進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0401201816444300
論文名稱(中文) 以機器視覺檢測微米週期結構缺陷之系統開發
論文名稱(英文) Development of periodic microstructure defects detection system using machine vision
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 106
學期 1
出版年 106
研究生(中文) 黃庭軒
研究生(英文) Ting-Xuan Huang
學號 N16041406
學位類別 碩士
語文別 中文
論文頁數 69頁
口試委員 指導教授-陳玉彬
口試委員-林昌進
口試委員-藍兆杰
口試委員-程子桓
中文關鍵字 微米結構  機器視覺  超解析技術  週期量測  缺陷檢測 
英文關鍵字 periodic microstructure  machine vision  super-resolution  defect detection 
學科別分類
中文摘要 當入射光之波長與微米週期結構尺寸相近,入射光會與表面結構產生交互作用而產生繞射。此項特性使微米週期結構可應用在許多光學與熱輻射元件,如:單光儀、中紅外光感測器、彩色濾波片等。製造出來的微米週期結構必需檢測是否有缺陷,並確認是否與原先設計之規格相符,因此建立了以機器視覺檢測微米結構週期的系統。本研究以雙雷射光源(波長 532 nm 與 650 nm)照射樣本,CCD 攝影機拍攝反射光斑,以超解析技術提升反射光斑影像的空間解析度,藉此提升機器視覺判斷的準確性,再利用機器視覺判讀:(一) 表面週期結構是否有缺陷;(二) 繞射方向,再藉由光柵方程式計算表面週期結構之週期。透過量測標準樣本,缺陷檢測準確率達 80 %,計算週期的誤差在 10 % 內。
英文摘要 When the wavelength of the incident light is close to the linewidth of the periodic microstructures, the incident light interacts with the surface structure and generate diffraction. This feature allows the periodic microstructures to be used in many optical and thermal radiation components, such as monochromator, mid-infrared light sensors, color filters and so on. The fabricated microstructures must be tested for defects and verified to be consistent with the design specifications, thus developing a system that uses machine vision to detect defects of microstructure and acquire period of microstructure. In this study, a dual laser source (wavelength 532 nm and 650 nm) is used to illuminate the sample. The CCD camera picks up the reflected light spot. System uses super-resolution technique to improve the spatial resolution of the reflected light spot image, so as to improve the accuracy of system. By means of machine vision, the following objectives can be done: (a) check if the surface periodic structure is flawed; (b) diffraction direction, and then acquire period of periodic microstructures. Through measuring the standard sample, the accuracy of defect detection is 80%, and the error of acquired period is within 10%.
論文目次 摘要 i
Abstract ii
目錄 vii
表目錄 ix
圖目錄 x
符號表 xiii
第一章  緒論 1
1.1 研究背景 1
1.2 研究動機 5
1.3 研究目標 6
第二章  光學檢測 7
2.1 週期量測 7
2.2 機器視覺 10
2.2.1 超解析技術 11
2.2.2 缺陷檢測 26
第三章  系統架構 30
3.1 架構 32
3.1.1 程式介面 32
3.1.2 固定雷射控制系統 38
3.1.3 可動雷射控制系統 39
3.1.4 樣本平台與支撐座 42
3.1.5 影像擷取系統 44
3.1.6 電控系統 45
3.2 馬達歸零校正 46
3.3 訂定週期敏感度 48
第四章  結果與討論 52
4.1 缺陷檢測 54
4.2 週期量測 55
第五章  結論與未來工作 63
5.1 結論 63
5.2 未來工作 65
參考文獻 66
參考文獻 [1] E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, and C. M. Soukoulis, "Electromagnetic waves: Negative refraction by photonic crystals," Nature, vol. 423, pp. 604-605, 2003.
[2] N. Stefanou, V. Karathanos, and A. Modinos, "Scattering of electromagnetic waves by periodic structures," Journal of Physics: Condensed Matter, vol. 4, p. 7389, 1992.
[3] Z. Zhang and S. Satpathy, "Electromagnetic wave propagation in periodic structures: Bloch wave solution of Maxwell's equations," Phys Rev Lett, vol. 65, no. 21, pp. 2650-2653, Nov 19 1990.
[4] H. Sagberg et al., "Micromechanical Gratings for Visible and Near-Infrared Spectroscopy," IEEE Journal of Selected Topics in Quantum Electronics, vol. 10, no. 604-613, 2004.
[5] M. Hettrick, "A Single-Element Plane Grating Monochromator," Photonics, vol. 3, no. 1, p. 3, 2016.
[6] Y. Kanamori, M. Shimono, and K. Hane, "Fabrication of Transmission Color Filters Using Silicon Subwavelength Gratings on Quartz Substrates," IEEE Photonics Technology Letters, vol. 18, no. 20, pp. 2126-2128, 2006.
[7] H. H. Lin, C. H. Lee, and M. H. Lu, "Dye-less color filter fabricated by roll-to-roll imprinting for liquid crystal display applications," Optics Express, vol. 17, no. 15, pp. 12397-12406, 2009.
[8] Y. T. Yoon, H. S. Lee, S. S. Lee, S. H. Kim, J. D. Park, and K. D. Lee, "Color filter incorporating a subwavelength patterned grating in poly silicon," Optics Express, vol. 16, no. 4, pp. 2374-2380, 2008.
[9] M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, "Diffraction gratings and buried nano-electrodes—architectures for organic solar cells," Thin Solid Films, vol. 451-452, pp. 619-623, 2004.
[10] Y. M. Song, J. S. Yu, and Y. T. Lee, "Antireflective submicrometer gratings on thin-film silicon solar cells for light-absorption enhancement," Optics Letters, vol. 35, no. 3, pp. 276-278, 2010.
[11] K. Wang et al., "Direct Growth of Highly Mismatched Type II ZnO/ZnSe Core/Shell Nanowire Arrays on Transparent Conducting Oxide Substrates for Solar Cell Applications," Advanced Materials, vol. 20, no. 17, pp. 3248-3253, 2008.
[12] J. G. Mutitu et al., "Thin film silicon solar cell design based on photonic crystal and diffractive grating structures," Optics Express, vol. 16, no. 19, pp. 15238-15248, 2008.
[13] E. Hecht, Optics. Addison-Wesley, 2002.
[14] A. J. Haes, C. L. Haynes, A. D. McFarland, G. C. Schatz, R. P. Van Duyne, and S. Zou, "Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy," MRS Bulletin, vol. 30, no. 05, pp. 368-375, 2011.
[15] C. L. Haynes et al., "Nanoparticle Optics:  The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arrays," The Journey of Physical Chemistry B, vol. 107, pp. 7337–7342, 2003.
[16] E. Hutter and J. H. Fendler, "Exploitation of localized surface plasmon resonance," Advanced materials, vol. 16, no. 19, pp. 1685-1706, 2004.
[17] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, "The Optical Properties of Metal Nanoparticles:  The Influence of Size, Shape, and Dielectric Environment," The Journey of Physical Chemistry B, vol. 107, pp. 668-677, 2003.
[18] C. C. Liang, M. Y. Liao, W. Y. Chen, T. C. Cheng, W. H. Chang, and C. H. Lin, "Plasmonic metallic nanostructures by direct nanoimprinting of gold nanoparticles," Optics Express, vol. 19, no. 5, pp. 4768-4776, 2011.
[19] H. P. Paudel, M. F. Baroughi, and K. Bayat, "Plasmon resonance modes in two-dimensional arrays of metallic nanopillars," Journal of the Optical Society of America B, vol. 27, no. 9, pp. 1693-1697, 2010.
[20] Z. Sun, X. Zuo, and Q. Lin, "Plasmon-Induced Nearly Null Transmission of Light Through Gratings in Very Thin Metal Films," Plasmonics, vol. 5, no. 1, pp. 13-19, 2009.
[21] S. Xiao and N. A. Mortensen, "Surface-plasmon-polariton-induced suppressed transmission through ultrathin metal disk arrays," Optics Letters, vol. 36, no. 1, pp. 37-39, 2011.
[22] J. Zhang, L. Cai, W. Bai, and G. Song, "Hybrid waveguide-plasmon resonances in gold pillar arrays on top of a dielectric waveguide," Optics Letters, vol. 35, no. 20, pp. 3408-3410, 2010.
[23] L. P. Wang and Z. M. Zhang, "Phonon-mediated magnetic polaritons in the infrared region," Optical Express, vol. 19, pp. A126-A135, 2011.
[24] Z. Zhang, K. Park, and B. J. Lee, "Surface and magnetic polaritons on two-dimensional nanoslab-aligned multilayer structure," Optical Express, vol. 19, pp. 16375-16389, 2011.
[25] L. Wang and Z. Zhang, "Wavelength-selective and diffuse emitter enhanced by magnetic polaritons for thermophotovoltaics," Applied Physics Letters, vol. 100, p. 063902, 2012.
[26] B. Lee, Y. Chen, and Z. Zhang, "Transmission enhancement through nanoscale metallic slit arrays from the visible to mid-infrared," Journal of Computational and Theoretical Nanoscience, vol. 5, pp. 201-213, 2008.
[27] A. Hessel and A. A. Oliner, "A New Theory of Wood's Anomalies on Optical Gratings," Applied Optics, vol. 4, pp. 1275-1297, 1965.
[28] 章明, 自動化光學檢測. 台灣電路板協會, 2013.
[29] G. Shmalz, U. Glatte, and Ebenheit, "Physikalisches und Physiologishes Problem," Zeitschrift des Vereimes Deutscher Ingenieure, pp. 1461 - 1467, 1922.
[30] D. J. Whitehouse, Handbook of Surface and Nanometrology. CRC Press 2010.
[31] S. R. Brown and C. H. Scholz, "Closure of random elastic surfaces in contact," Journal of Geophysical Research: Solid Earth, vol. 90, no. B7, pp. 5531-5545, 1985.
[32] D. McMullan, "Scanning electron microscopy 1928 – 1965," Scanning, vol. 17, no. 3, pp. 133 - 195, 1995.
[33] O. C. Wells, "The Construction of a Scanning Electron Microscope and Its Application to the Study of Fibers," 1957.
[34] S. W. Paddock and K. W. Eliceiri, Laser Scanning Confocal Microscopy: History, Applications, and Related Optical Sectioning Techniques. Springer, 2013.
[35] J. G. White, W. B. Amos, and M. Fordham, "An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy," Journal of ceil biology, vol. 105, no. 1, pp. 41 - 48, 1987.
[36] W. Osten, Optical Inspection of Microsystems. CRC Press, 2006.
[37] J. H. Bruning, D. R. Herriott, J. E. Gallagher, D. P. Rosenfeld, A. D. White, and D. J. Brangaccio, "Digital Wavefront Measuring Interferometer for Testing Optical Surfaces and Lenses," Applied Optics, vol. 13, no. 11, pp. 2693 - 2704, 1974.
[38] K. G. Larkin, "Efficient nonlinear algorithm for envelope detection in white light interferometry," Journal of the Optical Society of America A, vol. 13, no. 4, pp. 832 - 843, 1996.
[39] 小坂研究所, 輪廓形狀測定機. Available: http://www.kosakalab.co.jp/common/pdf/ef550g18_g18d.pdf.
[40] 國家衛生研究院核心儀器設施中心, 共軛焦顯微鏡簡介. Available: http://core.nhri.org.tw/webcore/webcont!Cont.action?news_id=201102211298256389949&lab_id=opticalcore.
[41] ITRI, 場發射掃描式電子顯微鏡 Available: www.itrc.narl.org.tw/Research/Nano/instrument/sem/sem.htm.
[42] KEYENCE, 白光干涉儀 Available: https://www.keyence.com.tw/ss/products/microscope/roughness/equipment/surface_03.jsp.
[43] KEYENCE, 量測表面粗糙度的機器. Available: https://www.keyence.com.tw/ss/products/microscope/roughness/equipment/surface_00.jsp.
[44] R. Szeliski, Computer Vision: Algorithms and Applications. Springer, 2011.
[45] A. H. Slocum, Precision Machine Design. Society of Manufacturing, 1992.
[46] X. F. Wan and Y. Yang, "Super-resolution image reconstruction," International Conference on Computer Application and System Modeling, 2010.
[47] P. Milanfar, Super-Resolution Imaging. CRC Press, 2010.
[48] N. Joshi, R. Szeliski, and D. J. Kriegman, "PSF estimation using sharp edge prediction," 2008 IEEE Conference on Computer Vision and Pattern Recognition 2008.
[49] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Pearson, 2007.
[50] D. Villiers, P. Johan, F. W. Leuschner, and R. Geldenhuys, "Centi-pixel accurate real-time inverse distortion correction," PROCEEDINGS OF SPIE, 2008.
[51] G. Bradski and A. Kaehler, Learning OpenCV: Computer Vision with the OpenCV Library. O'Reilly Media, 2008.
[52] C. Liu, W. T. Freeman, R. Szeliski, and S. B. Kang, "Noise Estimation from a Single Image," 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2006.
[53] S. S. Rao, Engineering Optimization: Theory and Practice. Wiley, 2009.
[54] W. H. Richardson, "Bayesian-based iterative method of image restoration," Journal of the Optical Society of America B, vol. 62, no. 1, pp. 55-59, 1972.
[55] ICPDAS, PISO-PS600 軟體手冊. 2011. Available: http://www.icpdas.com.tw/root/product/solutions/machine_automation/download%20data/PS600/PISO-PS600_Function_Reference_1.3TC.pdf.
[56] TexasInstruments, LM317 3-Terminal Adjustable Regulator. 2016. Available: http://www.ti.com/lit/ds/symlink/lm317.pdf.
[57] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2011.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw