進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0309201419091200
論文名稱(中文) 不同形貌奈米紅鋅礦之合成與特性分析
論文名稱(英文) Synthesis and characterization of nano-zincite with different morphologies
校院名稱 成功大學
系所名稱(中) 地球科學系
系所名稱(英) Department of Earth Sciences
學年度 102
學期 2
出版年 103
研究生(中文) 楊孟翰
研究生(英文) Meng-Han Yang
學號 L46011073
學位類別 碩士
語文別 中文
論文頁數 80頁
口試委員 指導教授-陳燕華
口試委員-鄧茂華
口試委員-鄧熙聖
口試委員-許桂芳
中文關鍵字 奈米紅鋅礦  奈米粒子  奈米棒  光催化效應 
英文關鍵字 nano-zincite  nano-particle  nano-rod  photodegradation 
學科別分類
中文摘要 氧化鋅為紅鋅礦之主要成分,因其具備許多優異的潛能而被廣泛地研究。本研究使用水熱合成法與化學沉澱法合成紅鋅礦奈米粒子及奈米棒,藉由調整不同的參數來控制晶體的大小、均勻度與形貌;並探討奈米紅鋅礦之長晶機制與光催化效應。

由XRD圖譜及TEM影像的結果可得知,我們成功地合成出六方纖鋅礦相之紅鋅礦奈米粒子與奈米棒,並且逐漸改善奈米紅鋅礦的晶體大小、均勻度與形貌;從BET值的結果我們得知粒徑越小,比表面積越大,且BET值變化之趨勢可能受到均勻度的影響;以UV-VIS吸收光譜加以推算光能隙值,紅鋅礦奈米粒子之光能隙值約為3.05~3.14 eV,奈米棒之光能隙值約為3.08~3.16 eV,二者之光能隙值差異不大;最後我們以最佳合成參數所得之紅鋅礦奈米粒子及奈米棒進行光催化實驗,實驗結果顯示:光催化效率為紅鋅礦奈米棒大於奈米粒子,其原因可能是奈米棒之結晶度與晶體形貌所導致。
英文摘要 Zincite (ZnO), which has many potential properties, such as wide direct band gap (~3.37 eV) and high-exciton binding energy (~60 meV), has been widely investigated. In this study, zincite with two crystal morphologies (nano-particle and nano-rod) is synthesized via the chemical precipitation and hydrothermal methods. The zincite nano-particle and nano-rod both have a hexagonal structure with the wurtzite-type. The zincite nano-particle has a particle size around 20~60 nm and nano-rod has a particle size of 15~35 nm in width and 100~150 nm in length, which are fabricated by chemical precipitation method. The zincite micron-rod synthesized via hydrothermal method has a larger particle size of 400~800 nm in width and 800~6,000 nm in length. The band gap of zincite nano-particle and nano-rod is 3.1~3.2 eV. The BET result shows that the specific surface area of the zincite nano-particle and nano-rod is 30.39 m2/g and 23.99 m2/g, respectively. It is also observed that both morphologies of nano-zincites exhibit good photocatalytic activity under UV-light illumination. The photodegradation on methylene blue is ~95 % within 170 and 105 min for zincite nano-particle and nano-rod, respectively. Hence, nano-zincite is a superior photocatalyst, effective for clean removal of organic dyes, and maybe suitable for wastewater treatment applications.
論文目次 目錄
中文摘要 i
Abstract ii
誌謝 v
目錄 vi
表目錄 ix
圖目錄 x
第一章 緒論 1
第二章 文獻回顧 3
2.1 材料簡介 3
2.1.1 紅鋅礦 3
2.1.2 亞甲基藍 4
2.2 奈米效應 5
2.2.1 表面效應 5
2.2.2 小尺寸效應 6
2.3 能隙理論 7
2.4 光催化反應 10
2.4.1 光催化之機制 10
2.4.2 異相光催化之動力學模型 12
2.4.3 濃度檢測原理 13
2.5 比表面積與孔徑分析儀原理 14
2.6 奈米紅鋅礦之合成 19
2.6.1 水熱合成法(Hydrothermal method) 19
2.6.2 化學沉澱法(Chemical precipitation method) 21
第三章 研究方法 24
3.1 實驗流程 24
3.2 合成步驟 26
3.3 實驗分析設備 27
3.3.1 X-ray 粉末繞射儀 27
3.3.2 穿透式電子顯微鏡 28
3.3.3 比表面積與孔徑分析儀 28
3.3.4 同步熱分析儀 29
3.3.5 紫外光-可見光光譜儀 31
3.4 光催化實驗 32
3.4.1 暗室吸附實驗 32
3.4.2 光催化實驗 33
第四章 研究結果與討論 34
4.1 奈米紅鋅礦之特性分析 34
4.1.1 X-ray 粉末繞射結果 37
4.1.2 穿透式電子顯微鏡結果 40
4.1.3 比表面積分析儀結果 52
4.1.4 紫外光-可見光光譜儀結果 56
4.1.5 同步熱分析儀結果 60
4.2 奈米紅鋅礦長晶機制探討 63
4.3 奈米紅鋅礦之光催化結果 65
第五章 結論 70
參考文獻 73
參考文獻 [1]. Choy, J. H., Jang, E. S., Won, J. H., Chung, J. H., Jang, D. J. and Kim, Y. W., “Soft solution route to directionally grown ZnO nanorod arrays on Si wafer; room-temperature ultraviolet laser.” Advanced Materials, 15(22), p. 1911-1914, 2003.
[2]. Ryu, Y. R., Lee, T. S., Lubguban, J. A., White, H. W., Kim, B. J., Park, Y. S. and Youn, C. J., “Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes.” Applied Physics Letters, 88(24), p. 241108, 2006.
[3]. Roy, S. and S. Basu, “Improved zinc oxide film for gas sensor applications.” Bulletin of Materials Science, 25(6), p. 513-515, 2002.
[4]. Khan, S. B., Faisal, M., Rahman, M. M. and Jamal, A., “Low-temperature growth of ZnO nanoparticles: photocatalyst and acetone sensor.” Talanta, 85(2), p. 943-9, 2011.
[5]. Thomas Stanley van den Heever, “A zinc oxide nanowire pressure sensor.” University of Stellenbosch, 2010.
[6]. Hoffman, R. L., Norris, B. J. and Wager, J. F., “ZnO-based transparent thin-film transistors.” Applied Physics Letters, 82(5), p. 733-735, 2003.
[7]. Daneshvar, N., D. Salari and A.R. Khataee, “Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2.” Journal of Photochemistry and Photobiology a-Chemistry, 162(2-3), p. 317-322, 2004.
[8]. Chakrabarti, S. and B.K. Dutta, “Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst.” Journal of Hazardous Materials, 112(3), p. 269-278, 2004.
[9]. Linsebigler, A.L., G.Q. Lu and J.T. Yates, “Photocatalysis on TiO2 Surfaces - Principles, Mechanisms, and Selected Results.” Chemical Reviews, 95(3), p. 735-758, 1995.
[10]. Kawano, T. and H. Imai, “A simple preparation technique for shape-controlled zinc oxide nanoparticles: Formation of narrow size-distributed nanorods using seeds in aqueous solutions.” Colloids and Surfaces a-Physicochemical and Engineering Aspects, 319(1-3), p. 130-135, 2008.
[11]. Yang, J. H., Zheng, J. H., Zhai, H. J. and Yang, L. L., “Low temperature hydrothermal growth and optical properties of ZnO nanorods.” Crystal Research and Technology, 44(1), p. 87-91, 2009.
[12]. Yang, J. H., Zheng, J. H., Zhai, H. J., Yang, L. L., Zhang, Y. J., Lang, J. H. and Gao, M., “Growth mechanism and optical properties of ZnO nanotube by the hydrothermal method on Si substrates.” Journal of Alloys and Compounds, 475(1–2), p. 741-744, 2009.
[13]. Elias, J., Tena-Zaera, R., Wang, G. Y. and Levy-Clement, C., “Conversion of ZnO Nanowires into Nanotubes with Tailored Dimensions.” Chemistry of Materials, 20(21), p. 6633-6637, 2008.
[14]. Qingjiang, Yu, Cuiling, Yu, Haibin, Yang, Ronghui, Wei, Minghui, Li, Shikai, Liu, Yongming, Sui, Zhanlian, Liu, Mingxia, Yuan, Guangtian, Zou, Guorui, Wang, Changlu, Shao and Yichun, Liu, “Fabrication and optical properties of large-scale ZnO nanotube bundles via a simple solution route.” Journal of Physical Chemistry C, 111(47), p. 17521-17526, 2007.
[15]. Fujishima, A. and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode.” Nature, 238(5358), p. 37-38, 1972.
[16]. Frank, S.N. and A.J. Bard, “Heterogeneous Photocatalytic Oxidation of Cyanide Ion in Aqueous-Solutions at TiO2 Powder.” Journal of the American Chemical Society, 99(1), p. 303-304, 1977.
[17]. Klein, C., C.S. Hurlbut and Dana, J.D., “Manual of mineralogy.” Wiley New York, Vol. 527., 1993.
[18]. Wang, Z.L., “Zinc oxide nanostructures: growth, properties and applications.” Journal of Physics-Condensed Matter, 16(25), p. R829-R858, 2004.
[19]. Yan, C. and D. Xue, “Conversion of ZnO nanorod arrays into ZnO/ZnS nanocable and ZnS nanotube arrays via an in situ chemistry strategy.” Journal of Physical Chemistry B, 110(51), p. 25850-25855, 2006.
[20]. Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C. and Herrmann, J. M., “Photocatalytic degradation pathway of methylene blue in water.” Applied Catalysis B-Environmental, 31(2), p. 145-157, 2001.
[21]. Ghanadzadeh, A., Zeini, A., Kashef, A. and Moghadam, M., “Concentration effect on the absorption spectra of oxazine1 and methylene blue in aqueous and alcoholic solutions.” Journal of Molecular Liquids, 138(1-3), p. 100-106, 2008.
[22]. Wang, Y. and N. Herron, “Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties.” The Journal of Physical Chemistry, 95(2), p. 525-532, 1991.
[23]. 蔡宏營,奈米科技概論與應用,五南,2013。
[24]. Buffat, P. and J.P. Borel, “Size Effect on Melting Temperature of Gold Particles.” Physical Review A, 13(6), p. 2287-2298, 1976.
[25]. Sharma, P., S. Ganti and N. Bhate, “Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities.” Applied Physics Letters, 82(4), p. 535-537, 2003.
[26]. Dingreville, R., J.M. Qu and M. Cherkaoui, “Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films.” Journal of the Mechanics and Physics of Solids, 53(8), p. 1827-1854, 2005.
[27]. LesliePelecky, D.L. and Rieke, R.D., “Magnetic properties of nanostructured materials.” Chemistry of Materials, 8(8), p. 1770-1783, 1996.
[28]. Kelly, K. L., Coronado, E., Zhao, L. L. and Schatz, G. C., “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment.” Journal of Physical Chemistry B, 107(3), p. 668-677, 2003.
[29]. Pankove, J.I., “Optical processes in semiconductors.” Courier Dover Publications, 2012.
[30]. Kittel, C., “Introduction to Solid State Physics.” Wiley, 2005.
[31]. Klingshirn, C.F., “Semiconductor optics.” Springer, Vol. 3, 2007.
[32]. Farré, Maria José, Franch, Maria Isabel, Malato, Sixto, Ayllón, José Antonio, Peral, José and Doménech, Xavier, “Degradation of some biorecalcitrant pesticides by homogeneous and heterogeneous photocatalytic ozonation.” Chemosphere, 58(8), p. 1127-1133, 2005.
[33]. Bajt, O., G. Mailhot and M. Bolte, “Degradation of dibutyl phthalate by homogeneous photocatalysis with Fe(III) in aqueous solution.” Applied Catalysis B-Environmental, 33(3), p. 239-248, 2001.
[34]. Hoffmann, M. R., Martin, S. T., Choi, W. Y. and Bahnemann, D. W., “Environmental Applications of Semiconductor Photocatalysis.” Chemical Reviews, 95(1), p. 69-96, 1995.
[35]. Mills, A. and S. LeHunte, “An overview of semiconductor photocatalysis.” Journal of Photochemistry and Photobiology a-Chemistry, 108(1), p. 1-35, 1997.
[36]. Fox, M.A. and M.T. Dulay, “Heterogeneous Photocatalysis.” Chemical Reviews, 93(1), p. 341-357, 1993.
[37]. Okamoto, K., Yamamoto, Y., Tanaka, H. and Itaya, A., “Kinetics of Heterogeneous Photocatalytic Decomposition of Phenol over Anatase TiO2 Powder.” Bulletin of the Chemical Society of Japan, 58(7), p. 2023-2028, 1985.
[38]. Matthews, R.W., “Kinetics of photocatalytic oxidation of organic solutes over titanium dioxide.” Journal of Catalysis, 111(2), p. 264-272, 1988.
[39]. Sauer, T., Neto, G. C., Jose, H. J. and Moreira, R. F. P. M., “Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor.” Journal of Photochemistry and Photobiology A: Chemistry, 149(1–3), p. 147-154, 2002.
[40]. Brunauer, S., Deming, L. S., Deming, W. E. and Teller, E., “On a theory of the van der Waals adsorption of gases.” Journal of the American Chemical Society, 62, p. 1723-1732, 1940.
[41]. Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J. and Siemieniewska, T., “Reporting Physisorption Data for Gas Solid Systems with Special Reference to the Determination of Surface-Area and Porosity (Recommendations 1984).” Pure and Applied Chemistry, 57(4), p. 603-619, 1985.
[42]. Ohyama, M., H. Kouzuka and Yoko, T., “Sol-gel preparation of ZnO films with extremely preferred orientation along (002) plane from zinc acetate solution.” Thin Solid Films, 306(1), p. 78-85, 1997.
[43]. Hafez, H.S., “Highly active ZnO rod-like nanomaterials: Synthesis, characterization and photocatalytic activity for dye removal.” Physica E-Low-Dimensional Systems & Nanostructures, 44(7-8), p. 1522-1527, 2012.
[44]. Umar, A., Akhtar, M. S., Al-Hajry, A., Al-Assiri, M. S. and Almehbad, N. Y., “Hydrothermally grown ZnO nanoflowers for environmental remediation and clean energy applications.” Materials Research Bulletin, 47(9), p. 2407-2414, 2012.
[45]. Wang, C. L., Mao, B. D., Wang, E. B., Kang, Z. H. and Tian, C. G., “Solution synthesis of ZnO nanotubes via a template-free hydrothermal route.” Solid State Communications, 141(11), p. 620-623, 2007.
[46]. Haile, S. M., Johnson, D. W., Wiseman, G. H. and Bowen, H. K., “Aqueous Precipitation of Spherical Zinc-Oxide Powders for Varistor Applications.” Journal of the American Ceramic Society, 72(10), p. 2004-2008, 1989.
[47]. Li, Y., Cai, W. P., Duan, G. T., Cao, B. Q., Sun, F. Q. and Lu, F., “Superhydrophobicity of 2D ZnO ordered pore arrays formed by solution-dipping template method.” Journal of Colloid and Interface Science, 287(2), p. 634-639, 2005.
[48]. Liu, Zhifeng, Li, Junwei, Ya, Jing, Xin, Ying and Jin, Zhengguo, “Mechanism and characteristics of porous ZnO films by sol–gel method with PEG template.” Materials Letters, 62(8–9), p. 1190-1193, 2008.
[49]. Liu, Z. F., Jin, Z. G., Li, W. and Qiu, J. J., “Preparation of ZnO porous thin films by sol-gel method using PEG template.” Materials Letters, 59(28), p. 3620-3625, 2005.
[50]. Chu, D., Masuda, Y., Ohji, T. and Kato, K., “Formation and photocatalytic application of ZnO nanotubes using aqueous solution.” Langmuir, 26(4), p. 2811-5, 2010.
[51]. 王世敏,許祖勛,傅晶,奈米材料原理與製備,五南圖書,2004。
[52]. Lencka, M.M., A. Anderko and R.E. Riman, “Hydrothermal Precipitation of Lead Zirconate Titanate Solid Solutions: Thermodynamic Modeling and Experimental Synthesis.” Journal of the American Ceramic Society, 78(10), p. 2609-2618, 1995.
[53]. Lu, C., Qi, L., Yang, J., Tang, L., Zhang, D. and Ma, J., “Hydrothermal growth of large-scale micropatterned arrays of ultralong ZnO nanowires and nanobelts on zinc substrate.” Chemical Communications, (33), p. 3551-3553, 2006.
[54]. Liu, Z. P., Yang, Y., Liang, J. B., Hu, Z. K., Li, S., Peng, S. and Qian, Y. T., “Synthesis of copper nanowires via a complex-surfactant-assisted hydrothermal reduction process.” Journal of Physical Chemistry B, 107(46), p. 12658-12661, 2003.
[55]. Tang, H.B. and Y.M. Liu, “Decomposition of Ilmenite by Ammonium Hydroxide.” Advanced Materials Research, 813, p. 484-488, 2013.
[56]. Adschiri, T., K. Kanazawa and K. Arai, “Rapid and Continuous Hydrothermal Crystallization of Metal-Oxide Particles in Supercritical Water.” Journal of the American Ceramic Society, 75(4), p. 1019-1022, 1992.
[57]. Baruwati, B., D.K. Kumar and S.V. Manorama, “Hydrothermal synthesis of highly crystalline ZnO nanoparticles: A competitive sensor for LPG and EtOH.” Sensors and Actuators B-Chemical, 119(2), p. 676-682, 2006.
[58]. Wirunmongkol, T., N. O-Charoen and S. Pavasupree, “Simple Hydrothermal Preparation of Zinc Oxide Powders Using Thai Autoclave Unit.” Energy Procedia, 34(0), p. 801-807, 2013.
[59]. Chauhan, R., A. Kumar and R.P. Chaudhary, “Photocatalytic studies of silver doped ZnO nanoparticles synthesized by chemical precipitation method.” Journal of Sol-Gel Science and Technology, 63(3), p. 546-553, 2012.
[60]. Yang, H. M., Xiao, Y., Liu, K. and Feng, Q. M., “Chemical precipitation synthesis and optical properties of ZnO/SiO2 nanocomposites.” Journal of the American Ceramic Society, 91(5), p. 1591-1596, 2008.
[61]. Sepulveda-Guzman, S., Reeja-Jayan, B., de la Rosa, E., Torres-Castro, A., Gonzalez-Gonzalez, V. and Jose-Yacaman, M., “Synthesis of assembled ZnO structures by precipitation method in aqueous media.” Materials Chemistry and Physics, 115(1), p. 172-178, 2009.
[62]. Wang, Y.-m., Li, J.-h. and Hong, R.-y., “Large scale synthesis of ZnO nanoparticles via homogeneous precipitation.” Journal of Central South University of Technology, 19(4), p. 863-868, 2012.
[63]. Barron, V. and J. Torrent, “Use of the Kubelka—Munk theory to study the influence of iron oxides on soil colour.” Journal of Soil Science, 37(4), p. 499-510, 1986.
[64]. Scherrer, P., “Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen.” Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, mathematisch-physikalische Klasse, p. 98-100, 1918.
[65]. Patterson, A.L., “The Scherrer formula for x-ray particle size determination.” Physical Review, 56(10), p. 978-982, 1939.
[66]. Jones, D.R. and M.F. Ashby, “Engineering materials volume 2: an introduction to microstructures, processing and design.” Butterworth-Heinemann, 1998.
[67]. Tauc, J., R. Grigorovici and A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium.” physica status solidi (b), 15(2), p. 627-637, 1966.
[68]. Pearton, S. J., Norton, D. P., Ip, K., Heo, Y. W. and Steiner, T., “Recent progress in processing and properties of ZnO.” Progress in materials science, 50(3), p. 293-340, 2005.
[69]. Ma, S. Z., Liang, H. K., Wang, X. H., Zhou, J., Li, L. T. and Sun, C. Q., “Controlling the Band Gap of ZnO by Programmable Annealing.” Journal of Physical Chemistry C, 115(42), p. 20487-20490, 2011.
[70]. Rusdi, R., Rahman, A. A., Mohamed, N. S., Kamarudin, N. and Kamarulzaman, N., “Preparation and band gap energies of ZnO nanotubes, nanorods and spherical nanostructures.” Powder Technology, 210(1), p. 18-22, 2011.
[71]. Hu, X. L., Shen, X. D., Huang, R., Masuda, Y., Ohji, T. and Kato, K., “A facile template-free route to synthesize porous ZnO nanosheets with high surface area.” Journal of Alloys and Compounds, 580, p. 373-376, 2013.
[72]. Sue, K., Murata, K., Kimura, K. and Arai, K., “Continuous synthesis of zinc oxide nanoparticles in supercritical water.” Green Chemistry, 5(5), p. 659-662, 2003.
[73]. McLaren, A., Valdes-Solis, T., Li, G. and Tsang, S. C., “Shape and Size Effects of ZnO Nanocrystals on Photocatalytic Activity.” Journal of the American Chemical Society, 131(35), p. 12540-12541, 2009.
[74]. Li, D. and H. Haneda, “Morphologies of zinc oxide particles and their effects on photocatalysis.” Chemosphere, 51(2), p. 129-137, 2003.
[75]. Wang, Y. X., Li, X. Y., Wang, N., Quan, X. and Chen, Y. Y., “Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities.” Separation and Purification Technology, 62(3), p. 727-732, 2008.
[76]. Nagaveni, K., Hegde, M. S., Ravishankar, N., Subbanna, G. N. and Madras, G., “Synthesis and structure of nanocrystalline TiO2 with lower band gap showing high photocatalytic activity.” Langmuir, 20(7), p. 2900-2907, 2004.
[77]. Tanaka, K., M.F.V. Capule and T. Hisanaga, “Effect of crystallinity of TiO2 on its photocatalytic action.” Chemical Physics Letters, 187(1–2), p. 73-76, 1991.
[78]. Yu, J. and X. Yu, “Hydrothermal synthesis and photocatalytic activity of zinc oxide hollow spheres.” Environmental Science & Technology, 42(13), p. 4902-4907, 2008.
[79]. Zheng, Y. H., Chen, C. Q., Zhan, Y. Y., Lin, X. Y., Zheng, Q., Wei, K. M., Zhu, J. F. and Zhu, Y. J., “Luminescence and photocatalytic activity of ZnO nanocrystals: Correlation between structure and property.” Inorganic Chemistry, 46(16), p. 6675-6682, 2007.
[80]. Hyeong Jin Yun, Hyunjoo Lee, Ji Bong Joo, Wooyoung Kim and Jongheop Yi, “Influence of aspect ratio of TiO2 nanorods on the photocatalytic decomposition of formic acid.” The Journal of Physical Chemistry C, 113(8), p. 3050-3055, 2009.
[81]. Kim, D.S. and S.-Y. Kwak, “The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity.” Applied Catalysis A: General, 323(0), p. 110-118, 2007.
[82]. Yun, Hyeong Jin, Lee, Hyunjoo, Joo, Ji Bong, Kim, Wooyoung and Yi, Jongheop, “Influence of aspect ratio of TiO2 nanorods on the photocatalytic decomposition of formic acid.” The Journal of Physical Chemistry C, 113(8), p. 3050-3055, 2009.
[83]. Gupta, J., K.C. Barick and D. Bahadur, “Defect mediated photocatalytic activity in shape-controlled ZnO nanostructures.” Journal of Alloys and Compounds, 509(23), p. 6725-6730, 2011.
[84]. Rahman, Q. I., Ahmad, M., Misra, S. K. and Lohani, M., “Effective photocatalytic degradation of rhodamine B dye by ZnO nanoparticles.” Materials Letters, 91, p. 170-174, 2013.
[85]. Kim, D.S. and Kwak S.-Y., “The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity.” Applied Catalysis A: General, 323(0), p. 110-118, 2007.
[86]. Mekasuwandumrong, O., Pawinrat, P., Praserthdam, P. and Panpranot, J., “Effects of synthesis conditions and annealing post-treatment on the photocatalytic activities of ZnO nanoparticles in the degradation of methylene blue dye.” Chemical Engineering Journal 164(1), p. 77-84, 2010.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-12-31起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw