進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0309201816575100
論文名稱(中文) 智能化新產品開發專案管理之資料分析架構研究
論文名稱(英文) On Data Analytics Framework of Smart-Project Management for Product Development
校院名稱 成功大學
系所名稱(中) 工程管理碩士在職專班
系所名稱(英) Institute of Engineering Management (on the job class)
學年度 106
學期 2
出版年 107
研究生(中文) 張瓊文
研究生(英文) Chiung-Wen Chang
電子信箱 N07041067@mail.ncku.edu.tw
學號 N07041067
學位類別 碩士
語文別 中文
論文頁數 115頁
口試委員 指導教授-陳裕民
共同指導教授-陳宗義
口試委員-陳育仁
中文關鍵字 新產品開發  專案管理  資料科學  智慧/智能  資料分析架構  導入方法論  資料探勘 
英文關鍵字 New Product Development  Project Management  Data Science  Smart  Data Analytics Framework  Implementation Methodology  Data Mining 
學科別分類
中文摘要 科技進步讓商品多樣化與複雜化,消費者也因選擇眾多,對產品的喜好善變,要求也日新月異。為了掌握市場,企業必須不斷地開發新產品,以滿足消費者不斷變化與提高的需求。因此「新產品開發」成為企業的關鍵活動,也是創造企業價值與提升競爭優勢的重要策略。新產品開發是一種多工且複雜的技術應用程序,其過程繁瑣、影響因素眾多,因此成功的比例不高。有效的新產品開發需要一套系統化的程序、適當的方法與技術,以及有效的管理。
自從電腦、網路、社群媒體、雲端、物聯等技術的蓬勃發展,數據的大量增加,人工智慧日趨成熟,也讓資料科學受到極大重視,並被廣泛應用在許多領域。隨著資料科學與人工智慧的興起,使得系統「智能化」之理想已能逐漸實現。新產品開發屬於動態的過程,是一種系統工程的程序,倘若能將資料科學的方法與技術整合於專案管理中,將使新產品開發專案管理智能化。
本研究主要目的在運用資料科學與人工智慧之概念、方法與技術,設計「智能化新產品開發專案管理模型」,依此規劃設計「智能化新產品開發專案管理之資料分析架構」以及相關之「分析方法」,並以一企業實例驗證本研究所提之模型與分析架構之有效性。本研究所提之方法將提高企業新產品開發之績效,進而提昇公司之競爭力。
英文摘要 Due to the advancement of technology, consumers' interests and needs for products are constantly changing. In order to obtain the market, enterprise must constantly develop new products to meet the changing and increasing needs of consumers. Therefore, New Product Development (NPD) is an important key activity of the enterprise and one of the strategies to create enterprise value and enhance competitive advantage. New product development is a multiplexed and complex technical application. The proportion of successful products is not high. Effective new product development requires a systematic process, appropriate methods and techniques, and effective management.
As technologies such as computers, networks, socializing platform, and the IoT flourish, data-centric activities combine data science to maximize data value and create new knowledge value. With the big data, the artificial intelligent has become more and more mature, which has The rise of data science and AI has made the ideal of "smart" system gradually realized. New product development is a dynamic process and a system engineering producure. If we Can integrate data science methods and technologies into project management, we will make project management smart.
The research uses data science concepts, methods, and techniques to design of "Smart-Project Management for Product Development Model", according to this model design and planning "Data Analytics Framework for Project Management" and "Analytics Method", using case to verify the analysis of the architecture and model is effective.
This research will improve the performance of new product development, and thus enhance the company's competitiveness.
論文目次 摘要 i
致謝 vi
目錄 vii
表目錄 x
圖目錄 xi
第一章 緒論 1
1.1研究背景 1
1.2研究動機 2
1.3研究目的 2
1.4研究項目與方法 3
1.5問題分析 4
1.6研究步驟 4
1.7論文架構 6
第二章 文獻探討 8
2.1應用領域 8
2.1.1新產品開發 8
2.1.2專案管理 13
2.1.3績效管理 15
2.2應用技術 17
2.2.1資料科學 17
2.2.2人工智慧 23
2.3類似研究 25
第三章 智能化新產品開發專案管理模型設計 29
3.1智能定義 29
3.2智能化專案管理功能架構 29
3.3資料科學於專案管理應用之概念模型 31
3.4智能化專案管理資料分析架構與循環模式 34
第四章 資料分析方法設計 37
4.1分析項目 37
4.2分析方法 39
第五章 智能化產品開發專案管理導入方法 49
5.1導入方法概述 49
5.2專案瞭解嘗試 51
5.3資料擷取與剖析 53
5.4資料收集與準備 54
5.5分析架構設計 55
5.6解決方案開發 55
5.7評估調整 56
5.8實證應用 56
第六章 個案實作與驗證 57
6.1個案瞭解 57
6.1.1使命 57
6.1.2績效指標 57
6.1.3專案功能分析 61
6.1.4專案流程分析 65
6.1.5應用系統功能分析 69
6.1.6資料分析之需求分析 69
6.2資料擷取與剖析 70
6.2.1資料擷取 70
6.2.2資料模型化 74
6.2.3資料來源 75
6.3資料收集與準備 76
6.4分析架構設計 82
6.5模型設計開發與調整 82
6.6個案實證應用 88
6.6.1敘述性統計分析 88
6.6.2影響因子分析 91
6.6.3影響因子之影響模式分析 94
6.6.4最佳化模式 99
6.6.5附加實作─因子預測與變因分析 100
第七章 結論與未來方向 108
7.1總結 108
7.2未來研究方向 110
參考文獻 111
參考文獻 [1] Andrew Robertson, (1974). Innovation Management: Theory and Comparative Practice Illustrated by two Case Studies. Management Decision, 12(6), 330–368.
[2] Archibald R. B., (1981). The Implementation of Project Management: The Professional’s Handbook. Massachusette: Addison-Wesley Publishing, 178.
[3] Allen, T. J. (1984). Managing the flow of technology: Technology transfer and the dissemination of technological information within the R&D organization. MIT Press Books.
[4] Agrawal, R., Imielinksi, T., & Swami, A. (1993). Mining Association Rules between Sets of Items in Large Databases, Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data. Washington DC, USA.
[5] Booz, Allen & Hamilton. (1968). Management of New Products. Allen & Hamilton Inc., New York.
[6] Baker, M. J., & McTavish, R. (1976). The New-Product Development Process. In Product Policy and Management. London: Macmillan Education UK. 78–94.
[7] Berry & Linoff. (2004). Data Mining Techniques: for marketing, sales, and customer relationship managemen. In 2nd ed. Wiley Publishing, Inc., Indianapolis, Indiana, 454.
[8] Blanchard, B. S., & Blyler, J. E. (2007). System Engineering Management. John Wiley & Sons, 5, 1–556
[9] Barton, D.; and Court, D.Making Advanced Analytics Work for You. Harvard business review, 90, (2012), 78–83,128.
[10] Cooper, R. G. (1984). The Strategy‐Performance Link in Product Innovation. R&D Management, 14(4), 247–259.
[11] Cooper, R. G. & Kleinschmidt, E. J. (1988). Resource Allocation in the New Product Process. Industrial Marketing Management, 17, 249–262.
[12] Cooper, R. G. & Kleinschmidt, E. J. (1991). New Product Processes at Leading Industrial Firms. Journal of Industrial Marketing Management, 10(2), 215–223.
[13] Cooper, R. G. & Kleinschmidt, E. J. (1994). Determinants of timeliness in product development. Journal of Product Innovation Management, 11, 381–396.
[14] Cooper, R. G. & Kleinschmidt, E. J. (1995a). Performance Typologies of New Product Projects. Journal of Industrial Marketing Management, 24, 439–456.
[15] Cooper, R. G. (2000). Doing it right. Ivey Business Journal, 64(6), 54–60.
[16] Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: from big data to big impact. MIS quarterly, 1165-1188.
[17] Drucker, P. F. (1954). The Practice of Management. Movement disorders official journal of the Movement Disorder Society Butterworth-Heinemann. 19, 370
[18] David I. Cleland, William R. King (1983). Systems Analysis and Project Management. McGraw-Hill College, Subsequent edition
[19] Rumelhart, D. E., & McClelland, J. L. (1986). Parallel distributed processing: explorations in the microstructure of cognition. Volume 1. Foundations.
[20] Eric Siegel, (2016). Predictive Analytics: The Power to Predict Who Will Click, Buy, Lie, or Die. Wiley, 1 edition
[21] Esteva, A.; Kuprel, B.; Novoa, R.A.; Ko, J.; Swetter, S.M.; Blau, H.M.; & Thrun, S. (2017). Dermatologist-level classification of skin cancer with deep neural networks. Nature, 542, 115.
[22] Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). The KDD process for extracting useful knowledge from volumes of data. Communications of the ACM, 39(11), 27–34.
[23] Gaddis, P. O. (1959). The project manager. Boston: Harvard University.
[24] Granstrand, O., & Fernlund, L. (1978). Coordination of multinational R & D: A Swedish case study, R&D Management. 9(1), 1–8.
[25] Gardner, H. (1983). Frames of Mind. New York: Basic Books Inc.
[26] George A Miller (1995). WordNet: A Lexical Database for English. Communications of the ACM Vol. 38, No. 11: 39-41
[27] Gordon S. Linoff; Michael J. Berry. (1997). Data Mining Techniques: For Marketing, Sales, and Customer Support. New York: Wiley Computer Publishing.
[28] Gardner, H. (2011). Frames of Mind: The Theory of Multiple Intelligences (3rd Edition). NY: Basics, 467.
[29] Jaafari, A., & Manivong, K. (1998). Towards a smart project management information system. International journal of project management, 16(4), 249-265.
[30] James P. Lewis (1998). Mastering Project Management, McGraw-Hill, New York
[31] Jiawei Han & Micheline Kamber, (2011). DataMining: Concepts and Techniques. Elsevier.
[32] John B. Rollins, Ph.D., (2015). Foundational Methodology for Data Science, IBM Big Data and Analytics Hub
[33] Kotler, P. (1988). Marketing management: Analysis, planning, implementation, and control. Prentice-Hall Englewood Cliffs.
[34] Kaplan, R. S., & Norton, D. P. (1992). The balanced scorecard--measures that drive performance. Harvard Business Review, 70(1), 71–79.
[35] Kerzner H., (1994). Project Management: A systems Approach to Planning, Scheduling, and Controlling, Van Nostra and Reinhold, 4th Edition.
[36] Khan, J., Wei, J. S., Ringnér, M., Saal, L.H., Ladanyi, M., Westermann, F., Berthold, F.; Schwab, M., Antonescu, C.R., Peterson, C., & Meltzer, (2001). Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, 7, 673.
[37] Liberatore, M. J., & Stylianou, A. C. (1995). Expert support systems for new product development decision-making: A modeling framework and applications. Management science, 41(8), 1296-1316.
[38] McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.
[39] Menon, R., Tong, L. H., Sathiyakeerthi, S., Brombacher, A., &Leong, C. (2004). The needs and benefits of applying textual data mining within the product development process. Quality and Reliability Engineering International, 20(1), 1–15.
[40] Melissa A. Schilling (2008). Strategic Management of Technological Innovation. McGraw-Hill Higher Education, International Edition
[41] McAfee, A., Brynjolfsson, E., Davenport, T. H., Patil, D. J., & Barton, D. (2012). Big data: the management revolution. Harvard business review, 90(10), 60-68.
[42] Owens, J. D., & Davies, J. (2000). The Importance of a New Product Development (NPD) process: Getting Started. 1st European Conference on KM, (1995). 1–12.
[43] Parkinson, S. T. (1984). New product development in engineering : a comparison of the British and West German machine tool industries. Management and industrial relations series,  Cambridge: Cambridge University Press, 6(x), 132.
[44] Pyle, D. (1999). Data preparation for data mining. Morgan Kaufmann Publishers, San Francisco: Morgan Kaufmann Publishers, 466.
[45] Peiperl, M. A. (2001). Getting 360 degrees feedback right. Harvard Business Review, 79(1), 142–147, 177.
[46] Provost, F., & Fawcett, T. (2013). Data science and its relationship to big data and data-driven decision-making. Big data, 1(1), 51-59.
[47] Rothwell, R., & Robertson, A. B. (1973). The role of communications in technological innovation. Research Policy, 2(3), 204–225.
[48] Schumpeter, J. A. (1934). The Theory of Economic Development. Harvard University Press, Cambridge, MA.
[49] Schon, D. A. (1967). Technology and Change, Pergamon Press. Schumpeter, J. (1939). Business Cycles, McGraw-Hill.
[50] Saren, M. A. (1984). A classification and review of models of the intra‐firm innovation process. R&D Management, 14(1), 11–24.
[51] Thomas, R. J. (1993). New Product Development – Managing and Forecasting for Strategic Success. John Wiley & Sons.
[52] Thomas, R. J. (1995). New product success stories: Lessons from leading innovators. John Wiley & Sons.
[53] Trott, P. (2008). Innovation management and new product development. World Wide Web Internet and Web Information Systems, 39(xxvii), 581.
[54] Wirth, R. (2000). CRISP-DM : Towards a Standard Process Model for Data Mining. Proceedings of the Fourth International Conference on the Practical Application of Knowledge Discovery and Data Mining, 29–39.
[55] 夏侯欣鵬。績效管理的過去與現在。輔仁大學企業管理學系。新北市。2010
[56] 湯瑪斯.雷曼。資料差,機器學習工具就無效,Thomas C. Redmane著,陳佳穎譯。哈佛商業評論。數據資料。2018
[57] 簡禎富、許嘉裕。資料挖況與大數據分析。前程文化。新北市。2016
[58] 熊培霖審訂。專案管理知識體系導讀指南。台北。博頡策略顧問股份有限公司。2004
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-07-25起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-11-26起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw