進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0309202016521400
論文名稱(中文) 肌少症風險對女性高齡者功能性體適能與敏捷能力之影響
論文名稱(英文) The Influence of Senior Functional Fitness and Agility Ability on Different Risk of Sarcopenia Female Older Adults
校院名稱 成功大學
系所名稱(中) 體育健康與休閒研究所
系所名稱(英) Institute of Physical Education, Health & Leisure Studies
學年度 108
學期 2
出版年 109
研究生(中文) 蔡鈞凱
研究生(英文) Chun-Kai Tsai
學號 RB6071016
學位類別 碩士
語文別 中文
論文頁數 96頁
口試委員 指導教授-林麗娟
口試委員-郭乃文
口試委員-楊宜青
中文關鍵字 肌肉質量  肌力  走路速度  反應時間  平衡 
英文關鍵字 muscle mass  mass strength  walking speed  reaction time  balance 
學科別分類
中文摘要 目的:探討不同肌少症風險對女性高齡者功能性體適能與敏捷能力之關係與影響。
方法:本研究招募114位台南市社區65歲以上女性高齡者,經篩檢後有98位參與本研究(平均年齡:74.38±6.95歲、平均BMI:23.28±3.98kg/m2),以更新版亞洲肌少症指標切點(SMI、握力、行走速度),依研究主題分為二部分作為不同肌少症風險之分組依據,分別是(1)肌少與功能分組: 無肌少症風險組(NRG)28人、低風險低功能性組(LRF)18人、功能風險低肌肉質量低組(LRM)24人、肌少症高風險組(HRG)28人,(2) 肌少項目數分組:為肌少症無風險組(NR)29人、肌少症低風險組(LR)31人、肌少症中風險組(MR)22人、肌少症高風險組(HR)7人,並進行上肢肌耐力(三十秒手臂屈舉)、下肢肌耐力(三十秒椅子起站)、上肢柔軟度(抓背)、下肢柔軟度(椅子坐姿體前彎)、動態平衡(八呎立走)、靜態平衡(開眼單足立)、心肺耐力(兩分鐘踏步)、反應時間(全身反應時間、手眼反應時間)、平衡能力測驗(Biosway index)。單因子共變數分析(One-way ANCOVA),BMI、年齡為共變量,檢定不同風險組間功能性體適能與敏捷能力之差異;皮爾森積差相關則檢定肌肉質量與各依變項間相關;以逐步迴歸分析探討功能性體適能對肌少症各項篩選指標之影響因子。
結果:(1)在合併考量肌力功能分組部分:SMI與握力、三十秒手臂屈舉、閉眼硬地呈正相關(p<.05),與抓背、椅子坐姿體前彎、開眼單足立呈負相關(p<.05),上肢肌肉質量與握力、三十秒手臂屈舉、閉眼硬地呈正相關,與抓背呈負相關(p<.05),下肢肌肉量與握力呈正相關,與抓背呈負相關(p<.05)。NRG(23.65kg)握力顯著優於LRF(16.53kg)43%、LRM(22.22kg)6%與HR(15.56kg)52% (p<.05),LRM握力(22.22kg)顯著優於LRF(16.53kg)34%與HR(15.56kg)43% (p<.001),LRF握力(16.53kg)顯著優於HR(15.56kg)6% (p<.001)。NRG行走速度(1.79m/s)顯著優於LRF(1.31m/s)37%與HR(1.35m/s)33% (p<.05),LRM行走速度(1.67m/s)顯著優於HR(1.35m/s)24% (p<.001)。(2)在考慮肌少項目數分組: NR握力(23.45kg)皆優於LR(20.56kg)、MR(16.1kg)、HR(14.03kg)三組(p<.001),LR的握力也優於MR(16.1kg)與HR(14.03kg) (p<.001);在行走速度NR (1.77m/s)、LR(1.64m/s)和 MR(1.48m/s)顯著慢於HR(0.87m/s)(p<.05),在八呎立走部分:NR(6.23秒)、LR(5.95秒)與MR(5.93秒)顯著慢於HR(9.07秒) (p<.05),在兩分鐘踏步部分:NR(99.32次)、LR(100.13次)與MR(100.32次)顯著優於HR(59.00次) (p<.05),在閉眼軟墊部分:MR(2.67穩定指數)與HR(2.39穩定指數)在閉眼硬地皆優於NR(3.31穩定指數) (p<.05),在全身反應時間的部分: NR(529.32秒)、LR(435.20秒)和 MR(465.14秒)皆顯著優於HR(743.50秒)。在功能性體適能影響握力、SMI與行走速度的影響因子部份:握力有16.3%受到兩分鐘踏步、12秒起站、30秒起站的影響,行走速度有32.2%受到八呎立走、握力的影響,SMI有37.7%受到抓背、30秒手臂屈舉、握力的影響。
結論:女性高齡者上肢肌力、肌耐力的下降是增加肌少症風險程度的重要因素,並進一步影響到動靜態平衡與敏捷能力,但肌肉質量雖低但握力能維持,則功能性體適能不受影響,建議強化肌肉質量與上肢肌力是預防肌少症與維持身體功能的關鍵策略。
英文摘要 Purpose: The purpose of this study was to evaluate the influence of senior functional fitness and agility ability on the different risk of sarcopenia female older adults.
Methods: Ninety-eight community-dwelling female adults aged over 65 (age: 74.38±6.95yrs, BMI: 3.28±3.98kg/m2) were divided into two parts as a group by risks of sarcopenia according to different research topics using the SMI, handgrip, and gait speed cut-off point by Asian Working Group for Sarcopenia 2 (AWGS2). (1) sarcopenia combine functional risk: no risk group (NRG, n=28), low sarcopenia risk and low functional group (LRF, n=18), low functional risk, and low muscle mass group (LRM, n=24), and sarcopenia high-risk groups (HRG, n=28). (2) The number of sarcopenia items: no any risk group (NR, n=29), low sarcopenia risk (LR, n=31), medium sarcopenia risk (MR, n=22), sarcopenia high-risk groups (HR, n=28). Upper extremity muscle endurance (30-second arm curl , lower extremity muscle endurance (30-second chair stand ), upper extremity flexibility (back scratch), lower extremity flexibility (chair sit-and-reach), dynamic balance (8-foot up-and-go), static balance (single-leg stand ), cardiopulmonary fitness (two minutes step), reaction time (whole-body reaction, Vienna test system), balance ability (Biosway) were evaluated. One-way ANCOVA was used to determine differences between groups. Pearson’s product-moment correlation was used to determine the correlation between muscle mass, functional fitness, and agility ability. Stepwise regression was used to determine the factor of sarcopenia risk item.
Results: In part 1: SMI were significantly positive correlations with a handgrip, 30-second arm curl, and balance of lower extremity(p<.05). Handgrip, 30-second arm curl, and eyes closed firm surface had significant positive correlations with both SMI and upper extremity muscle mass. Handgrip was also had significant positive correlations with lower extremity muscle mass. The NRG group showed significantly better than LRF(43%), LRM(6%), and HRG(52%) groups in the handgrip. In the walking speed: The NRG (1.79m/s) is significantly lower than LRF (1.31m/s) 37% and HR (1.35m/s) 33% (p<.05). The speed of LRM (1.67m/s) is significantly slower than HR(1.35m/s)24% (p<.001). In part 2: In the dynamic balance part: NR (6.23 seconds), LR (5.95 seconds), and MR (5.93 seconds) are significantly better than HR (9.07 seconds) (p<.05).In the aerobic endurance: NR (99.32 times), LR ( 100.13 times), and MR (100.32 times) are significantly better than HR (59.00 times) (p<.05). In the closed eye standing on the cushion: MR (2.67 stability index) and HR (2.39 stability index) are better than NR (3.31 stability index) (p<.05).In the reaction time: NR (529.32 seconds), LR (435.20 seconds), and MR (465.14 seconds) are significantly faster than HR (743.50 seconds).Handgrip had 16.3% affected by two minutes step, 30-second chair stand and 12-second chair stand. Gait speed had 32.2% affected by 8-foot up-and-go and handgrip. SMI had 37.7% affected by back scratch, 30-second arm curl and handgrip.
Conclusions: The risk of sarcopenia will increase resulting from the muscle strength of the upper limbs decreased in female older adults. However, elderly people with low muscle mass will not affect their functional adaptability unless their grip strength is still low. It is recommended to consider the mechanism and extent of the interaction between muscle mass and body function for further.
論文目次 中文摘要 III
ABSTRACT V
謝誌 XI
目 錄 XII
表目錄 XV
圖目錄 XVII
第壹章 緒論 1
第一節 問題背景 1
第二節 研究目的 4
第三節 研究假設 4
第四節 名詞解釋 4
第五節 研究範圍與限制 7
第六節 研究重要性 7
第貳章 文獻探討 9
第一節 肌肉質量對高齡者健康之影響 9
第二節 功能性體適能對高齡者之影響 14
第三節 敏捷能力對高齡者之影響 15
第四節 結語 18
第參章 研究方法 19
第一節 研究對象 19
第二節 研究設計 20
第三節 實驗流程 25
第四節 研究工具 26
第五節 資料處理與統計分析 35
第肆章 研究結果 36
第一節 受試者基本資料 36
第二節 肌肉質量與功能性體適能及敏捷能力之相關性 39
第三節 不同肌少症風險間肌少症指標之差異 43
第四節 不同肌少症風險間功能性體適能之差異 51
第五節 不同肌少症風險間敏捷能力之差異 71
第六節 功能性體適能對肌少症篩選指標之影響 78
第伍章 討論 81
第一節 肌肉質量與功能性體適能及敏捷能力之相關性 81
第二節 肌肉質量與功能性體適能 82
第三節 肌肉質量與敏捷能力 85
第陸章 結論與建議 87
第一節 結論 87
第二節 建議 88
參考文獻 89
附錄 受試者同意書 94
參考文獻 林松彥, 楊榮森, 林高田, 何承融, 呂衍謀, 黃炫迪, . . . 陳崇桓. (2018). 骨折聯合照護服務在髖部骨折病人成功經驗: 有效的減少死亡率. 台灣醫學, 22(2), 168-173.
林家輝, 林晉利, & 錢桂玉. (2013). 對中高齡者身體功能有益之伸展課程要素. 大專體育(126), 44-52.
林泰祐, & 林麗娟. (2011). 阻力訓練對減緩老年人骨骼肌減少症的效益. 中華體育季刊, 25(1), 10-21.
唐美蓮. (2008). 預防老人跌倒居家環境改善之成本效益分析. 亞洲大學長期照護研究所學位論文, 1-111.
陳秀惠, 林品瑄, 楊尚育, & 李雅珍. (2017). 體能活動介入對社區高齡者功能性體適能之影響. 臺灣職能治療研究與實務雜誌, 13(2), 71-82.
魏大森. (2008). 老年人跌倒的篩檢與評估. 台灣老年醫學暨老年學雜誌, 3(2), 91-105.
Ahmed, N., Mandel, R., & Fain, M. J. (2007). Frailty: an emerging geriatric syndrome. The American journal of medicine, 120(9), 748-753.
Baechle, T., & Earle, R. (2004). NSCA's essentials of personal training: Human Kinetics.
Baumgartner, R. N., Koehler, K. M., Gallagher, D., Romero, L., Heymsfield, S. B., Ross, R. R., . . . Lindeman, R. D. (1998). Epidemiology of sarcopenia among the elderly in New Mexico. American journal of epidemiology, 147(8), 755-763.
Bell, R., & Hoshizaki, T. (1981). Relationships of age and sex with range of motion of seventeen joint actions in humans. Canadian journal of applied sport sciences. Journal canadien des sciences appliquees au sport, 6(4), 202-206.
Biodex Medical Systems, I. J. r. p. (2009). Biosway portable balance system operation manual.
Bird, M.-L., Hill, K., Ball, M., & Williams, A. D. J. J. o. a. (2009). Effects of resistance-and flexibility-exercise interventions on balance and related measures in older adults. Journal of aging physical activity, 17(4), 444-454.
Bottaro, M., Machado, S. N., Nogueira, W., Scales, R., & Veloso, J. (2007). Effect of high versus low-velocity resistance training on muscular fitness and functional performance in older men. European journal of applied physiology, 99(3), 257-264.
Burton, C. L., Strauss, E., Hultsch, D. F., & Hunter, M. A. (2009). The relationship between everyday problem solving and inconsistency in reaction time in older adults. Aging, Neuropsychology, Cognition, 16(5), 607-632.
Chen, K. C., Weng, C. Y., Hsiao, S., Tsao, W. L., & Koo, M. J. P. (2017). Cognitive decline and slower reaction time in elderly individuals with mild cognitive impairment. 17(6), 364-370.
Chen, L.-K., Liu, L.-K., Woo, J., Assantachai, P., Auyeung, T.-W., Bahyah, K. S., . . . Krairit, O. (2014). Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. American Medical Directors Association, 15(2), 95-101.
Chen, L.-K., Woo, J., Assantachai, P., Auyeung, T.-W., Chou, M.-Y., Iijima, K., . . . Kim, S. J. J. o. t. A. M. D. A. (2020). Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. 21(3), 300-307. e302.
Chien, M. Y., Huang, T. Y., & Wu, Y. T. (2008). Prevalence of sarcopenia estimated using a bioelectrical impedance analysis prediction equation in community‐dwelling elderly people in Taiwan. American Geriatrics Society, 56(9), 1710-1715.
Chipchase, S., Lincoln, N., & Radford, K. (2003). Measuring fatigue in people with multiple sclerosis. Disability Rehabilitation, 25(14), 778-784.
Cruz-Jentoft, A. J., Baeyens, J. P., Bauer, J. M., Boirie, Y., Cederholm, T., Landi, F., . . . Schneider, S. M. (2010). Sarcopenia: European consensus on definition and diagnosisReport of the European Working Group on Sarcopenia in Older PeopleA. J. Cruz-Gentoft et al. Age Ageing, 39(4), 412-423.
Cruz-Jentoft, A. J., Bahat, G., Bauer, J., Boirie, Y., Bruyère, O., Cederholm, T., . . . ageing. (2018). Sarcopenia: revised European consensus on definition and diagnosis. 48(1), 16-31.
Donath, L., van Dieën, J., & Faude, O. (2016). Exercise-based fall prevention in the elderly: what about agility? Sports Medicine, 46(2), 143-149.
Eggermont, L. H., Gavett, B. E., Volkers, K. M., Blankevoort, C. G., Scherder, E. J., Jefferson, A. L., . . . Stern, R. A. (2010). Lower-extremity function in cognitively healthy aging, mild cognitive impairment, and Alzheimer's disease. Archives of physical medicine, 91(4), 584-588.
Fielding, R. A., Vellas, B., Evans, W. J., Bhasin, S., Morley, J. E., Newman, A. B., . . . Breuille, D. (2011). Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. American Medical Directors Association, 12(4), 249-256.
Gadelha, A. B., Neri, S. G. R., Oliveira, R. J. d., Bottaro, M., David, A. C. d., Vainshelboim, B., & Lima, R. M. J. E. a. r. (2018). Severity of sarcopenia is associated with postural balance and risk of falls in community-dwelling older women. 44(3), 258-269.
Grimby, G., & Saltin, B. (1983). The ageing muscle. The journal of Clinical physiology, 3(3), 209-218.
Han, D.-S., Chang, K.-V., Li, C.-M., Lin, Y.-H., Kao, T.-W., Tsai, K.-S., . . . Yang, W.-S. J. S. r. (2016). Skeletal muscle mass adjusted by height correlated better with muscular functions than that adjusted by body weight in defining sarcopenia. 6, 19457.
Hawkins, S. A., & Wiswell, R. A. (2003). Rate and mechanism of maximal oxygen consumption decline with aging. Sports medicine, 33(12), 877-888.
Iannuzzi-Sucich, M., Prestwood, K. M., & Kenny, A. M. (2002). Prevalence of sarcopenia and predictors of skeletal muscle mass in healthy, older men and women. The Journals of Gerontology Series A: Biological Sciences Medical Sciences, 57(12), M772-M777.
Ishii, S., Tanaka, T., Shibasaki, K., Ouchi, Y., Kikutani, T., Higashiguchi, T., . . . international, g. (2014). Development of a simple screening test for sarcopenia in older adults. 14, 93-101.
Janssen, I., Heymsfield, S. B., & Ross, R. (2002). Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairment and physical disability. Journal of the American Geriatrics Society, 50(5), 889-896.
Kostić, R., Uzunović, S., Pantelić, S., & Đurašković, R. (2011). A comparative analysis of the indicators of the functional fitness of the elderly. Facta universitatis-series: physical education sport
9(2), 161-171.
Landi, F., Cruz-Jentoft, A. J., Liperoti, R., Russo, A., Giovannini, S., Tosato, M., . . . Onder, G. (2013). Sarcopenia and mortality risk in frail older persons aged 80 years and older: results from ilSIRENTE study. Age Ageing, 42(2), 203-209.
Lee, A., Lee, K.-W., & Khang, P. J. T. P. J. (2013). Preventing falls in the geriatric population. 17(4), 37.
Leveille, S. G., Bean, J., Bandeen‐Roche, K., Jones, R., Hochberg, M., & Guralnik, J. M. (2002). Musculoskeletal pain and risk for falls in older disabled women living in the community. The journal of American Geriatrics Society, 50(4), 671-678.
Marcell, T. J. (2003). Sarcopenia: causes, consequences, and preventions. The Journals of Gerontology Series A: Biological Sciences Medical Sciences, 58(10), M911-M916.
Melton, L. J., Khosla, S., Crowson, C. S., O'Connor, M. K., O'Fallon, W. M., & Riggs, B. L. (2000). Epidemiology of sarcopenia. The journal of American Geriatrics Society, 48(6), 625-630.
Menant, J., Weber, F., Lo, J., Sturnieks, D., Close, J., Sachdev, P., . . . Lord, S. J. O. I. (2017). Strength measures are better than muscle mass measures in predicting health-related outcomes in older people: time to abandon the term sarcopenia? , 28(1), 59-70.
Morley, J. E., Baumgartner, R. N., Roubenoff, R., Mayer, J., & Nair, K. S. (2001). Sarcopenia. Journal of Laboratory Clinical Medicine, 137(4), 231-243.
Nashner, L. M. (2014). Practical biomechanics and physiology of balance. Balance Function Assessment Management, 431.
Pedrero-Chamizo, R., Gomez-Cabello, A., Melendez, A., Vila-Maldonado, S., Espino, L., Gusi, N., . . . aging. (2015). Higher levels of physical fitness are associated with a reduced risk of suffering sarcopenic obesity and better perceived health among the elderly. The EXERNET multi-center study. 19(2), 211-217.
Pettersson, A., Olsson, E., & Wahlund, L.-O. (2005). Motor function in subjects with mild cognitive impairment and early Alzheimer’s disease. Dementia geriatric cognitive disorders, 19(5-6), 299-304.
Rikli, R. E., & Jones, C. J. (2013). Senior fitness test manual: Human Kinetics.
Rosenberg, I. H. (1997). Sarcopenia: origins and clinical relevance. The Journal of nutrition, 127(5), 990S-991S.
Sin, M. K., Choe, M. A., Kim, J., Chae, Y. R., Jeon, M. Y., & Vezeau, T. (2009). Comparison of body composition, handgrip strength, functional capacity, and physical activity in elderly Koreans and Korean immigrants. Research in gerontological nursing, 2(1), 20-29.
Sturnieks, D. L., St George, R., & Lord, S. R. (2008). Balance disorders in the elderly. Neurophysiologie Clinique/Clinical Neurophysiology, 38(6), 467-478.
Suttanon, P., Hill, K. D., Said, C. M., LoGiudice, D., Lautenschlager, N. T., & Dodd, K. J. (2012). Balance and mobility dysfunction and falls risk in older people with mild to moderate Alzheimer disease. American journal of physical medicine rehabilitation, 91(1), 12-23.
Tuch, D. S., Salat, D. H., Wisco, J. J., Zaleta, A. K., Hevelone, N. D., & Rosas, H. D. J. P. o. t. N. A. o. S. (2005). Choice reaction time performance correlates with diffusion anisotropy in white matter pathways supporting visuospatial attention. 102(34), 12212-12217.
Tuna, H. D., Edeer, A. O., Malkoc, M., & Aksakoglu, G. (2009). Effect of age and physical activity level on functional fitness in older adults. European review of aging physical activity, 6(2), 99.
Velazquez‐Alva, M. C., Irigoyen Camacho, M. E., Lazarevich, I., Delgadillo Velazquez, J., Acosta Dominguez, P., Zepeda Zepeda, M. A. J. G., & international, g. (2017). Comparison of the prevalence of sarcopenia using skeletal muscle mass index and calf circumference applying the E uropean consensus definition in elderly M exican women. 17(1), 161-170.
Wilmot, S., Alfonso, A., Velez, J., & Edeer, A. O. J. A. i. A. R. (2019). The Effect of Sensory Stimulation versus Motor Control Cueing of the Foot on Balance in Elderly Females: Single Group Pretest-Posttest Study. 8(06), 119.


論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-09-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-09-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw