進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0309201517242600
論文名稱(中文) 行動雲端運算應用於液晶面板製造業對工作效率影響之研究
論文名稱(英文) Effects of Mobile Cloud Computing Applications on Task Efficiency in Liquid Crystal Panel Manufacturing
校院名稱 成功大學
系所名稱(中) 工業與資訊管理學系碩士在職專班
系所名稱(英) Department of Industrial and Information Management (on the job class)
學年度 103
學期 2
出版年 104
研究生(中文) 王智豪
研究生(英文) Chih-Hao Wang
電子信箱 sina6821@gmail.com
學號 R37011184
學位類別 碩士
語文別 中文
論文頁數 121頁
口試委員 指導教授-謝佩璇
口試委員-呂執中
口試委員-劉任修
中文關鍵字 雲端運算  行動裝置  任務-科技配適度理論  整合性科技接受模式 
英文關鍵字 Cloud Computing  Mobile Devices  TTF  UTAUT 
學科別分類
中文摘要 今日國際對綠能環保日漸重視,加上現代資訊科技的快速發展,台灣政府期待有效率建構一個具綠能環保概念的作業環境。所以,有越來越多企業組織因應此趨勢,將未來發展方向定位在透過行動雲端運算應用導入工作流程。也因此,本研究值得探究新資訊科技(也就是行動雲端運算應用)如何提高企業的工作效率。本研究將確認影響企業工作效率的關鍵因子,作為給予其他製造業未來導入行動雲端運算應用的參考。
本研究奠基於兩個資訊系統相關的理論與模式(任務-科技配適度理論、整合性科技接受模式),結合並修改後發展本研究模型,再採量化研究方式發放調查問卷,邀請已經導入行動雲端運算應用的A公司員工參與研究,預計發放300份有效問卷。問卷資料分析方法將進行敘述性統計、單因子變異數分析及SEM分析。
英文摘要 The use of green energy for environmental protection is being more and more emphasized in the world today. With the rapid development of modern information technology, the government of Taiwan is looking forward to constructing a green energy and environmental protection environment. Therefore, due to this trend, more and more organizations are going to position themselves on mobile cloud computing applications to get into the workflow. It is therefore considered worth exploring new Information Technology-Mobile Cloud Computing Applications to improve the working efficiency of enterprises. This study is intended to confirm the key factors affecting the efficiency of enterprises. The research results serve as a reference for manufacturing industries wishing to implement Mobile Cloud Computing Applications. This study is founded on two information system theories and related models (Task-Technology Fit, TTF、Unified Theory of Acceptance and Use of Technology, UTAUT). After integrating and revising the research models, a new research model was developed. Quantitative research method questionnaires were used, and Company A’s employees were invited to participate in the study. 323 questionnaires were sent, and 239 responses were returned. Finally, questionnaire data analysis was analyzed with descriptive statistics, one-way ANOVA and SEM analysis.
論文目次 摘要 i
SUMMARY ii
誌謝 xi
目錄 xii
表次 xiii
圖次 xv
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 研究範圍與限制 3
第四節 研究流程 4
第二章 文獻探討 6
第一節 行動裝置應用現況 6
第二節 任務-科技適配度(TTF) 9
第三節 整合性科技接受度(UTAUT) 15
第三章 研究方法 23
第一節 行動雲端運算應用說明 23
第二節 研究架構與假設 27
第三節 研究變項操作性定義與衡量 29
第四節 研究對象 36
第五節 前測與信效度檢定 36
第六節 資料取得與分析 38
第四章 資料分析 41
第一節 前測分析 41
第二節 問卷樣本結構分析 49
第三節 信度及效度分析 79
第四節 結構模型分析 86
第五章 結論與建議 97
第一節 結論分析 97
第二節 管理意涵 103
第三節 研究限制及未來研究方向 108
參考文獻 110
附錄一 問卷 115

參考文獻 中文文獻

行政院主計處,中華民國行業標準分類-第9次修訂,2011年03月。
資策會MIC資訊運用研究團隊,中國大陸製造業發展現況與IT應用發展趨勢,資策會,2014年06月。
廖珮妏, 余鑑, & 于俊傑. (民101). 應用整合型科技接受模式與創新擴散通用模型於企業導入數位學習之多層次分析. 電子商務學報, 14(4), 657-687.

英文文獻

Abdel-Razek, W. A. (2011). Factors affecting the effectiveness of the job performance of the specialists working in the youth care at Helwan University. World Journal of Sport Sciences, 4(2), 116-125.
Alkhunaizan, A., & Love, S. (2012). What drives mobile commerce? An empirical evaluation of the revised UTAUT model. International Journal of Management and Marketing Academy, 2(1), 82-99.
Al-Qeisi, K., Dennis, C., Alamanos, E., & Jayawardhena, C. (2014). Website design quality and usage behavior: Unified Theory of Acceptance and Use of Technology. Journal of Business Research, 67(11), 2282-2290.
Ajzen, I., & Fishbein, M. (1975). Belief, attitude, intention and behavior: An introduction to theory and research.
Ajzen, I., & Fishbein, M. (1980). Understanding attitudes and predicting social. Behaviour. Englewood Cliffs, NJ: Prentice-Hall.
Au, N., Ngai, E. W., & Cheng, T. C. (2002). A critical review of end-user information system satisfaction research and a new research framework. Omega, 30(6), 451-478.
Bagozzi, R. P., & Yi, Y. (1988). On the evaluation of structural equation models. Journal of the academy of marketing science, 16(1), 74-94.
Brown, S. A., Venkatesh, V., Kuruzovich, J., & Massey, A. P. (2008). Expectation confirmation: An examination of three competing models. Organizational Behavior and Human Decision Processes, 105(1), 52-66.
Cady, R. G., & Finkelstein, S. M. (2014). Task–Technology Fit of Video Telehealth for Nurses in an Outpatient Clinic Setting. Telemedicine and e-Health.
Carlsson, C., Carlsson, J., Hyvonen, K., Puhakainen, J. & Walden, P. (2006). Adoption of mobile devices/services-Searching for answers with the UTAUT. In Proceedings of the 39th Hawaii international conference on system sciences.
Copeland, R., & Crespi, N. (2012). Implementing an enterprise business context model for defining mobile broadband policy. In Proceedings of the 8th International Conference on Network and Service Management , International Federation for Information Processing, 209-213.
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297-334.
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterl.
Davis, F. D. (1986). A technology acceptance model for empirically testing new end-user information systems: Theory and results, doctoral dissertation. MIT Sloan School of Management. Cambridge, MA
D'Ambra, John, Wilson, Concepcion S., & Akter, Shahriar. (2013). Application of the task-technology fit model to structure and evaluate the adoption of E-books by academics. Journal of the American Society for Information Science and Technology, 64(1), 48-64.
Delone, W. H., & Mclean, E. R. (2004). Measuring e-commerce success: Applying the DeLone & McLean information systems success model. International Journal of Electronic Commerce, 9(1), 31-47.
Diño, M. J. S., & de Guzman, A. B. (2014). Using Partial Least Squares (PLS) in Predicting Behavioral Intention for Telehealth Use Among Filipino Elderly. Educational Gerontology, (just-accepted).
Dishaw, M. T., & Strong, D. M. (1999). Extending the technology acceptance model with task–technology fit constructs. Information & Management, 36(1), 9-21.
Escobar-Rodríguez, T., & Carvajal-Trujillo, E. (2014). Online purchasing tickets for low cost carriers: An application of the unified theory of acceptance and use of technology (UTAUT) model. Tourism Management, 43, 70-88.
Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Journal of marketing research, 382-388.
Ghalandari, K. (2012). The Effect of Performance Expectancy, Effort Expectancy, Social Influence and Facilitating Conditions on Acceptance of E-Banking Services in Iran: the Moderating Role of Age and Gender. Middle-East Journal of Scientific Research, 12(6), 801-807.
Girard, T. (2010). The role of demographics on the susceptibility to social influence: A pretest study. Journal of Marketing Development and Competitiveness, 5(1), 9–22.
Goodhue, D.L. and Thompson, R.L.(1995). Task-technology fit and individual performance, MIS Quarterly, 19(2), 213-236
Hair, J., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). Upper saddle River, New Jersey: Pearson Education International.
Hair, J. F., Anderson, R. E., Tatham, R. L. and Black, W. C. (1998). Multivariate Data Analysis, 5th ed. Prentice Hall International: UK.
Hu, P. J., Chau, P. Y., Sheng, O. R. L., & Tam, K. Y. (1999). Examining the technology acceptance model using physician acceptance of telemedicine technology. Journal of management information systems, 91-112.
Khajeh-Hosseini, A., Sommerville, I., & Sriram, I. (2010). Research challenges for enterprise cloud computing. arXiv preprint arXiv:1001.3257.
Kim, D., & Ammeter, T. (2014). Predicting personal information system adoption using an integrated diffusion model. Information & Management, 51(4), 451-464.
Koopmans, L., Bernaards, C. M., Hildebrandt, V. H., Schaufeli, W. B., de Vet Henrica, C. W., & van der Beek, A. J. (2011). Conceptual frameworks of individual work performance: a systematic review. Journal of Occupational and Environmental Medicine, 53(8), 856-866.
Kulkarni, G., Shelke, R., Palwe, R., Solanke, V., Belsare, S., & Mohite, S. (2014). Mobile Cloud Computing-Bring Your Own Device. In Communication Systems and Network Technologies (CSNT), 2014 Fourth International Conference on IEEE ,565-568.
Lai, W.-T., & Chen, C.-F. (2011). Behavioral intentions of public transit passengers—The roles of service quality,perceived value, satisfaction and involvement. Transport Policy, 18(2), 318–325.
Lai, I. K., & Lai, D. C. (2014). User acceptance of mobile commerce: an empirical study in Macau. International Journal of Systems Science, 45(6), 1321-1331.
Lee, C.-L., Yen, D. C., Peng, K.-C., & Wu, H.-C. (2010). The influence of change agents’ behavioral intention on the usage of the activity based costing/management system and firm performance: The perspective of unified theory of acceptance and use of technology. Advances in Accounting, 26(2), 314–324.
Lee, J., Park, M. C., & Moon, J. (2013). Factors affecting the performance of mobile office outsourcing: An approach using the FORT model and the MoBiS-Q. Management Decision, 51(7), 1422-1441.
Leiter, A. M., Parolini, A., & Winner, H. (2011). Environmental regulation and investment: Evidence from European industry data. Ecological Economics, 70(4), 759-770.
Lee, C. C., Su, K. W., Lu, C. T., & Yu, X. X. (2007). Task-Technology Fit and Adoption Behaviors of Mobile Business Systems. In 9th International DSI and 12th Asia Pacific DSI Conference.
Lin, T. C. (2014). Mobile nursing information system utilization: the task-technology fit perspective. Computers Informatics Nursing, 32(3), 129-137.
Li, Z., & Bai, X. (2011). An empirical study of the influencing factors of user adoption on mobile securities services. Journal of Software, 6(9), 1696-1704.
Mazman, S. G., Usluel, Y. K., & C¸ evik, V. (2009). Social influence in the adoption process and usage of innovation: Gender differences. International Journal of Behavioral, Cognitive, Educational and Psychological Sciences, 1(4), 229–232.
Mell, P., & Grance, T. (2009). Effectively and securely using the cloud computing paradigm. NIST, Information Technology Lab.
Min, Q., Ji, S., & Qu, G. (2008). Mobile commerce user acceptance study in China: A revised UTAUT model. Tsinghua Science & Technology, 13(3), 257–264.
Oliveira, T., Faria, M., Thomas, M. A., & Popovič, A. (2014). Extending the understanding of mobile banking adoption: When UTAUT meets TTF and ITM. International Journal of Information Management, 34(5), 689-703.
Pavlou, P.A. (2003). Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model, International Journal of Electronic Commerce, 7(3), 69-103.
Park, J., Yang, S., & Lehto, X. (2007). Adoption of mobile technologies for Chinese consumers. Journal of Electronic Commerce Research, 8(3), 196–206.
Podsakoff, P. M., & Organ, D. W. (1986). Self-reports in organizational research: Problems and prospects. Journal of management, 12(4), 531-544.
Raghavan, V., Zhang, X., & Jeyaraj, A. (2010). Implementation success of clinician information systems in healthcare contexts.
Shen, M. Y., Liu, C. Y., & Huang, B. (2013). A Development Strategy of M-commerce against Mobile Internet. Advanced Materials Research, 756, 1092-1096.
Siegel, D. (2009), “From the guest editors: New development in technology managementeducation,” Academy of Management Learning and Education, 8(3), 321-323.
Stefan Stieglitz, Tobias Brockman. (2012). Increasing Organizationa Performance by Transforming into a Mobile Enterprise, MIS quarterly executive, 4, 189-204.
Tai, Y. M., & Ku, Y. C. (2014). Will Insurance Brokers Use Mobile Insurance Service Platform: An Integration of UTAUT and TTF. 20th Americas Conference on Information Systems (AMCIS 2014), 3, 2290-2296.
Testa, F., Iraldo, F., & Frey, M. (2011). The effect of environmental regulation on firms’ competitive performance: The case of the building & construction sector in some EU regions. Journal of Environmental Management, 92(9), 2136-2144.
Toldinas, J., Damasevicius, R., Venckauskas, A., Blazauskas, T., & Ceponis, J. (2014). Energy Consumption of Cryptographic Algorithms in Mobile Devices. Elektronika ir Elektrotechnika, 20(5), 158-161.
Trozzo, K. E., Munsell, J. F., & Chamberlain, J. L. (2014). Landowner interest in multifunctional agroforestry Riparian buffers. Agroforestry Systems, 1-11.
Venkatesh, V., Morris, M.G., Davis, G.B., and Davis, F.D. (2003), User acceptance of information technology: Toward a unified view, MIS Quarterly, 27(3), 425-478.
Venkatesh, V. Y. L. Thong, J., & Xu, X. (2012). Consumer acceptance and use of information Technology:Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178.
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the Technology Acceptance Model: Four longitudinal field studies. Management Science, 46(2), 186–204.
Wang, Y., & Shih, Y. (2009). Why do people use information kiosks? A validation of the Unified Theory of Acceptanceand Use of Technology. Government Information Quarterly, 26(1), 158–165.
Wang, Y. S. (2008). Assessing e‐commerce systems success: a respecification and validation of the DeLone and McLean model of IS success. Information Systems Journal, 18(5), 529-557.
Wu, J. H., & Wang, Y. M. (2006). Measuring KMS success: A respecification of the DeLone and McLean's model. Information & Management, 43(6), 728-739.
Yeboah-Boateng, E. O., & Essandoh, K. A. (2014). Factors Influencing the Adoption of Cloud Computing by Small and Medium Enterprises (SMEs) in Developing Economies. International Journal of Emerging Science and Engineering (IJESE), 2(4), 13-20.
Yu, C. S. (2012). Factors affecting individuals to adopt mobile banking: Empirical evidence from the UTAUT model. Journal of Electronic Commerce Research, 13(2), 104-121.
Yuan, Y., Archer, N., Connelly, C. E., & Zheng, W. (2010). Identifying the ideal fit between mobile work and mobile work support. Information & Management, 47(3), 125-137.
Zhou, T., Lu, Y., & Wang, B. (2010). Integrating TTF and UTAUT to explain mobile banking user adoption. Computers in Human Behavior, 26(4), 760-767.
Zhu, S., He, C., & Liu, Y. (2014). Going green or going away: Environmental regulation, economic geography and firms’ strategies in China’s pollution-intensive industries. Geoforum, 55, 53-65
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-09-02起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2022-09-02起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw