進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0402201512471400
論文名稱(中文) Ti-7.5Mo合金熱機處理對微結構及機械性質之影響
論文名稱(英文) Effect of thermomechanical treatment on microstructure and mechanical properties of Ti-7.5Mo alloy
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 103
學期 1
出版年 104
研究生(中文) 侯柏亨
研究生(英文) Bo-Heng Hao
學號 N56011035
學位類別 碩士
語文別 中文
論文頁數 194頁
口試委員 口試委員-林殿傑
指導教授-陳瑾惠
指導教授-朱建平
中文關鍵字 Ti-7.5Mo合金  熱機處理  機械性質 
英文關鍵字 titanium alloy  thermo-mechanical treatment  tensile test  VAR  microstructure. 
學科別分類
中文摘要 本研究利用不含鋁、釩等有害元素之Ti-7.5Mo 合金作為研究材料,其具有高生物相容性、高强度及低彈性模數,可以大幅減少高彈性模數之骨科植入物造成的應力遮蔽效應。目的是將此合金應用於市面上常見之植入材。
以中鋼試量產之Ti-7.5Mo 合金為研究重點,參考ASTM F2066-13 Ti-15Mo 規範,且跟實驗室小量製備之Ti-7.5Mo 合金做相對應。瞭解中鋼三次錠在VAR 製程中Ti-7.5Mo 合金原子含量及分佈,得知在第二批A錠其成分接近目標材料,期許能與實驗室小量製備之Ti-7.5Mo 合金具有一致性。經過均質化之 Ti-7.5Mo 合金利用熱軋、固溶、冷軋及時效等製程處理,得到高強度、低彈性模數且具有一定延展性之Ti-7.5Mo 合金機械性質。
英文摘要 Although the binary Ti-7.5Mo alloy had low elastic modulus which is an advantageous for orthopedic applications from the viewpoint of stress-shielding effect, α”-phase titanium alloy has a relatively low strength. The present study was an attempt to increase the strength level, decrease the elastic modulus of the Ti-7.5Mo alloy by thermo-mechanical treatment.The study compares structure and tensile properties of the Ti-7.5Mo samples under different thermo-mechanical treatment.The Ti-7.5Mo alloy plate used in this study which was prepared by VAR process.The as-received Ti-7.5Mo and as-forged Ti-7.5Mo alloy samples were one-step hot-rolled, solution treated, multi-step cold-rolled, and aged. Based on the strength-to-modulus ratio of Ti-7.5Mo alloy which prepared with the above processes and compare with Ti-6Al-4V ELI alloy.
論文目次 摘要 I
英文延伸摘要 II
誌謝 VI
總目錄 VII
圖目錄 XIII
表目錄 XVII
第一章 前言 1
1-1研究背景 1
1-2金屬生醫材料之簡介 2
1-2-1 316L不鏽鋼 4
1-2-2 鈷基合金 4
1-2-3 鈦基合金 5
1-3 金屬生醫材料之應用 6
1-3-1 人工關節 8
1-3-2 骨折固定 9
1-3-3 人工植牙 12
1-4 研究目的 13
第二章 純鈦及鈦合金 15
2-1鈦的介紹 15
2-1-1鈦的歷史 15
2-1-2鈦的物理性質 17
2-1-3鈦的化學性質 18
2-2鈦的製備 19
2-2-1 Hunter process 20
2-2-2 Crystal bar process 20
2-2-3 Kroll process 21
2-2-4 FCC Cambridge process 22
2-3 鈦合金的分類 24
2-3-1 α或near α型鈦合金 25
2-3-2 β型鈦合金 27
2-3-3 α+β型鈦合金 32
2-4 鈦合金的非平衡相 33
2-5 鈦與鈦合金的性質與應用 35
第三章 理論基礎 39
3-1鈦合金之設計理論 39
3-1-1分離式多樣化叢集方式 39
3-1-2電子結構的分子軌域計算 40
3-1-3 Mo當量方程式 42
3-2 ICP定量分析原理 42
3-3 金屬的強化機制 47
3-3-1 細晶粒強化 47
3-3-2加工硬化 48
3-3-3固溶強化 50
3-3-4 析出強化 50
3-4 拉伸破斷機制 55
3-4-1 脆性破斷 56
3-4-2延性破斷 57
3-5 應力遮蔽效應 58
第四章 實驗步驟及方法 59
4-1 實驗流程圖 59
4-2 ICP試片製備 61
4-3合金材料的製備 62
4-4合金熔煉與鑄造 62
4-5合金鑄造及儀器 66
4-6滾壓製成 67
4-7試片製作 68
4-8固溶熱處理 69
4-9 時效熱處理 70
4-10拉伸試驗 72
4-11 X光繞射相分析 73
4-12 Scanning Electron Microscopy(SEM)表面觀察與Energy
Dispersive Spectrometers (EDS)分析 74
4-13細胞毒性測試(Cytotoxicity assay) 77
第五章 實驗結果與討論 79
5-1 實驗室小型熔煉Ti-7.5Mo、純鈦性質比較 79
5-1-1 拉伸強度與彈性模數 80
5-2 中鋼 Ti-7.5Mo 第一批料(A料) 83
5-2-1 十字型五點成分定量分析(Mo含量)結果 84
5-2-1-1 EDS定量分析 85
5-2-1-2 ICP 定量分析 86
5-2-2 熱機處理後機械性質結果與分析 88
5-2-3 XRD相分析 94
5-2-3-1 十字型五點相分析 94
5-2-3-2 熱機處理後相分析 95
5-2-4微結構分析 98
5-3 中鋼 Ti-7.5Mo 第二批料(A、B、C錠) 100
5-3-1 成分定量分析(Mo含量)結果 101
5-3-1-1 EDS 定量分析 103
5-3-1-2 ICP 定量分析 105
5-3-2機械性質結果與分析 111
5-3-2-1熱機處理後機械性質 111
5-3-2-2不同凝固方向機械性質 113
5-4 中鋼 Ti-7.5Mo 第二批料鍛造 115
5-4-1 鍛造過程及鍛造後形狀 115
5-4-2 主成分(Mo)及微量元素(C、O、N、Fe)定量分析結果 117
5-4-2-1 ICP定量分析 117
5-4-2-2微量元素定量分析 119
5-4-3 熱機處理後機械性質結果與分析 120
5-4-4 熱機處理後相分析 127
5-4-5微結構分析 129
5-4-6 細胞毒性測試 131
第六章 結論 133
第七章 參考資料 134
第八章 附錄 140
附件1.許博淵學長拉伸機械性質 141
附件2.陳彥均學長拉伸機械性質 143
附件3. ASTM F2066 – 13 145
附件4. ASTM E1409 − 13 151
附件5. ASTM E1447 – 09 158
附件6. ASTM E2371 – 13 162
附件7.拉伸測試原始數據 175
參考文獻 Abdel-Hady, M., K. Hinoshita and M. Morinaga. "General approach to phase stability and elastic properties of β-type Ti-alloys using electronic
parameters." Scripta Materialia 55(5): 477-480. (2006) .

Ahmed, T. and H. J. Rack. "Phase transformations during cooling in
alpha+beta titanium alloys." Mat. Sci. Eng. A-struct 243(1-2): 206-211.
(1998) .

ASTM. Standard Specification for Wrought Titanium-15 Molybdenum Alloy for Surgical Implant Applications. USA, ASTM. F2066-13. (2013) .

ASTM. Standard Test Method for Analysis of Titanium and Titanium Alloys by Direct Current Plasma and Inductively Coupled Plasma Atomic
Emission Spectrometry USA, ASTM. E2371-13. (2013) .

Bania PJ., “Beta titanium alloys and their role in the titanium industry”, In: Eylon D, Boyer R, Koss D, editors. Beta titanium alloys in the 1990's. Warrendale, PA: TMS, p. 3-14, 1993.

Blackburn MJ and Williams JC., “Phase transformation in Ti-Mo and Ti-V alloys”, Trans Metal Soc AIME, 242:2461-9, 1968.

Boyer, R. and E. Collings. Materials properties handbook: titanium alloys, ASM international, Metals Park, Ohio. (1993)

Chan, K. S., M. Koike, B. W. Johnson and T. Okabe. "Modeling of
alpha-case formation and its effects on the mechanical properties of
titanium alloy castings." Metallurgical and Materials Transactions A
39(1): 171-180. (2008)

Cheal E, Spector M, Hayes W. “Role of loads and prosthesis material properties on the mechanics of the proximal femur after total hip arthroplasty”, J Orthop Res ; 10:405-422.1992.

Clemson Advisory Board for Biomaterials “Definition of the word biomaterial”, The 6th Annual International Biomaterial Symposium, April 20-24, 1974.

Chen, Y.C., C.P. Ju and J.H. Lin Chern. "Microstructural investigation of
stress-assisted α"-α' phase transformation in cold-rolled Ti-7.5Mo
alloy." Micron (in press). (2014)

Chen, Y. C., J. H. Chern Lin and C. P. Ju. "Effects of post-aging cooling
condition on structure and tensile properties of aged Ti-7.5Mo alloy."
Materials & Design 54(C): 5. (2014)

Chun, Y. B., S. H. Yu, S. L. Semiatin and S. K. Hwang. "Effect of
deformation twinning on microstructure and texture evolution during
cold rolling of CP-titanium." Mat. Sci. Eng. A-struct 398(1-2):
209-219. (2005)

Chung, C.-C., S.-W. Wang, Y.-C. Chen, C.-P. Ju and J.-H. C. Lin. "Effect of cold rolling on structure and tensile properties of cast Ti-7.5Mo alloy."
Materials Science & Engineering: A (revised). (2014)

Davis R., “Martensitic transformations in Ti-Mo alloys”, Journal of materials science v14,P712-722, 1979.

D.A Porter and K.E. Easterling, “Phase Transformations in Metals and Alloys” second edition, CRC Press, USA, 2004.

Donachie Jr. M. J., Titanium A Technical Guide, ASM International, Metal Park Ohio, 1989.

F. Sun, F. Prima, T. Gloriant, “High-strength nanostructured Ti–12Mo alloy from ductile metastable beta state precursor”, Materials Science and Engineering A 527 4262–4269, 2010.

Fedotov SG. “Peculiarities of Changes in Elastic Properties of Ti Martensite”, Titanium Science and Technology , 2:871-81.1973.

Furuhara. T, Maki. T., Makino. T. “Microstructure control by thermomechanical processing in β-Ti-15-3 alloy”, Journal of Materials Processing Technology, 117, 318-323, 2001.

G. He, M. Hagiwara, “Bimodal structured Ti-base alloy with large elasticity and low Young’s modulus”, Materials Science and Engineering C 25 290 – 295, 2005.

Hansson S. “A conical implant–abutment interface at the level of the marginal bone improves the distribution of stresses in the supporting bone”, Clin Implant Dent Relat Res , 2(1):33-41.2000.

Ho WF, Ju CP and Chern Lin JH. “Structure and properties of cast binary Ti-Mo alloys”, Biomaterials, 20:2115-22, 1999.

Koeneman JB, Hansen TM, Toal TR. “Effects of implant geometry position and boundary conditions on cancellous bone stresses: a finite element analysis”, Proceedings of Biomechanics Symposium, 120:117-120, 1991.

Lewis JL, Askew MJ, Wixson RL, Kramer GM, Tarr RR. “The influence of prosthetic stem stiffness and of a calcar collar on stresses in the proximal end of the femur with a cemented femoral component”, J Bone Jt Surg, 66A:280-286, 1984.

Metal Park, Titanium a technical guide, ASM International, Oh44073., P.14, 1998.

Mitsuo Niinomi, “Mechanical biocompatibilities of titanium alloys for biomedical applications”, journal of the Mechanical behavior of biomedical materials I, 30–42, 2008.

Molchanova EK, “phase diagrams of titanium alloys” [transl. of Atlas diagram sostoyaniya titanovyk splavov], Israel program for scientific translations, Jerusalem, 1965.

Pei-Wen Peng, Keng-Liang Ou, Chih-Yeh Chao, Yung-Ning Pan, Chau-Hsiang Wang, “Research of microstructure and mechanical behavior on duplex (α+β) Ti–4.8Al–2.5Mo–1.4V alloy”, Journal of Alloys and Compounds, 2009.

Smith W.F., “Structure and Properties of Engineering Alloys”, McGraw-Hill, Inc., USA, 433-484, 1993.

Sujata V.Bhat, “Biomaterials, 2nd Edition”, Alpha Science International, Ltd , 2005.

Rengen Ding, Ian Pjones and Huisheng Jiao, “Effect of Mo and Hf on the mechanical properties and microstructure of Nb–Ti–C alloys”, Elsevier B.V, 2007.

Wolff J, “Das Gesetz Der Transformation Der Knochen”, Hirshwald Verlag, Berlin, 1892.

X.H. Min, S. Emura, T. Nishimura, L. Zhang, S. Tamilselvi, K. Tsuchiya, K. Tsuzaki, “Effects of _ phase precipitation on crevice corrosion and tensile strength in Ti–15Mo alloy”, Materials Science and Engineering, 2009.

Y.L. Zhou, M. Niinomi, T. Akahori, “Decomposition of martensite α” during aging treatment and resulting mechanical properties of Ti-Ta alloys”, Materials Science and Engineering A, 371, 283-290, 2004.

何文福. 鑄造鈦-鉬合金之結構及性質研究. 博士, 國立成功大學. (1999)

林家緯, “鑄造鈦-鉬合金疲勞性質研究”, 成功大學材料工程研究所博士論文, 2005.

林殿傑, “鑄造鈦-鉬-鐵及鈦-鉬-鉻合金性質研究”, 成功大學材料工程研究所博士論文, 2002.

林士哲, “熱機處理對鈦-鉬合金機械性質的影響”, 成功大學材料工程研究所碩士論文, 2008.

鄭文偉, “添加合金元素對鈦或鈦合金鑄造性及性質研究”, 成功大學材料工程研究所博士論文, 2002.

陳俊廷, “熱機處理對Ti-7.5Mo合金機械性質的影響”, 成功大學材料工程研究所碩士論文, 2010.

楊士德, “熱處理對鑄造合金Ti-7.5Mo機械性質的影響”, 成功大學材料工程研究所碩士論文, 2010.

朱胤碩, “熱機處理對鑄造Ti-7.5Mo合金結構與機械性質之研究”, 成功大學材料工程研究所碩士論文, 2011.

王士瑋, “熱機處理對Ti-7.5Mo合金機械性質之影響”, 成功大學材料工程研究所碩士論文, 2012.

許博淵, “熱機處理對Ti-7.5Mo合金結構與機械性質之影響”, 成功大學材料工程研究所碩士論文, 2013.

陳彥均, “低彈性模數Ti-7.5Mo合金製程設計微結構及機械性質之
探討”, 成功大學材料工程研究所博士論文, 2014.

鍾進欽. 未定. 博士候選人, 國立成功大學. 2014

陳正泓, “抗菌型鈣基骨泥性質之初步探討” , 成功大學材料工程研究所碩士論文, 2013

葉哲政/金屬中心, “生醫用金屬產業全局佈局與競爭策略”, 2005.

侯貫智, “環保成為海綿鈦製成的焦點議題”, ITIS產業評析專欄, 2008.

曾婉如, “鈦金屬”, 金屬材料月報, 2011.

李珠, “感應耦合電漿質譜儀技術及其在材料分析上的應用” , 工業材料雜誌181期,2002

杜米芳, “电感耦合等离子体原子发射光谱法测定钛合金中硼” , 冶金分析, 2010,

施詠堯, “噴覆成型與連續鑄造6063鋁合金之微結構、機械性質與成型性質之研究”, 成功大學材料工程研究所碩士論文, 2003.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-01-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw