進階搜尋


下載電子全文  
系統識別號 U0026-0402201310451500
論文名稱(中文) 離子/中性粒子碰撞對阿爾芬波的影響與震波/間斷面複合結構的形成
論文名稱(英文) Effects of ion-neutral collisions on Alfvén waves and formation of compound discontinuity/shock structures
校院名稱 成功大學
系所名稱(中) 物理學系碩博士班
系所名稱(英) Department of Physics
學年度 101
學期 1
出版年 102
研究生(中文) 翁承嘉
研究生(英文) Chen-Jia Weng
學號 l28951039
學位類別 博士
語文別 英文
論文頁數 117頁
口試委員 指導教授-李羅權
口試委員-許瑞榮
口試委員-蘇漢宗
口試委員-趙寄昆
口試委員-郝玲妮
中文關鍵字 阿爾芬波  震波  不連續面 
英文關鍵字 Alfvén wave  shock  discontinuity 
學科別分類
中文摘要 阿爾芬波是在磁化電漿中傳播的低頻橫向波。而中性粒子的存在可以改變波的頻率與造成阿爾芬波的衰減。磁流體力學 (MHD) 的不連續結構是一個固定的薄膜層,通過它的磁場、電漿密度、壓力和流速可能有一個顯著的躍遷。在本論文的第一部分中,我們研究均勻電漿裡的中性離子間碰撞在阿爾芬波的阻尼下之影響。在本論文的第二部分,利用一維的黎曼 (Riemann) 問題來研究磁重聯中磁流體力學不連續結構的產生和演變。

首先,造成阿爾芬波的影響可取決於兩個參數:(1) ,中性粒子密度 與離子密度 的比值;(2) ,自離子的中性碰撞頻率 ,與頻率 的比值。以往大多數的研究僅在有限的情況下進行,如具有相對大的中性碰撞頻率或是 。在本論文的第二章中,利用所有的參數值 與 來解決阿爾芬波的色散關係。在 參數空間中我們第一次發現有一個“禁區”的存在,其中阿爾芬波的實部頻率變為零且阿爾芬波會逐漸消失。近似解也在極限 和 的限制下被求出。我們還討論了在電離層和太陽色球的“禁區”中阿爾芬波的傳播情況和阻尼。

第二,我們使用一維混合粒子碼 (Hybrid code) 來模擬磁流體力學的不連續結構與磁重聯中電流片的形成與演化。由於慢速震波 (SS) 的漏損,導致離子平行溫度和溫度各向異性 趨向於增加,其中 為離子平行(垂直)電漿貝塔。傳播的旋轉不連續結構(RD)與慢速震(SS)會導致多種複合性結構在磁重聯外流區域的形成。在我們的模擬下,我們找四種複合性結構:(a) RD-SS複合結構:RD連接到SS的前端部分;(b) SS-RD(DD)的複合結構:RD連接到SS的後方部分;(c) SS-RD-SS複合結構:RD被困在SS裡面;與(d) switch-off 慢速震波(SSS)和一連串的旋轉波。而這些複合性結構的產生主要與初始的離子貝塔 與磁場的剪切角有關。
英文摘要 Alfvén waves are low-frequency transverse waves propagating in a magnetized plasma. The presence of neutral particles may modify the wave frequency and cause damping of Alfvén waves. MHD discontinuity is a stationary thin layer through which the magnetic field, plasma density, pressure, and flow velocity may have a significant jump. In the first part of this thesis, we investigate the effect of ion-neutral collisions on the damping of Alfvén waves in a homogeneous plasma. In the second part of this thesis, 1-D Riemann problem is used to study the generation and evolution of MHD discontinuities associated with magnetic reconnection.

First, the effects on Alfvén waves depend on two parameters: (1) , the ratio of neutral density and ion density , and (2) , the ratio of neutral collisional frequency by ions , , to the wave frequency . Most of previous studies examined only the limiting case with a relatively large neutral collisional frequency or . In the Chapter 2 of this thesis, the dispersion relation for Alfvén waves is solved for all values of and . It is found for the first time that there is a “forbidden zone” in the parameter space, where the real frequency of Alfvén waves becomes zero and Alfvén waves become evanescent. Approximate solutions in the limit as well as are obtained. We also discuss the propagation and damping of Alfvén waves in the ionosphere and in the solar chromosphere, where the “forbidden zone” is identified.

Second, we use 1-D hybrid code to simulate the generation and evolution of MHD discontinuities associated with magnetic reconnection in a current sheet. As a result of the leakage of slow shock (SS), the ion parallel temperature and temperature anisotropy tends to increase, where is the ion parallel (perpendicular) beta. The propagation rotational discontinuity (RD) and slow shock (SS) lead to formation of various compound structures in the reconnection outflow region. Four types of compound structure are found in our simulations: (a) RD-SS compound structure: the RD is attached to the leading part of SS, (b) SS-RD (DD) compound structure: RD is attached to the rear part of SS, (c) SS-RD-SS compound structure: RD is trapped inside SS, and (d) switch-off slow shock (SSS) with a rotational wave train. The type of compound structure generated depends on the initial ion beta and magnetic shear angle .
論文目次 Contents
Page
Abstract 1
摘要 3
Acknowledgments 5
Contents 7
List of Figures 10

Chapter 1 Introduction and basic equations …………………………………. 17

1.1 Ideal MHD equations …………………………………………………. 17
1.2 Linear MHD waves …………………………………………………. 20
1.3 MHD discontinuities …………………………………………………... 24
1.4 Outline of the thesis ……...……………………………………………. 34

Chapter 2 Effects of ion-neutral collisions on Alfvén waves …………………. 38

2.1 Introduction ……………………………………………………………. 38
2.2 Formulations …………………………………………………………… 41
2.2.1 Basic Equations for fluid with ions and neutrals …………….. 41
2.2.2 Dispersion equation and eigen-modes for Alfvén waves ……... 42
2.3 Solutions for Alfvén waves: the presence of a forbidden zone ……… 47
(a) Pure damping mode ( ) ……………………………………… 51
(b) Propagating Alfvén modes ( and ) ………………………. 52
2.4 Contrast between theory and simulation in damping of Alfvén waves
……………………………………………………………………………. 62
2.5 Application to Alfvén waves in the ionosphere and solar chromosphere
……………………………………………………………………………. 66
2.6 Summary ……………………………………………………………….. 73

Chapter 3 Formation of compound structures of shock and discontinuity ..... 75

3.1 Introduction ……………………………………………………………. 75
3.2 Simulation Model and Results ………………………………………... 83
Case (a): SS-RD (DD) compound structure with and
………………………………………………….….……..………. 87
Case (b): SS-RD (DD) compound structure with and
………………………………………………….….……..………. 90
Case (c): SS-RD-SS compound structure with and
………………………………………………….….……..………. 90
Case (d): Switch-off shock (SSS) with and
………………………………………………….….……..………. 91
Case (e): SS-RD-SS compound structure with and
………………………………………………….….……..………. 93
Case (f): RD-SS compound structure with and
………………………………………………….….……..………. 93
3.3 Summary ……………………………………………………………… 100

Chapter 4 Summary …………………………………………………………... 103

4.1 Effects of ion-neutral collisions on Alfvén waves ………………..... 103
4.2 Formation of compound structures of shock and discontinuity ….. 104

References ……………………………………………………………………...… 107
參考文獻 Alexander, C. J.; Neugebauer, M.; Smith, E. J.; Bame, S. J., Sixth International
Solar Wind Conference, Proceedings of the conference held 23-28 August, 1987
at YMCA of the Rockies, Estes Park, Colorado. Edited by V.J. Pizzo, T. Holzer,
and D.G. Sime, Volume 2, 341, 1987.

Alfvén, H., On the origin of the solar system, Clarendon Press, Oxford, 1954.

Amagishi, Y.; Tanaka, M., Ion-neutral collision effect on an Alfven wave,
Phys. Rev. Lett. 71, 360, 1993.

Arber, T. D.; Haynes, M.; Leake, J. E., Emergence of a flux tube through a
partially ionized solar atmosphere, The Astrophy. J., 666 (1), 541, 2007.

Biernat, Helfried K.; Heyn, Martin F.; Rijnbeek, Richard P.; Semenov, Vladimir;
Farrugia, Charles J., The structure of reconnection layers - Application to
the earth's magnetopause, J. Geophys. Res., 94, 287, 1989.

Braginskii, S. I., Transport Processes in a Plasma, Rev. Plasma Phys., 1, 205, 1956.

Burlaga, L. F., Hydromagnetic waves and discontinuities in the solar wind, Space Sci.
Revs., 12 (5), 600, 1971.

Carbonell, M.; Forteza, P.; Oliver, R.; Ballester, J. L., The spatial damping of
magnetohydrodynamic waves in a flowing partially ionised prominence plasma,
A & A, 515, A80, 2010.

Chao, J. K.; O., Stanislaw, Observation of slow shocks in interplanetary space,
J. Geophys. Res., 75 (31), 6394, 1970.

Davis, M. S., T. D. Phan, J. T. Gosling, and R. M. Skoug, Detection of oppositely directed
reconnection jets in a solar wind current sheet, Geophys. Res. Lett., 33, L19102, 2006.

De Pontieu, B.; Haerendel, G., Weakly damped Alfvén waves as drivers for spicules,
A & A, 338, 729, 1998.

De Pontieu, B.; Martens, P. C. H.; Hudson, H. S., Chromospheric damping of
Alfvén waves, The Astrophy. J., 558 (2), 859, 2001.

Ebadi, H.; Hosseinpour, M.; Altafi-Mehrabani, H., Phase mixing of propagating Alfvén
waves in a stratified atmosphere: solar spicules, Astrophy. & Space Sci., 340 (1), 9, 2012.

Erdélyi, R.; James, S. P., Can ion-neutral damping help to form spicules?. II. Random
driver, A & A, 427, 1055, 2004.

Eriksson, S., M. Øieroset, D. N. Baker, C. Mouikis, A. Vaivads, M. W. Dunlop, H.
Réme, R. E. Ergun, and A. Balogh, Walén and slowmode shock analyses
in the near-Earth magnetotail in connection with a substorm onset on 27 August
2001, J. Geophys. Res., 109, A10212, 2004.

Evans, R. M.; Opher, M.; Jatenco-Pereira, V.; Gombosi, T. I., Surface Alfvén
wave damping in a three-dimensional simulation of the solar wind, The Astrophy.
J., 703 (1), 179, 2009.

Feldman, W.C., Bame, S.J., Baker, D.N., Birn, J., Gosling, J.T., Hones, E.W.,
McComas, D.J., Zwickl, R.D., Schwartz, S.J., Slavin, J.A. and Smith, E.J. , Evidence
for slow-mode shocks in the deep geomagnetic tail, Geophys. Res. Lett., 11, 599,
1984.

Feldman, W. C., D. N. Baker, S. J. Bame, J. Birn, E. W. Hones Jr., S. J. Schwartz, and
R. L. Tokar, Power dissipation at slow-mode shocks in the distant geomagnetic tail,
Geophys. Res. Lett., 11, 1058, 1984.

Feldman, W. C., D. N. Baker, S. J. Bame, J. Birn, J. T. Gosling, E. W. Hones Jr., and
S. J. Schwartz, Slow-mode shocks: A semipermanent feature of the distant
geomagnetic tail, J. Geophys. Res., 90, 233, 1985.

Feldman,W. C., R. L. Toker, J. Birn, E. W. Hones Jr., S. K. Bame, and C. T. Russell ,
Structure of a slow mode shock observed in the plasma sheet boundary layer,
J. Geophys. Res., 92, 83, 1987.

Forteza, P.; Oliver, R.; Ballester, J. L.; Khodachenko, M. L., Damping of oscillations by
ion-neutral collisions in a prominence plasma, A & A, 461 (2), 731, 2007.

Forteza, P.; Oliver, R.; Ballester, J. L., Time damping of non-adiabatic MHD waves in an
unbounded partially ionised prominence plasma, A & A, 492 (1), 223, 2008.

Goedbloed, J. P. Hans; Poedts, Stefaan, Principles of Magnetohydrodynamics, Cambridge
University Press, 2004.

Goodman, Michael L., On the mechanism of chromospheric network heating and the
condition for its onset in the sun and other solar-type stars, The Astrophy. J., 533 (1),
501, 2000.

Goodman, Michael L., The necessity of using realistic descriptions of transport processes
in modeling the solar atmosphere, and the importance of understanding
chromospheric heating, Space Sci. Revs., 95 (1/2), 79, 2001.

Gordon, B. E.; Hollweg, J. V., Collisional damping of surface waves in the solar corona,
The Astrophy. J., Part 1, 266, 373, 1983.

Gosling, J. T., R. M. Skoug, D. K. Haggerty, and D. J. McComas, Absence of
energetic particle effects associated with magnetic reconnection exhausts in the
solar wind, Geophys. Res. Lett., 32, L14113, 2005.

Gosling, J. T., S. Eriksson, R. M. Skoug, D. J. McComas, and R. J. Forsyth,
Petschek-type reconnection exhausts in the solar wind well beyond 1 AU: Ulysses,
The Astrophy. J., 644, 613, 2006.

Gosling, J. T., S. Eriksson, T. D. Phan, D. E. Larson, R. M. Skoug, and D. J.
McComas, Direct evidence for prolonged magnetic reconnection at a continuous
x-line within the heliospheric current sheet, Geophys. Res. Lett., 34, L06102, 2007.

Cranmer, Steven R.; van Ballegooijen, Adriaan A.; Edgar, Richard J., Self-consistent
Coronal Heating and Solar Wind Acceleration from Anisotropic
Magnetohydrodynamic Turbulence, The Astrophy. J. S. S., 171 (2), 520, 2007.

Haerendel, G., Weakly damped Alfvén waves as drivers of solarchromospheric spicules,
Nature, 360 (6401), 241, 1992.
Hartmann, L.; MacGregor, K. B., Momentum and energy deposition in late-type stellar
atmospheres and winds, The Astrophy. J., Part 1, 242, 260, 1980.

Hau, L. N. and Hung, C. C., Formation of anomalous slow shocks in anisotropic plasmas,
Geophys. Res. Lett., 32 (14), L14103, 2005.

Heyvaerts, J.; Priest, E. R., Coronal heating by phase-mixed shear Alfvén waves, A & A,
117 (2), 220, 1983.

Higashimori, K., and M. Hoshino, The relation between ion temperature anisotropy and
formation of slow shocks in collisionless magnetic reconnection, J. Geophys.
Res., 117, A01220, 2012.

Ho, C. M., B. T. Tsurutani, E. J. Smith, andW. C. Feldman, A detailed examination of a
X-line region in the distant tail: ISEE-3 observations of jet flow and Bz reversals and a
pair of slow shocks, Geophys. Res. Lett., 21, 3031, 1994.

Hollweg, Joseph V., Nonlinear Landau damping of Alfvén waves, Phy. Re. Lett., 27 (20),
1349, 1971.

Hollweg, J. V., Transition region, corona, and solar wind in coronal holes, J. Geophys.
Res.,91, 4111, 1986.

Hoshino, M., T. Mukai, I. Shinohara, Y. Saito, and S. Kokubun, Slow shock downstream
structure in the magnetotail, J. Geophys. Res., 105, 337, 2000.

Huang, L.; Lee, L. C.; Whang, Y. C., Magnetohydrodynamic waves and instabilities in the
heat-conducting solar wind plasma, Planet. & Space Sci., 36, 775, 1988.

Hung, C. C., L.-N. Hau and M. Hoshino, Magnetic reconnection in anisotropic plasmas:
Observation and theory, Geophys. Res. Lett., in press, 2011.

Isenberg, Philip A.; Lee, Martin A.; Hollweg, Joseph V., The kinetic shell model of coronal
heating and acceleration by ion cyclotron waves: 1. Outward propagating waves,
J. Geophys. Res., 106 (A4), 5649, 2001.

Isenberg, Philip A.; Vasquez, Bernard J., A kinetic model of solar wind generation by
oblique ion-cyclotron waves, The Astrophy. J., 731 (2), 88, 2011.

James, S. P.; Erdélyi, R., Spicule formation by ion-neutral damping, A & A, 393, L11,
2002.

James, S. P.; Erdélyi, R.; De Pontieu, B., Can ion-neutral damping help to form spicules?,
A & A, 406, 715, 2003.

Khodachenko, M. L.; Arber, T. D.; Rucker, H. O.; Hanslmeier, A., Collisional and viscous
damping of MHD waves in partially ionized plasmas of the solar atmosphere, A & A,
422, 1073, 2004.

Khodachenko, M. L.; Rucker, H. O., Solar plasma theoretical models for STEREO and
Solar-B, Adv.Space Res., 36 (8), 1561, 2005.

Krauss-Varban, D.; Karimabadi, H.; N. Omidi, Kinetic structure of rotational
discontinuities: Implications for the magnetopause, J. Geophys. Res., 100, 11981,
1995.

Kulsrud, Russell; Pearce, William P., The effect of wave-particle interactions on the
propagation of cosmic rays, The Astrophy. J., 156, 445, 1969.

Kulsrud R. M., Basic plasma physics (Edited by Rosenbluth, M. N. and Sagdeev R. Z.),
1, 144, 1983.

Kumar, Nagendra; Roberts, B., Ion-neutral collisions effect on MHD surface waves,
Solar Phy., 214 (2), 241, 2003.

Landau and Lifshitz, Course of theoretical physics, 1960.

Lazar, M.; Spanier, F.; Schlickeiser, R., Linear damping and energy dissipation of shear
Alfvén waves in the interstellar medium, A & A, 410, 415, 2003.

Leake, J. E.; Arber, T. D.; Khodachenko, M. L., Collisional dissipation of Alfvén waves in
a partially ionised solar chromosphere, A & A, 442(3),1091, 2005.

Leake, J. E.; Arber, T. D., The emergence of magnetic flux through a partially ionised solar
atmosphere, A & A, 450 (2), 805, 2006.

Lee, L. C.; Kan, J. R., Structure of the magnetopause rotational discontinuity, J. Geophys.
Res., 87, 139, 1982.

Lee, L. C.; Lin, Y.; Shi, Y.; Tsurutani, B. T., Slow shock characteristics as a function of
distance from the X-line in the magnetotail, Geophys. Res. Lett., 16, 903, 1989.

Lee,L. C.; Huang L.; Chao, J. K., On the stability of rotational discontinuities and
intermediate shocks, J. Geophys. Res., 94, 8813, 1989.

Lee, L. C., Wu, B. H., Chao, J. K., Lin, C. H. and Li, Y., Formation of a compound slow
shock-rotational discontinuity structure, J. Geophys. Res., 105 (A6), 13045, 2000.

Lee, L. C.; Wu, B. H., Heating and acceleration of protons and minor ions by fast shocks in
the solar corona, The Astrophy. J., 535 (2), 1014, 2000.

Lehnert, B., Plasma physics on cosmical and laboratory scale, Nuovo Cimento Suppl.,
13, 59, 1959.

Lehnert, B., On the conditions for cosmic grain formation, From Plasma to Planet, Wiley
Interscience Division, 111, 1972.

Lepping, R. P.; Behannon, K. W., Magnetic field directional discontinuities. I – Minimum
variance errors, J. Geophys. Res., 85, 4695, 1980.

Lin, Y. and Lee, L. C., Chaos and ion heating in a slow shock, Geophys. Res. Lett., 18,
1615, 1991.

Lin, Y. and Lee, L. C., Structure of Reconnection Layers in the Magnetosphere, Space Sci.
Rev., 65, 59, 1994.

Lin, Y. and Lee, L. C., Reconnection layer at the flank magnetopause in the presence of
shear flow, Geophys. Res. Lett., 21, 855, 1994.

Lin, Y.; Lee, L. C., Simulation study of the Riemann problem associated with the
magnetotail reconnection, J. Geophys. Res., 100 (A10), 19227, 1995.

Liu, Yi-Hsin, Drake, J. F. and Swisdak, M., The effects of strong temperature
anisotropy on the kinetic structure of collisionless slow shocks and reconnection
exhausts. I. Particle-in-cell simulations, Phys. Plasmas, 18 (6), 062110, 2011.

Liu, Yi-Hsin; Drake, J. F.; Swisdak, M., The effects of strong temperature anisotropy on
the kinetic structure of collisionless slow shocks and reconnection exhausts. II.
Theory, Phy. Plasmas, 18 (9), 092102, 2011.

Liu, Yi-Hsin; Drake, J. F.; Swisdak, M., The Structure of the Magnetic Reconnection
Exhaust Boundary, Phys. Plasmas, 19, 022110, 2012.

Matthaeus, W. H.; Zank, G. P.; Oughton, S.; Mullan, D. J.; Dmitruk, P., Coronal Heating by
Magnetohydrodynamic Turbulence Driven by Reflected Low-Frequency Waves,
The Astrophy. J., 523 (1), L93, 1999.

Nakariakov, V. M.; Verwichte, E.; Berghmans, D.; Robbrecht, E., Slow magnetoacoustic
waves in coronal loops, A & A, 362, 1151, 2000.

Narain, U.; Ulmschneider, P., Chromospheric and Coronal Heating Mechanisms II,
Space Sci. Revs., 75, (3-4), 453, 1996.

Neugebauer, M.; Clay, D. R.; Goldstein, B. E.; Tsurutani, B. T.; Zwickl, R. D., A
reexamination of rotational and tangential discontinuities in the solar wind,
J. Geophys. Res., 89, 5395, 1984.

Neugebauer, M., The structure of rotational discontinuities, Geophys. Res. Lett.,
16, 1261, 1989.

Ofman, L.; Davila, J. M., Solar wind acceleration by large-amplitude nonlinear waves:
Parametric study, J. Geophys. Res., 103 (A10), 23677, 1998.

Ofman, L., Chromospheric Leakage of Alfvén Waves in Coronal Loops, The Astrophy. J.,
568 (2), L135, 2002.

Omidi, N.; Winske, D., Kinetic structure of slow shocks - Effects of the electromagnetic
ion/ion cyclotron instability, J. Geophys. Res., 97 (A10), 14,801, 1992.

Osterbrock, Donald E., The Heating of the Solar Chromosphere, Plages, and Corona
by Magnetohydrodynamic Waves, The Astrophy. J., 134, 347, 1961.
Parker, E. N., The phase mixing of Alfven waves, coordinated modes, and coronal heating,
The Astrophy. J., Part 1, 376, 355, 1991.

Petschek, H. E., The Physics of Solar Flares, Proceedings of the AAS-NASA,
Greenbelt, MD. Edited by Wilmot N. Hess. Washington, DC: National
Aeronautics and Space Administration, Science and Technical Information
Division, 425, 1964.

Roberts, B., Wave propagation in a magnetically structured atmosphere. I – Surface waves
at a magnetic interface, Solar Phy., 69, 27, 1981.

Roberts, B., In Advances in Solar System Magnetohydrodynamics, eds. E. R.
Priest and A. W. Hood, Cambridge University Press, 1991.

Phan, T. D.; Gosling, J. T.; Davis, M. S.; Skoug, R. M.; Øieroset, M.; Lin, R.
P.; Lepping, R. P.; McComas, D. J.; Smith, C. W.; Reme, H.; Balogh A.; ,
A magnetic x-line extending more than 390 Earth radii in the solar wind, Nature, 439,
175, 2006.

Piddington, J. H., Electromagnetic field equations for a moving medium with Hall
conductivity, Mon. Not. Roy. Astron. Soc., 114, 638, 1954.

Piddington, J. H., The motion of ionized gas in combined magnetic, electric and
mechanical fields of force, Mon. Not. Roy. Astron. Soc., 114, 651, 1954.

Piddington, J. H., Solar atmospheric heating by hydromagnetic waves, Mon. Not. Roy.
Astron. Soc., 116, 314, 1956.

Piddington, J. H., Some effects of hydromagnetic waves in the solar atmosphere,
Electromagnetic phenomena in cosmical phys. (Ed. B. Lehnert, Camb. Uni. Press),
141, 1958.

Pinto, C.; Verdini, A.; Galli, D.; Velli, M., Reflection and dissipation of Alfvén waves in
interstellar clouds, A & A, 544, A66, 2012.

Saito, Y., T. Mukai, T. Terasawa, A. Nishida, S. Machida, M. Hirahara, K. Maezawa,
S. Kokubun, and T. Yamamoto, Slow-mode shocks in the magnetotail, J. Geophys.
Res., 100 (23), 567, 1995.

Saito, Y., T. Mukai, and T. Terasawa, Kinetic structure of the slow-mode shocks in the
Earth’s magnetotail, in New Perspectives on the Earth’s Magnetotail, edited by
A. Nishida, D. N. Baker, and S.W. Cowley, Geophys. Monogr. Ser., 105, 103, 1998.

Seon, J., L. A. Frank, W. R. Paterson, J. D. Scudder, F. V. Coroniti, S. Kokubun, and
T. Yamamoto, Observations of a slow-mode shock at the lobe-plasma sheet boundary
in Earth’s distant magnetotail, Geophys. Res. Lett., 22, 2981, 1995.

Smith, E. J., J. A. Slavin, B. T. Tsurutani, W. C. Feldman, and S. J. Bame, Slow mode
shocks in the Earth’s magnetotail: ISEE-3, Geophys. Res. Lett., 11, 1054, 1984.

Soler, R.; Oliver, R.; Ballester, J. L., Resonantly Damped Kink Magnetohydrodynamic
Waves in a Partially Ionized Filament Thread, The Astrophy. J., 707 (1), 662, 2009.

Soler, R.; Oliver, R.; Ballester, J. L., Magnetohydrodynamic Waves in a Partially Ionized
Filament Thread, The Astrophy. J., 699 (2), 1553, 2009.

Soler, R.; Oliver, R.; Ballester, J. L., Time damping of non-adiabaticmagnetohydrodynamic
waves in a partially ionized prominence plasma: effect of helium, A & A, 512, A28,
2010.

Sterling, A. C.; Hollweg, J. V., Alfvénic resonances on solar spicules, The Astrophy. J.,
Part 1, 285, 843, 1984.

Suzuki, M.; Sakai, J. I., Nonlinear Alfven Waves Associated with Filament Currents in
Weakly Ionized Plasmas, The Astrophy. J., 465, 393, 1996.

Swanson, D. G., Plasma waves, 434, ISBN 0-12-678955-X, 1989.

Swift, D. W., A two-dimensional simulation of the interaction of the plasma sheet with the
lobes of the earth's magnetotail, J. Geophys. Res., 88, 125, 1983.

Swift, D. W., On the structure of the magnetic slow switch-off shock, J. Geophys. Res.,
88, 5685, 1983.

Swift, D. W. and Lee, L. C., Rotational discontinuities and the structure of the
magnetopause, J. Geophys. Res., 88, 111, 1983.

Tsai, C. L.; Lee, L. C.; Wu, B. H., Effects of a guide field on the evolution of a current
sheet, Phys. Plasmas, 13 (10), 102902, 2006.

Tsai, C. L., Chen, H. H., Wu, B. H. and Lee, L. C., Structure of fast shocks in the presence
of heat conduction, Phys. Plasmas, 14 (12), 122903, 2007.

Tsiklauri, D.; Nakariakov, V. M., Wide-spectrum slow magnetoacoustic waves in coronal
loops, A. & A., 379, 1106, 2001.

Tsurutani, B. T., Slavin, J. A., Smith, E. J., Jones, D. E. and Sibeck, D. G., Plasma sheet
magnetic fields in the distant tail, Geophys. Res. Lett., 11, 1062, 1984.

Uberoi, C. & Datta, A., Ion–neutral collision effects on Alfvén surface waves, Phys.
Plasmas, 5, 4149, 1998.

Vranjes, J.; Poedts, S.; Pandey, B. P.; De Pontieu, B., Energy flux of Alfvén waves in
weakly ionized plasma, A. & A., 478 (2), 553, 2008.

Wentzel, Donat G., Magnetohydrodynamic wave conversion and solar-wind acceleration
in coronal holes, The Astrophy. J., Part 1, 336, 1073, 1989.

Whang, Y. C., J. Zhou, R. P. Lepping, and K. W. Ogilvie, Interplanetary slow shock
observed from Wind, Geophys. Res. Lett., 23 (10), 1239, 1996.

Whang, Y. C., Fairfield, D., Smith, E. J., Lepping, R. P., Kokubun, S. and Saito, Y.,
Observations of double discontinuities in the magnetotail, Geophys. Res. Lett.,
24 (24), 3153. 1997.

Whang, Y. C., Zhou, J., Lepping, R. P., Szabo, A., Fairfield, D., Kokubun, S.,
Ogilvie, K. W. and Fitzenreiter, R., Double discontinuity: A compound structure of
slow shock and rotational discontinuity, J. Geophys. Res., 103 (A4), 6513, 1998.

Whang, Y. C., Fairfield, D., Lepping, R. P., Mukai, T., Saito, Y., Slavin, J. and Szabo,
Double discontinuities at the magnetotail plasma sheet-lobe boundary, Ann. Geophys.,
19 (9), 1095, 2001.

Winske, D.; Stover, E. K.; Gary, S. P., The structure and evolution of slow mode shocks,
J. Geophys. Res., 12, 295, 1985.

Wu, B. H., and L. C. Lee, Hall effects on the Walén relation in rotational discontinuities
and Alfven waves, J. Geophys. Res., 105, 18377, 2000.

Yong, S.; Lee, L. C., Structure of the reconnection layer at the dayside magnetopause,
P & S S, 38 (3), 437, 1990.

Zaqarashvili, T. V.; Khodachenko, M. L.; Rucker, H. O., Magnetohydrodynamic waves
in solar partially ionized plasmas: two-fluid approach, A & A, 529, A82, 2011.

Zaqarashvili, T. V.; Khodachenko, M. L.; Rucker, H. O., Damping of Alfvén waves in solar
partially ionized plasmas: effect of neutral helium in multi-fluid approach, A & A,
534, A93, 2011.

Zuo, P. B. and Feng, X. S., The Plasma and Magnetic Field Characteristics of a Double
Discontinuity in Interplanetary Space, Sol. Phys., 240 (2), 347, 2007.

Zweibel, Ellen G., Magnetic reconnection in partially ionized gases, The Astrophy. J.,
Part 1, 340, 550, 1989.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2013-02-28起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2013-02-28起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw