進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0309201912123000
論文名稱(中文) 適用於區塊鏈為基智能製造之協同式排程方法研究
論文名稱(英文) Research on Collaborative Scheduling Method for Blockchain-based Smart Manufacturing
校院名稱 成功大學
系所名稱(中) 製造資訊與系統研究所
系所名稱(英) Institute of Manufacturing Information and Systems
學年度 107
學期 2
出版年 108
研究生(中文) 朱致成
研究生(英文) Zhi-Cheng Zhu
學號 p96061102
學位類別 碩士
語文別 中文
論文頁數 78頁
口試委員 指導教授-陳裕民
共同指導教授-陳宗義
口試委員-陳育仁
中文關鍵字 區塊鏈  智能合約  智能製造  彈性零工式排程問題  決策樹 
英文關鍵字 blockchain  smart contract  smart manufacturing  flexible job shop scheduling problem  decision tree 
學科別分類
中文摘要 資訊技術的進步與發展,使得智能製造(Smart Manufacturing)得以實現。在智能製造中,所有的生產單元如設備、廠區等,皆能夠針對所遭遇的情境進行快速、正確的決策,以完成任務。排程是生產的重要活動之一,其任務是針對現有的資源,進行最佳的工作分派、製造資源分配、工作順序安排。由於傳統生產排程已無法滿足智能製造快速回應以及各級加工製造單元之自主性與協同合作性的需求,發展適用於智能製造之排程方法,已刻不容緩。而生產資料的保存、分享、正確與安全,在智能製造環境中至為重要,也是實務上待解決的問題。
針對適用於智能化生產之排程方法的需求,以及生產資料安全的問題,本研究分析智能製造之模式、參考區塊鏈技術,提出一以區塊鏈(Blockchain)為基適用於智能製造的協同式排程模式,透過智能機台之間相互溝通、協同來規劃排程。此模式包含協同式排程、協同式排程規則挖掘以及智能合約(Smart Contract)。
依此模式,首先運用決策樹(Decision Tree)分析方法,將歷史排程資料進行作業爭取規則與作業排序規則挖掘,並將規則寫入智能合約後部署上區塊鏈,以確保排程規則能夠安全無虞的被儲存與應用。在協同式排程中,機台針對生產需求,依自身之條件,選擇可以加工的作業。如遇多部機台有相同選擇時,則參考作業爭取規則,決定工作分派。當機台拿到各自的作業後,再參考作業排序規則,決定作業順序。本研究以實驗證明,所提之協同式排程方法能夠產出合理之排程,且能藉由不斷優化排程規則,達到累積經驗、優化排程的效果。
英文摘要 In smart manufacturing, all production units, such as equipment and plant areas, can make quick and correct decisions for the situations encountered to complete the task. Scheduling is one of the important activities of production. Its task is to carry out the best job assignment, manufacturing resource allocation and work order arrangement for existing resources. Since traditional production schedules have been unable to meet the rapid response of smart manufacturing and the autonomy and synergy of processing and manufacturing units at all levels, it is imperative to develop a scheduling method suitable for smart manufacturing. The preservation, sharing, correctness and safety of production data are of paramount importance in the smart manufacturing environment, and they are also issues to be solved in practice.
In view of the requirements for scheduling methods for smart production and the safety of production data, this study analyzes the mode of smart manufacturing and reference blockchain technology, and proposes a collaborative scheduling model based on blockchain for smart manufacturing, through the smart machine to communicate and coordinate with each other to plan the schedule. This model includes collaborative scheduling, collaborative scheduling rule mining, and smart contracts.
Using the decision tree to mine historical scheduling data, find operation competition rules and operation sequencing rules, the machine can coordinate, make decisions, and plan scheduling through these two rules, and write the two rules into the smart contract, the deploy blockchain to ensure the safety of the rules.
This study proves that the proposed collaborative scheduling method can produce a reasonable scheduling, and can continuously accumulate scheduling rules to achieve cumulative experience and optimize scheduling.
論文目次 摘要 I
誌謝 VI
目錄 VII
表目錄 IX
圖目錄 X
第1章 緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究目的 2
1.4 研究議題 2
1.5 研究項目 3
1.6 研究步驟 4
1.7 論文架構 8
第2章 文獻探討 9
2.1 工業4.0 9
2.1.1 巨量資料 10
2.1.2 智能製造 11
2.2 區塊鏈 13
2.2.1 以太坊 13
2.2.2 智能合約 14
2.3 生產排程與派工 14
2.3.1 彈性零工式排程 15
2.3.2 派工法則 15
2.4 資料探勘與決策樹 16
2.4.1 資料探勘 16
2.4.2 決策樹 17
2.5 類似之研究 19
第3章 區塊鏈為基智能製造架構 20
3.1 智能製造模式設計 20
3.1.1 智能製造特性 20
3.1.2 智能製造模式 20
3.2 區塊鏈為基智能製造架構設計 22
第4章 協同式排程模式 23
4.1 協同式排程概念架構設計 23
4.2 協同式排程模式設計 24
4.2.1 協同式排程方法 25
4.2.2 協同式排程規則挖掘方法 31
4.2.3 協同式智能合約 32
4.3 方法與技術開發 34
4.3.1 決策樹方法 34
4.3.2 智能合約技術 38
第5章 方法驗證 41
5.1 方法驗證 41
5.1.1 驗證流程 41
5.1.2 歷史排程生成 45
5.1.3 排程規則挖掘 46
5.1.4 智能合約部署 48
5.1.5 協同式排程 51
5.1.6 排程規則優化 54
5.1.7 優化結果比較 57
5.2 結果討論 68
第6章 結論與未來展望 70
6.1 結論 70
6.2 未來展望 70
參考文獻 72

參考文獻 Atzei, N., Bartoletti, M., & Cimoli, T. (2017, April). A survey of attacks on ethereum smart contracts (sok). In International Conference on Principles of Security and Trust (pp. 164-186). Springer, Berlin, Heidelberg.
Blackstone, J. H., Phillips, D. T., & Hogg, G. L. (1982). A state-of-the-art survey of dispatching rules for manufacturing job shop operations. The International Journal of Production Research, 20(1), 27-45.
Bonneau, J. (2016, February). EthIKS: Using Ethereum to audit a CONIKS key transparency log. In International Conference on Financial Cryptography and Data Security (pp. 95-105). Springer, Berlin, Heidelberg.
Branke, J., Nguyen, S., Pickardt, C. W., & Zhang, M. (2015). Automated design of production scheduling heuristics: A review. IEEE Transactions on Evolutionary Computation, 20(1), 110-124.
Buterin, V. (2014). A next-generation smart contract and decentralized application platform. white paper, 3, 37.
Cambridge Dictionary. (2019). Cambridge Dictionary-smart. In Cambridge Dictionary. Retrieved from https://dictionary.cambridge.org/us/dictionary/english-chinese-traditional/smart
Cao, Y., Deng, Y., Zhang, H., Huang, T., & Xu, B. (2000, June). Decision tree based Mandarin tone model and its application to speech recognition. In 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No. 00CH37100) (Vol. 3, pp. 1759-1762). IEEE.
Chen, C. P., & Zhang, C. Y. (2014). Data-intensive applications, challenges, techniques and technologies: A survey on Big Data. Information sciences, 275, 314-347.
Chen, M., Mao, S., & Liu, Y. (2014). Big data: A survey. Mobile networks and applications, 19(2), 171-209.
Chen, Z. (2009, December). Distributed collaborative production planning: Multi-agent system framework and coordination technology. In 2009 International Conference on Information Management, Innovation Management and Industrial Engineering (Vol. 3, pp. 619-624). IEEE.
Cheng, T. E., & Wang, G. (2000). Single machine scheduling with learning effect considerations. Annals of Operations Research, 98(1-4), 273-290.
Chong, C. S., Sivakumar, A. I., Low, M. Y. H., & Gay, K. L. (2006, December). A bee colony optimization algorithm to job shop scheduling. In Proceedings of the 38th conference on Winter simulation (pp. 1954-1961). Winter Simulation Conference.
Christidis, K., & Devetsikiotis, M. (2016). Blockchains and smart contracts for the internet of things. Ieee Access, 4, 2292-2303.
Dorri, A., Steger, M., Kanhere, S. S., & Jurdak, R. (2017). Blockchain: A distributed solution to automotive security and privacy. IEEE Communications Magazine, 55(12), 119-125.
Duflou, J. R., Sutherland, J. W., Dornfeld, D., Herrmann, C., Jeswiet, J., Kara, S., Hauschild, M., & Kellens, K. (2012). Towards energy and resource efficient manufacturing: A processes and systems approach. CIRP annals, 61(2), 587-609.
Gao, J., Sun, L., & Gen, M. (2008). A hybrid genetic and variable neighborhood descent algorithm for flexible job shop scheduling problems. Computers & Operations Research, 35(9), 2892-2907.
Giancaspro, M. (2017). Is a ‘smart contract’really a smart idea? Insights from a legal perspective. Computer law & security review, 33(6), 825-835.
Giret, A., Trentesaux, D., & Prabhu, V. (2015). Sustainability in manufacturing operations scheduling: A state of the art review. Journal of Manufacturing Systems, 37, 126-140.
Gorecky, D., Schmitt, M., Loskyll, M., & Zühlke, D. (2014, July). Human-machine-interaction in the industry 4.0 era. In 2014 12th IEEE international conference on industrial informatics (INDIN)(pp. 289-294). Ieee.
Gramoli, V. (2017). From blockchain consensus back to byzantine consensus. Future Generation Computer Systems.
Grishchenko, I., Maffei, M., & Schneidewind, C. (2018, April). A semantic framework for the security analysis of ethereum smart contracts. In International Conference on Principles of Security and Trust (pp. 243-269). Springer, Cham.
Gu, M., Li, X., & Cao, Y. (2014). Optical storage arrays: a perspective for future big data storage. Light: Science & Applications, 3(5), e177.
Harjunkoski, I., Maravelias, C. T., Bongers, P., Castro, P. M., Engell, S., Grossmann, I. E., Hooker, J., Méndez, C., Sand, G., & Wassick, J. (2014). Scope for industrial applications of production scheduling models and solution methods. Computers & Chemical Engineering, 62, 161-193.
He, Q. P., & Wang, J. (2018). Statistical process monitoring as a big data analytics tool for smart manufacturing. Journal of Process Control, 67, 35-43.
Jun Lee, S., & Siau, K. (2001). A review of data mining techniques. Industrial Management & Data Systems, 101(1), 41-46.
Kang, H. S., Lee, J. Y., Choi, S., Kim, H., Park, J. H., Son, J. Y., Kim, H. B., & Do Noh, S. (2016). Smart manufacturing: Past research, present findings, and future directions. International Journal of Precision Engineering and Manufacturing-Green Technology, 3(1), 111-128.
Koh, H. C., & Tan, G. (2011). Data mining applications in healthcare. Journal of healthcare information management, 19(2), 65.
Lee, J., Bagheri, B., & Kao, H. A. (2015). A cyber-physical systems architecture for industry 4.0-based manufacturing systems. Manufacturing letters, 3, 18-23.
Lee, J., Lapira, E., Bagheri, B., & Kao, H. A. (2013). Recent advances and trends in predictive manufacturing systems in big data environment. Manufacturing letters, 1(1), 38-41.
Li, Q., Jiang, H., Tang, Q., Chen, Y., Li, J., & Zhou, J. (2016, October). Smart manufacturing standardization: reference model and standards framework. In OTM Confederated International Conferences" On the Move to Meaningful Internet Systems" (pp. 16-25). Springer, Cham.
Li, X., Li, D., Wan, J., Vasilakos, A. V., Lai, C. F., & Wang, S. (2017). A review of industrial wireless networks in the context of industry 4.0. Wireless networks, 23(1), 23-41.
Li, X., & Olafsson, S. (2005). Discovering dispatching rules using data mining. Journal of Scheduling, 8(6), 515-527.
Li, Z., Barenji, A. V., & Huang, G. Q. (2018). Toward a blockchain cloud manufacturing system as a peer to peer distributed network platform. Robotics and Computer-Integrated Manufacturing, 54, 133-144.
Lin, H. W., Nagalingam, S. V., Kuik, S. S., & Murata, T. (2012). Design of a global decision support system for a manufacturing SME: towards participating in collaborative manufacturing. International Journal of Production Economics, 136(1), 1-12.
Lin, K., Shyu, J., & Ding, K. (2017). A cross-strait comparison of innovation policy under industry 4.0 and sustainability development transition. Sustainability, 9(5), 786.
Liu, D. R., & Shih, Y. Y. (2005). Integrating AHP and data mining for product recommendation based on customer lifetime value. Information & Management, 42(3), 387-400.
Lu, H. P., & Weng, C. I. (2018). Smart manufacturing technology, market maturity analysis and technology roadmap in the computer and electronic product manufacturing industry. Technological Forecasting and Social Change, 133, 85-94.
Meeriam-Webster. (2019). Meeriam-Webster-smart. In Meeriam-Webster. Retrieved from https://www.merriam-webster.com/dictionary/smart
Metan, G., Sabuncuoglu, I., & Pierreval, H. (2010). Real time selection of scheduling rules and knowledge extraction via dynamically controlled data mining. International Journal of Production Research, 48(23), 6909-6938.
Milutinovic, M., He, W., Wu, H., & Kanwal, M. (2016, December). Proof of luck: An efficient blockchain consensus protocol. In proceedings of the 1st Workshop on System Software for Trusted Execution (p. 2). ACM.
Mingxiao, D., Xiaofeng, M., Zhe, Z., Xiangwei, W., & Qijun, C. (2017, October). A review on consensus algorithm of blockchain. In 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 2567-2572). IEEE.
Mosheiov, G. (2001). Parallel machine scheduling with a learning effect. Journal of the Operational Research Society, 52(10), 1165-1169.
Pan, Q. K., Tasgetiren, M. F., Suganthan, P. N., & Chua, T. J. (2011). A discrete artificial bee colony algorithm for the lot-streaming flow shop scheduling problem. Information sciences, 181(12), 2455-2468.
Pezzella, F., Morganti, G., & Ciaschetti, G. (2008). A genetic algorithm for the flexible job-shop scheduling problem. Computers & Operations Research, 35(10), 3202-3212.
Qi, Q., & Tao, F. (2018). Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison. Ieee Access, 6, 3585-3593.
Qin, S. J. (2014). Process data analytics in the era of big data. AIChE Journal, 60(9), 3092-3100.
Oxford Dictionaries. (2019). Oxford Dictionaries-smart. In Oxford Dictionaries. Retrieved from https://www.lexico.com/en/definition/smart
Rossit, D. A., Tohmé, F., & Frutos, M. (2019). Industry 4.0: smart scheduling. International Journal of Production Research, 57(12), 3802-3813.
Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.
Selim, H., Araz, C., & Ozkarahan, I. (2008). Collaborative production–distribution planning in supply chain: a fuzzy goal programming approach. Transportation Research Part E: Logistics and Transportation Review, 44(3), 396-419.
Sha, D. Y., & Hsu, C. Y. (2006). A hybrid particle swarm optimization for job shop scheduling problem. Computers & Industrial Engineering, 51(4), 791-808.
Shaw, M. J., Subramaniam, C., Tan, G. W., & Welge, M. E. (2001). Knowledge management and data mining for marketing. Decision support systems, 31(1), 127-137.
Shen, W. (2002). Distributed manufacturing scheduling using intelligent agents. IEEE intelligent systems, 17(1), 88-94.
Shrouf, F., Ordieres, J., & Miragliotta, G. (2014, December). Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm. In 2014 IEEE international conference on industrial engineering and engineering management (pp. 697-701). IEEE.
Sikorski, J. J., Haughton, J., & Kraft, M. (2017). Blockchain technology in the chemical industry: Machine-to-machine electricity market. Applied Energy, 195, 234-246.
Soni, J., Ansari, U., Sharma, D., & Soni, S. (2011). Predictive data mining for medical diagnosis: An overview of heart disease prediction. International Journal of Computer Applications, 17(8), 43-48.
Szabo, N. (1997). Formalizing and securing relationships on public networks. First Monday, 2(9).
Tao, F., & Qi, Q. (2017). New IT driven service-oriented smart manufacturing: framework and characteristics. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(1), 81-91.
Tao, F., Qi, Q., Liu, A., & Kusiak, A. (2018). Data-driven smart manufacturing. Journal of Manufacturing Systems, 48, 157-169.
Tikhomirov, S. (2017, October). Ethereum: state of knowledge and research perspectives. In International Symposium on Foundations and Practice of Security (pp. 206-221). Springer, Cham.
Trotta, D., & Garengo, P. (2018, March). Industry 4.0 key research topics: A bibliometric review. In 2018 7th International Conference on Industrial Technology and Management (ICITM)(pp. 113-117). IEEE.
Turker, A. K., Aktepe, A., Inal, A. F., Ersoz, O. O., Das, G. S., & Birgoren, B. (2019). A Decision Support System for Dynamic Job-Shop Scheduling Using Real-Time Data with Simulation. Mathematics, 7(3), 278.
Vujičić, D., Jagodić, D., & Ranđić, S. (2018, March). Blockchain technology, bitcoin, and Ethereum: A brief overview. In 2018 17th International Symposium INFOTEH-JAHORINA (INFOTEH)(pp. 1-6). IEEE.
Wang, J., Ma, Y., Zhang, L., Gao, R. X., & Wu, D. (2018). Deep learning for smart manufacturing: Methods and applications. Journal of Manufacturing Systems, 48, 144-156.
Wang, J. L., & Chan, S. H. (2006). Stock market trading rule discovery using two-layer bias decision tree. Expert Systems with Applications, 30(4), 605-611.
Wang, S., Wan, J., Li, D., & Zhang, C. (2016). Implementing smart factory of industrie 4.0: an outlook. International Journal of Distributed Sensor Networks, 12(1), 3159805.
Wang, S., Wan, J., Zhang, D., Li, D., & Zhang, C. (2016). Towards smart factory for industry 4.0: a self-organized multi-agent system with big data based feedback and coordination. Computer Networks, 101, 158-168.
Wang, Z., Chen, C., Guo, B., Yu, Z., & Zhou, X. (2016). Internet plus in China. It Professional, 18(3), 5-8.
Wohrer, M., & Zdun, U. (2018, March). Smart contracts: security patterns in the ethereum ecosystem and solidity. In 2018 International Workshop on Blockchain Oriented Software Engineering (IWBOSE) (pp. 2-8). IEEE.
Wu, L., Yue, X., Jin, A., & Yen, D. C. (2016). Smart supply chain management: a review and implications for future research. The International Journal of Logistics Management, 27(2), 395-417.
Xu, X., Pautasso, C., Zhu, L., Gramoli, V., Ponomarev, A., Tran, A. B., & Chen, S. (2016, April). The blockchain as a software connector. In 2016 13th Working IEEE/IFIP Conference on Software Architecture (WICSA) (pp. 182-191). IEEE.
Yang, C. C., Prasher, S. O., Enright, P., Madramootoo, C., Burgess, M., Goel, P. K., & Callum, I. (2003). Application of decision tree technology for image classification using remote sensing data. Agricultural Systems, 76(3), 1101-1117.
YourDictionary. (2019). YourDictionary-smart. In YourDictionary. Retrieved from https://www.yourdictionary.com/smart
Zhang, J., Ding, G., Zou, Y., Qin, S., & Fu, J. (2019). Review of job shop scheduling research and its new perspectives under Industry 4.0. Journal of Intelligent Manufacturing, 30(4), 1809-1830.
Zhang, Y., Ren, S., Liu, Y., & Si, S. (2017). A big data analytics architecture for cleaner manufacturing and maintenance processes of complex products. Journal of Cleaner Production, 142, 626-641.
Zheng, P., Wang, H., Sang, Z., Zhong, R. Y., Liu, Y., Liu, C., Mubarok, K., Yu, S., & Xu, X. (2018). Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and future perspectives. Frontiers of Mechanical Engineering, 13(2), 137-150.
Zheng, Z., Xie, S., Dai, H., Chen, X., & Wang, H. (2017, June). An overview of blockchain technology: Architecture, consensus, and future trends. In 2017 IEEE International Congress on Big Data (BigData Congress) (pp. 557-564). IEEE.
Zhong, R. Y., Huang, G. Q., Dai, Q. Y., & Zhang, T. (2014). Mining SOTs and dispatching rules from RFID-enabled real-time shopfloor production data. Journal of Intelligent Manufacturing, 25(4), 825-843.
Zhong, R. Y., Xu, X., Klotz, E., & Newman, S. T. (2017). Intelligent manufacturing in the context of industry 4.0: a review. Engineering, 3(5), 616-630.
Zhou, K., Liu, T., & Zhou, L. (2015, August). Industry 4.0: Towards future industrial opportunities and challenges. In 2015 12th International conference on fuzzy systems and knowledge discovery (FSKD) (pp. 2147-2152). IEEE.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-01-09起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-01-09起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw