Letters, 109(1), 133-145.
Chung, S. L., Jahn, B. M., Chen, S. J., Lee, T., & Chen, C. H. (1995). Miocene basalts in northwestern Taiwan: evidence for EM-type mantle sources in the continental lithosphere. Geochimica et Cosmochimica Acta, 59(3), 549-555.
Cox, K. G., & Bell, J. D. Pankhurst RJ (1979) The interpretation of igneous rocks. Springer Science & Business Media.
Defant, M. J., Jackson, T. E., Drummond, M. S., De Boer, J. Z., Bellon, H., Feigenson, M. D., Maury, R.C., & Stewart, R. H. (1992). The geochemistry of young volcanism throughout western Panama and southeastern Costa Rica: an overview. Journal of the Geological Society, 149(4), 569-579.
Eggins, S. M., Woodhead, J. D., Kinsley, L. P. J., Mortimer, G. E., Sylvester, P., McCulloch, M. T., Hergt J.M., & Handler, M. R. (1997). A simple method for the precise determination of≥ 40 trace elements in geological samples by ICPMS using enriched isotope internal standardisation. Chemical Geology, 134(4), 311-326.
Gurenko, A. A., Hoernle, K. A., Hauff, F., Schmincke, H. U., Han, D., Miura, Y. N., & Kaneoka, I. (2006). Major, trace element and Nd–Sr–Pb–O–He–Ar isotope signatures of shield stage lavas from the central and western Canary Islands: insights into mantle and crustal processes. Chemical Geology, 233(1), 75-112.
Haggerty, S. E., & Baker, I. (1967). The alteration of olivine in basaltic and associated lavas. Contributions to mineralogy and petrology, 16(3), 233-257.
Halliday, A. N., Lee, D. C., Tommasini, S., Davies, G. R., Paslick, C. R., Fitton, J. G., & James, D. E. (1995). Incompatible trace elements in OIB and MORB and source enrichment in the sub-oceanic mantle. Earth and Planetary Science Letters, 133(3), 379-395.
Harker, A. (1909). The natural history of igneous rocks. Cambridge University Press.
Hart, S. R. (1984). A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309, 753-757.
Hastie, A. R., Mitchell, S. F., Kerr, A. C., Minifie, M. J., & Millar, I. L. (2011). Geochemistry of rare high-Nb basalt lavas: Are they derived from a mantle wedge metasomatised by slab melts?. Geochimica et Cosmochimica Acta, 75(17), 5049-5072.
Hastie, A. R., Mitchell, S. F., Kerr, A. C., Minifie, M. J., & Millar, I. L. (2011). Geochemistry of rare high-Nb basalt lavas: Are they derived from a mantle wedge metasomatised by slab melts?. Geochimica et Cosmochimica Acta, 75(17), 5049-5072.
Hauff, F., Hoernle, K., & Schmidt, A. (2003). Sr‐Nd‐Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185): Implications for alteration of ocean crust and the input into the Izu‐Bonin‐Mariana subduction system. Geochemistry, Geophysics, Geosystems, 4(8), 8913.
Hauff, F., Hoernle, K., Tilton, G., Graham, D. W., & Kerr, A. C. (2000a). Large volume recycling of oceanic lithosphere over short time scales: geochemical constraints from the Caribbean Large Igneous Province. Earth and Planetary Science Letters, 174(3), 247-263.
Hauff, F., Hoernle, K., van den Bogaard, P., Alvarado, G., & Garbe‐Schönberg, D. (2000b). Age and geochemistry of basaltic complexes in western Costa Rica: Contributions to the geotectonic evolution of Central America. Geochemistry, Geophysics, Geosystems, 1(5), 1009.
Hayes, D. E., & Lewis, S. D. (1984). A geophysical study of the Manila Trench, Luzon, Philippines: 1. Crustal structure, gravity, and regional tectonic evolution. Journal of Geophysical Research: Solid Earth (1978–2012), 89(B11), 9171-9195.
Hickey-Vargas, R. (1991). Isotope characteristics of submarine lavas from the Philippine Sea: implications for the origin of arc and basin magmas of the Philippine tectonic plate. Earth and Planetary Science Letters, 107(2), 290-304.
Hickey‐Vargas, R. (1998). Origin of the Indian Ocean‐type isotopic signature in basalts from Philippine Sea plate spreading centers: An assessment of local versus large‐scale processes. Journal of Geophysical Research: Solid Earth (1978–2012), 103(B9), 20963-20979.
Hoernle, K. A. J. (1998). Geochemistry of Jurassic oceanic crust beneath Gran Canaria (Canary Islands): implications for crustal recycling and assimilation. Journal of Petrology, 39(5), 859-880.
Hollings, P., & Kerrich, R. (2000). An Archean arc basalt–Nb-enriched basalt–adakite association: the 2.7 Ga Confederation assemblage of the Birch–Uchi greenstone belt, Superior Province. Contributions to Mineralogy and Petrology, 139(2), 208-226.
Huang, X. L., Niu, Y., Xu, Y. G., Ma, J. L., Qiu, H. N., & Zhong, J. W. (2013). Geochronology and geochemistry of Cenozoic basalts from eastern Guangdong, SE China: constraints on the lithosphere evolution beneath the northern margin of the South China Sea. Contributions to Mineralogy and Petrology, 165(3), 437-455.
Humphris, S. E., & Thompson, G. (1978). Hydrothermal alteration of oceanic basalts by seawater. Geochimica et Cosmochimica Acta, 42(1), 107-125.
Hyndman, D. W. (1985). Petrology of igneous and metamorphic rocks. McGraw-Hill.
Jahn, B. M. (1986). Mid-ocean ridge or marginal basin origin of the East Taiwan Ophiolite: chemical and isotopic evidence. Contributions to Mineralogy and Petrology, 92(2), 194-206.
Janney, P. E., & Castillo, P. R. (2001). Geochemistry of the oldest Atlantic oceanic crust suggests mantle plume involvement in the early history of the central Atlantic Ocean. Earth and Planetary Science Letters, 192(3), 291-302.
Johnson, K. T. (1998). Experimental determination of partition coefficients for rare earth and high-field-strength elements between clinopyroxene, garnet, and basaltic melt at high pressures. Contributions to Mineralogy and Petrology, 133(1-2), 60-68.
Kelley, K. A., Plank, T., Ludden, J., & Staudigel, H. (2003). Composition of altered oceanic crust at ODP Sites 801 and 1149. Geochemistry, Geophysics, Geosystems, 4(6), 8910.
Kepezhinskas, P., Defant, M. J., & Drummond, M. S. (1996). Progressive enrichment of island arc mantle by melt-peridotite interaction inferred from Kamchatka xenoliths. Geochimica et Cosmochimica Acta, 60(7), 1217-1229.
LeBas, M. J., Lemaitre, R. W., Streckeisen, A., Zanettin, B. (1986). A chemical classification of volcanic-rocks based on the total Alkali-Silica Diagram. Journal of Petrology 27 (3), 745-750.
Lei, J., Zhao, D., Steinberger, B., Wu, B., Shen, F., & Li, Z. (2009). New seismic constraints on the upper mantle structure of the Hainan plume. Physics of the Earth and Planetary Interiors, 173(1), 33-50.
Liu, Y. H., Yang, H. J., Takazawa, E., Satish-Kumar, M., & You, C. F. (2015). Decoupling of the Lu–Hf, Sm–Nd, and Rb–Sr isotope systems in eclogites and a garnetite from the Sulu ultra-high pressure metamorphic terrane: Causes and implications. Lithos, 234, 1-14.
Lugmair, G. W., & Marti, K. (1978). Lunar initial 143 Nd/144 Nd: differential evolution of the lunar crust and mantle. Earth and Planetary Science Letters, 39(3), 349-357.
Martí, J., & Ernst, G. (Eds.). (2005). Volcanoes and the Environment. Cambridge University Press.
Meschede, M. (1986). A method of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb-Zr-Y diagram. Chemical Geology, 56(3), 207-218.
Montelli, R., Nolet, G., Dahlen, F. A., & Masters, G. (2006). A catalogue of deep mantle plumes: New results from finite‐frequency tomography. Geochemistry, Geophysics, Geosystems, 7(11), Q11007.
Morimoto, N. (1988). Nomenclature of pyroxenes. Mineralogy and Petrology, 39(1), 55-76.
Mukasa, S. B., McCabe, R., & Gill, J. B. (1987). Pb-isotopic compositions of volcanic rocks in the West and East Philippine island arcs: presence of the Dupal isotopic anomaly. Earth and Planetary Science Letters, 84(2), 153-164.
Munha, J., Fyfe, W. S., & Kerrich, R. (1980). Adularia, the characteristic mineral of felsic spilites. Contributions to Mineralogy and Petrology, 75(1), 15-19.
Nakamura, K., Kato, Y., Tamaki, K., & Ishii, T. (2007). Geochemistry of hydrothermally altered basaltic rocks from the Southwest Indian Ridge near the Rodriguez Triple Junction. Marine Geology, 239(3), 125-141.
Pearce, J. A. (1996). A user’s guide to basalt discrimination diagrams. Trace element geochemistry of volcanic rocks: applications for massive sulphide exploration. Edited by DA Wyman. Geological Association of Canada, Short Course Notes, 12, 79-113.
Pearce, J. A., & Cann, J. R. (1973). Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters, 19(2), 290-300.
Polat, A., & Kerrich, R. (2001). Magnesian andesites, Nb-enriched basalt-andesites, and adakites from late-Archean 2.7 Ga Wawa greenstone belts, Superior Province, Canada: implications for late Archean subduction zone petrogenetic processes. Contributions to Mineralogy and Petrology, 141(1), 36-52.
Reagan, M. K., & Gill, J. B. (1989). Coexisting calcalkaline and high‐niobium basalts from Turrialba Volcano, Costa Rica: Implications for residual titanates in arc magma sources. Journal of Geophysical Research: Solid Earth (1978–2012), 94(B4), 4619-4633.
Sajona, F. G., Maury, R. C., Bellon, H., Cotten, J., & Defant, M. (1996). High Field Strength Element Enrichment of Pliocene—Pleistocene Island Arc Basalts, Zamboanga Peninsula, Western Mindanao (Philippines). Journal of Petrology, 37(3), 693-726.
Sajona, F. G., Maury, R. C., Bellon, H., Cotten, J., Defant, M. J., & Pubellier, M. (1993). Initiation of subduction and the generation of slab melts in western and eastern Mindanao, Philippines. Geology, 21(11), 1007-1010.
Saunders, A. D., Norry, M. J., & Tarney, J. (1988). Origin of MORB and chemically-depleted mantle reservoirs: trace element constraints. Journal of Petrology, (1), 415-445.
Shau, Y. H., & Peacor, D. R. (1992). Phyllosilicates in hydrothermally altered basalts from DSDP Hole 504B, Leg 83-a TEM and AEM study. Contributions to Mineralogy and Petrology, 112(1), 119-133.
Smith, A. D. (1998). The geodynamic significance of the DUPAL anomaly in Asia. Mantle dynamics and plate interactions in East Asia, 89-105.
Smith, A. D., & Huang, L. Y. (1997). The use of extraction chromatographic materials in procedures for the isotopic analysis of neodymium and strontium in rocks by thermal ionisation mass spectrometry. J. Natl. Cheng-Kung Univ. Sci. Eng. Med. Sect, 32, 1-10.
Smith, A. D., & Lewis, C. (2007). Geochemistry of metabasalts and associated metasedimentary rocks from the Lushan Formation of the Upthrust Slate Belt, south-central Taiwan. International Geology Review, 49(1), 1-13.
Steiger, R., & Jäger, E. (1977). Subcommission on geochronology: convention on the use of decay constants in geo-and cosmochronology. Earth and planetary science letters, 36(3), 359-362.
Stracke, A., Hofmann, A. W., & Hart, S. R. (2005). FOZO, HIMU, and the rest of the mantle zoo. Geochemistry, Geophysics, Geosystems, 6(5), 5007.
Sun, S. S., & McDonough, W. F. (1989). Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geological Society, London, Special Publications, 42(1), 313-345.
Tatsumoto, M., & Nakamura, Y. (1991). DUPAL anomaly in the Sea of Japan: Pb, Nd, and Sr isotopic variations at the eastern Eurasian continental margin. Geochimica et Cosmochimica Acta, 55(12), 3697-3708.
Treuil, M., & Varet, J. (1973). Criteres volcanologiques, petrologiques et geochimiques de la genese et de la differenciation des magmas basaltiques; exemple de l'Afar. Bulletin de la Société Géologique de France, (5-6), 506-540.
Tsai, Y.B., (1986). Seismotectonics of Taiwan. Tectonophysics, 125, 17.
Tu, K., Flower, M. F., Carlson, R. W., Xie, G., Chen, C. Y., & Zhang, M. (1992). Magmatism in the South China Basin: 1. Isotopic and trace-element evidence for an endogenous Dupal mantle component. Chemical Geology, 97(1), 47-63.
Tu, K., Flower, M. F., Carlson, R. W., Zhang, M., & Xie, G. (1991). Sr, Nd, and Pb isotopic compositions of Hainan basalts (south China): implications for a subcontinental lithosphere Dupal source. Geology, 19(6), 567-569.
Villemant, B., Jaffrezic, H., Joron, J. L., & Treuil, M. (1981). Distribution coefficients of major and trace elements; fractional crystallization in the alkali basalt series of Chaine des Puys (Massif Central, France). Geochimica et Cosmochimica Acta, 45(11), 1997-2016.
Viruete, J. E., Contreras, F., Stein, G., Urien, P., Joubert, M., Pérez-Estaún, A., Friedman, R., & Ullrich, T. (2007). Magmatic relationships and ages between adakites, magnesian andesites and Nb-enriched basalt-andesites from Hispaniola: record of a major change in the Caribbean island arc magma sources. Lithos, 99(3), 151-177.
Wang, K. L., Chung, S. L., Lo, Y. M., Lo, C. H., Yang, H. J., Shinjo, R., Lee, T. Y., Wu, J. C., & Huang, S. T. (2012). Age and geochemical characteristics of Paleogene basalts drilled from western Taiwan: Records of initial rifting at the southeastern Eurasian continental margin. Lithos, 155, 426-441.
Wang, K. L., Lo, Y. M., Chung, S. L., Lo, C. H., Hsu, S. K., Yang, H. J., & Shinjo, R. (2012). Age and Geochemical Features of Dredged Basalts from Offshore SW Taiwan: The Coincidence of Intra-Plate Magmatism with the Spreading South China Sea. Terrestrial, Atmospheric & Oceanic Sciences, 23(6), 657-669.
Wang, X. C., Li, Z. X., Li, X. H., Li, J., Liu, Y., Long, W. G., Zhou, J. B., & Wang, F. (2011). Temperature, pressure, and composition of the mantle source region of Late Cenozoic basalts in Hainan Island, SE Asia: a consequence of a young thermal mantle plume close to subduction zones?. Journal of Petrology, 53(1), 177-233.
Wang, X. C., Li, Z. X., Li, X. H., Li, J., Xu, Y. G., & Li, X. H. (2013). Identification of an ancient mantle reservoir and young recycled materials in the source region of a young mantle plume: Implications for potential linkages between plume and plate tectonics. Earth and Planetary Science Letters, 377, 248-259.
Weaver, B. L. (1991). The origin of ocean island basalt end-member compositions: trace element and isotopic constraints. Earth and Planetary Science Letters, 104(2), 381-397.
Weis, D., Kieffer, B., Hanano, D., Nobre Silva, I., Barling, J., Pretorius, W., Maerschalk, C. & Mattielli, N. (2007). Hf isotope compositions of US Geological Survey reference materials. Geochemistry, Geophysics, Geosystems, 8(6), Q06006.
Weis, D., Kieffer, B., Maerschalk, C., Pretorius, W., & Barling, J. (2005). High‐precision Pb‐Sr‐Nd‐Hf isotopic characterization of USGS BHVO‐1 and BHVO‐2 reference materials. Geochemistry, Geophysics, Geosystems, 6(2), Q02002.
Wilson, B. M. (2007). Igneous petrogenesis a global tectonic approach. Springer Science & Business Media.
Wilson, M. (1989). Igneous petrogenesis: A global tectonic approach: London. Unwyn Hyman.
Winchester, J. A., & Floyd, P. A. (1977). Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, 20, 325-343.
Workman, R. K., & Hart, S. R. (2005). Major and trace element composition of the depleted MORB mantle (DMM). Earth and Planetary Science Letters, 231(1), 53-72.
Wyman, D. A., Ayer, J. A., & Devaney, J. R. (2000). Niobium-enriched basalts from the Wabigoon subprovince, Canada: evidence for adakitic metasomatism above an Archean subduction zone. Earth and Planetary Science Letters, 179(1), 21-30.
Yan Quanshu, (2008). Geochemistry of Cenozoic Alkali Basalts from the South China Sea and Its Geodynamical Significance. Chinese Academy of Sciences ( Institute of Oceanography ).
Zhao, D. (2007). Seismic images under 60 hotspots: search for mantle plumes. Gondwana Research, 12(4), 335-355.
Zindler, A., & Hart, S. (1986). Chemical geodynamics. Annual review of Earth and Planetary Sciences, 14, 493-571.
Zou, H., Zindler, A., Xu, X., & Qi, Q. (2000). Major, trace element, and Nd, Sr and Pb isotope studies of Cenozoic basalts in SE China: mantle sources, regional variations, and tectonic significance. Chemical Geology, 171(1), 33-47.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2026-01-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2026-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw