進階搜尋


下載電子全文  
系統識別號 U0026-0309201414333200
論文名稱(中文) 利用多原色畫素排列與色彩演算法改善液晶顯示器之影像品質
論文名稱(英文) Both of Multi-Primary Color Pixel Arrangements and Conversion Algorithms Used to Improve Imaging Performance on LCDs
校院名稱 成功大學
系所名稱(中) 光電科學與工程學系
系所名稱(英) Department of Photonics
學年度 102
學期 2
出版年 103
研究生(中文) 王彥欽
研究生(英文) Yen-Chin Wang
學號 L78961199
學位類別 博士
語文別 英文
論文頁數 97頁
口試委員 指導教授-許家榮
召集委員-傅永貴
口試委員-李佳榮
口試委員-黃素真
口試委員-溫盛發
中文關鍵字 液晶顯示器  色彩演算法  邊緣漏色  人眼視覺模型 
英文關鍵字 liquid crystal displays  color conversion algorithm  pseudocolor phenomenon  human vision model 
學科別分類
中文摘要 隨著科技的發展,顯示器性能的最佳化是不可或缺的,而影像品質是評估顯示器最重要的參數之一。有許多不同的方式來提升影像品質,如多原色混色與畫素圖形化的設計等等。使用多原色可以擴展色域面積而表現出更豐富的色彩。在空間頻率中,不同畫素圖形的設計會有不同的亮度分布,也會對影像有不同的影響。在這一份論文中,首先我們針對傳統紅綠藍三原色的排列對於影像品質的影響作討論,包含亮度調制轉換函數的分析,影像邊緣漏色與高頻影像的表現,從結果可以發現以綠色子畫素為畫素中心相較於其他排列有較好的特性。第二個部份,我們對於提升顯示器的亮度來做研究,在畫素結構中加入白色子畫素是提升顯示器亮度最有效的方法之一 ,在這部分,我們針對RGB三原色轉RGBW四原色的演算法做研究,並與其他演算法比較,從模擬與量測結果發現,利用我們提出的演算法,可以達到高亮度低色差的色彩表現,我們也同時討論RGBW四色系統的邊緣漏現象,從模擬的結果可以得到亮度貢獻較高的子畫素呈對角線排列有較佳的影像品質。顯示器除了高亮度,如何達到廣色域也是很重要的。在這部分,我們提出了RGB三原色轉RGBCW五原色的演算法,並與RGBCY五色系統做比較,從模擬與量測的結果可以發現,我們提出的RGBCW演算法相較於RGBCY可以達到高亮度且低色差的表現。
英文摘要 With the development in science and technology, the optimal performance for a display is essential. The image quality is one of the significant parameters to evaluate the performance of displays. Various methods are proposed to improve rendering image qualities such as multi-primary color mixing, and pixel pattern designed. The multi-primary can show more rich colors in rendering images due to four or more primary colors are employed to extend the color gamut. Various pixel patterns have different qualitative influences on the rendering images because of their different intensity distributions in the spatial frequency space. In this thesis, first of all, we focus on the arrangements of traditional RGB sub-pixel which have influence on image quality. Including analysis for modulation transfer function (MTF), pseudo colors and the performance for rendering images in high frequency condition. From the results, we can find the Green sub-pixel at the center in a pixel shows better performance than others. Second, we study the problem which promotes the luminance for displays. Adding the white sub-pixel to a pixel is one of the effective methods to enhance the luminance. In this part, we focus on the conversion algorithm from three primary colors to four primary colors. Compare with other algorithms, we can find the proposed conversion algorithm can enhance luminance without significant color shift by means of simulation and instrumental measurement on rendering images. The pseudo color phenomenon is also analyzed and discussed on the basic of human vision model. The study indicated that image performance is better when using quad RGBW with W and G sub-pixels in diagonal positions rather than them in non-diagonal positions. Except for the luminance, how to extend wide color gamut is important. In this part, we proposed a method of color mapping conversion between RGB and RGBCW to improve image luminance and maintain minimal color shift. We measured and simulated the rendered images to prove the capabilities of our proposed method. In study, the RGB-to-RGBCW mapping algorithm is designed so that the hue and saturation remains unchanged from the original color and images with higher luminance than RGB system. We also comparatively evaluate the image performance for two potential types of multi-primary color LCDs with stripe RGBCW and RGBCY pixel units, respectively. According to our simulation study and experimental results, we proved that the colors in RGBCW are similar to the original colors in RGB pixel unit including hue and saturation, which also show higher luminance than those in the RGBCY unit.
論文目次 Contents
Abstract (Chinese) ........I
Abstract (English) .........II
Acknowledge ........IV
Contents .........V
Table List.........IX
Figure List ........X

Chapter 1 Color Science for Displays.....1
1.1 Introduction.........1
1.2 Tristimulus Values........1
1.3 CIE 1931 Chromaticity Coordinate Diagram....5
1.4 Principle of Rendering Images on LCDs....6
1.5 Human Vision Model........8
1.6 Motivation for Study.......10

Chapter 2 Study of Image Performance Rendered with Various RGB Sub.pixel Arrangements on the LCDs....11
2.1 Introduction .........11
2.2 MTF of Luminance of RGB Pixel Arrangement....12
2.3 Analysis of Color Shift of Rendering the Images of a Black Bar with a White Background Arrangement......14
2.4 Comparison of Color Uniformity of Various RGB Sub.pixel Arrangements.........16
2.5 Performance of Rendering Images with High Spatial Frequencies ...........18
2.6 Summary .........25

Chapter 3 Study of the Performance of an Image Rendered with Various RGBW Sub.pixel Arrangements and Color Conversion Algorithms on the LCDs....27
3.1 Introduction .........27
3.2 Proposed Algorithm of Color Conversion Used in RGBW LCDs with High Luminance and Small Color Shift....29
3.2.1 Simulated Pixel Units for Rendering Image....29
3.2.2 Curve Fitting of Electro.Optical Transfer Functions via Measurement ...........30
3.2.3 Illustration of the Proposed Color Conversion Algorithm...32
3.2.4 Accuracy of Our Proposed Color Mapping Conversion...35
3.2.5 Evaluation of Rendering Images with Respect to Simulated RGB and RGBW Pixel Units via Visual Perception and Color Measurements ..........37
3.2.6 RGB to RGBW Color Conversion of Other Groups....40
3.2.7 Decreased Luminance in an RGBW System....42
3.2.8 Threshold Value Selection for Our Proposed Color Conversion Algorithm.........43
3.2.9 Comparison of Imaging Performance Rendered with Other Algorithms..........45
3.3 Optimal RGBW Sub.pixel Arrangements on the LCDs with Quad Pixel Units ........51
3.3.1 Consideration with Human Vision Effect in Rendering Images..51
3.3.2 Analysis and Discussion of the Pseudo Color Phenomenon in Rendering Images.........53
3.4 Summary .........56

Chapter 4 Study of Color Conversion Algorithm from RGB to RGBCW and Comparison between Stripe RGBCW and RGBCY Patterns.......58
4.1 Introduction........58
4.2 Five Primary Color RGBCW LCDs......60
4.2.1 Pixel Units for Rendering Images and Color Gamut...60
4.2.2 Illustration of the Proposed Color Conversion Algorithm..61
4.2.3 Comparison and Evaluation of the Rendered Images by the RGB and RGBCW Color System Using the Proposed Algorithm...68
4.2.4 Significant Phenomenon of Color Imaging Performance Related to Both Sub.pixel Arrangements and White Sub.pixel Signals....71
4.3 Comparative Evaluation of the Imaging Performance of Multi.Primary Color LCDs with RGBCW and RGBCY Pixel Units by Simulation........76
4.3.1 Simulation of Pixel Units and Selection of Multi.primary Colors for Image Rendering........76
4.3.2 Comparison of Image Rendering by Visual Perception and Experimental Measurements........78
4.3.3 Analysis of Pseudo Color Phenomena in Image Rendering...82
4.4 Analysis of Color shift between Original and Simulated Color Checkers .........84
4.5 Summary .........85


Chapter 5 Future Work........87
5.1 Introduction........87
5.2 Motivation........92
Reference........95
參考文獻 Reference
[1] http://en.wikipedia.org/wiki/CIE1931
[2] http://climatesanity.wordpress.com/2009/07/18/more-on-compact-fluorescent-lights/
[3] Michiel A. Klompenhouwer, “Flat panel display signal processing : Static display resolution”, Technische Universiteit Eindhoven, pp.49-51 (2006).
[4] T. Nonaka, “Analytical simulator of color mixing process on large display surfaces,” Proceeding of IEEE Conference on Systems, Man and Cybernetics, 2613–2617 (2007).
[5] E. Chino et al., “Development of Wide Color Gamut Mobile Displays with Four Primary Color LCDs”, SID06 Digest, pp.1221-1224 (2006).
[6] C. S. Chang, “Color Image Improvement in Display with a Novel String Pixel Architecture”, IDW06, pp.1563-1566 (2004).
[7] C. C. Lai, “Brightness Improvement of Color LCD Systems Using White Sub-pixel Structure and Fuzzy Mapping Algorithm”, IEEE Transactions on Consumer Electronics, Vol. 53, No. 3, pp.1003-1010 (2007).
[8] A. Tsunoya, “Visual Evaluation of New Pixel Arrangements for Matrix Displays”, IDW06, pp.507-510 (2006).
[9] Tomohiro Hase, “Two Dimensional Modulation Transfer Function of Luminance on Display Images with a Mosaic pixel Structure,” IEEE Transactions on Consumer Electronics’, pp. 83–91 (1994).
[10] Stephen Westland, “Computational Colour Science Using MATLAB”, John Wiley & Sons (2004).
[11] Y. Li, “Design optimization of reflective polarizers for LCD backlight recycling,” J. Display Technol. 5, 335-340 (2009).
[12] M. F. Weber, “Giant birefringent optics in multilayer polymer mirrors,” Science 287, 2451-2456 (2000).
[13] F. Yamada, “Sequential color LCD based on OCB with an LED backlight,” J. Soc. Info. Display 10, 81-85 (2002).
[14] B. Lee, “TFT-LCD with RGBW color system,” SID03 Digest, Vol. 34,PP. 1212-1215 (2003).
[15] H. C. Kim, “Minimization of color shift generated in RGBW quad structure,” Proc. of SPIE-IS&T Electronic Imaging, SPIE Vol. 5666, 563-570 (2005).
[16] E. H. A. Langendijk, “Dynamic wide-color-gamut RGBW display,” SID07 Digest, Vol. 38, 1458-1461 (2007).
[17] Chi-Chang Lai, “A Modified Stripe-RGBW TFT-LCD with Image-Processing Engine for Mobile Phone Displays,” IEEE Transactions on Consumer Electronics, vol.53, no.4, pp.1628-1633, November (2007).
[18] Lili Wang, “Trade-off between Luminance and Color in RGBW Displays for Mobile-phone Usage”, SID07, pp.1142-1145(2007).
[19] Neveen Shlayan,“Energy Efficient RGBW Pixel Configuration for Light-Emitting Displays”, J. Display Technol., VOL. 5, NO. 11, pp.418-424, November (2009).
[20] http://www.clairvoyante.com
[21] http://www.babelcolor.com/main_level/ColorChecker.htm#ColorChecker_charts_formats
[22] Kuo-Yung Hung, “Manipulation image processing algorithmic technology to realize 1.8” RGBWtransflective TFT-LCDs with adjustable colour gamut”, Displays 29, pp.526–535(2008).
[23] Philips, Liquid Crystal Display Device with High Brightness, WO 01/37251 A1, 2001.
[24] Canon Kabushiki Kaisha, “Image Processing Apparatus which Extracts White Component Data”, US 5929843, 1999.
[25] B.W. Lee, Four Color Liquid Crystal Display and Driving Device and Method Thereof, US 2004/0046725 A1, 2004.
[26] W. Choe, “Subpixel rendering method for color error minimization on subpixel structured display,” Proc. of SPIE-IS&T Electronic Imaging, SPIE Vol. 6058, 60580F-1-60580F-9 (2005).
[27] Y. C. Yang, “Development of six primary-color LCD,” SID09 Digest, vol. 36, pp. 1210–1213 (2009).
[28] E. Chino, “Development of wide-color-gamut mobile displays with four-primary-color LCDs,” SID06 Digest, vol. 37, pp. 1221–1224 (2006).
[29] K. Yoshiyama, “A new advantage of multi-primary color displays,” SID10 Digest, vol. 41, pp. 281–282(2010).
[30] J. H. Lee, Introduction to Flat Panel Displays (Wiley, 2008)
[31] H. C. Cheng, “Five-primary-color LCDs,” J. Display Technol. 6, pp. 3–7(2010).
[32] T. Ajito, “Color conversion method for multiprimary display using matrix switching,” Opt. Rev. 8, pp. 191–197 (2001).
[33] Wonhee Choe, “Subpixel Rendering Method for Color Error Minimization on Subpixel Structured Display”, SPIE-IS&T/ vol. 6058 60580F-1 (2006).
[34] KENNETH N. OGLE,“Some Aspects of Stereoscopic Depth Perception,”JOSA, vol.57, pp. 1073–1081, 1967.
[35] Pierre St. Hilaire, “Electronic display system for computational holography,” SPIE, vol. 1212, pp. 174–182 (1990).
[36] Armin Schwerdtner, “Autostereoscopic 3D Display,” SPIE-IS&T, vol. 6055, 60550T, pp1-10 (2006).
[37] Parviz Soltan, “Laser based 3D volumetric display system,” SPIE, vol. 1664, pp. 177–192 (1992).
[38] Cees van Berke1, “Image Preparation for 3D-LCD,” SPIE, vol. 3639, pp. 84–91 (1999).
[39] Hui Nam, “Auto-Stereoscopic Swing 3D Display”, SID05, pp.94-97, 2005.
[40] Dick K.G. de Boer, “Switchable lenticular based 2D/3D displays,” SPIE-IS&T, Vol. 6490, 64900R, pp1-8 (2007).
[41] Hyung Ki Hong, “Autostereoscopic multi-view 3D display with pivot function using the image display of the square subpixel structure,” Displays 29, pp512-520 (2008).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-09-09起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-09-09起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw