進階搜尋


下載電子全文  
系統識別號 U0026-0309201408242900
論文名稱(中文) 利用旅波式電場進行電泳拉伸單一巨分子鏈
論文名稱(英文) Electrophoretic Stretching of a Single Macromolecular Chain by Travelling Wave Electric Field
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 102
學期 2
出版年 103
研究生(中文) 黎彥慶
研究生(英文) Yen-Ching Li
學號 N38961208
學位類別 博士
語文別 中文
論文頁數 87頁
口試委員 指導教授-溫添進
指導教授-魏憲鴻
口試委員-莊怡哲
口試委員-詹正雄
口試委員-胡啟章
召集委員-曹恆光
中文關鍵字 溶球-拉伸轉變  電泳  旅波式電場 
英文關鍵字 coil-stretch transition  electrophoresis  travelling wave electric field 
學科別分類
中文摘要 本論文從理論上探討如何利用旅波式電場進行電泳拉伸單一的巨分子鏈。藉由簡單彈性啞鈴模型,我們發現不論有無熱擾動(thermal fluctuations)的影響,在此系統中的分子鏈拉伸行為都與在一般的穩定或交流電場中的表現截然不同。從不含熱擾動的確定性系統研究(第4章)中可以得知,旅波式電場產生的不對稱電場波動可以拉伸一端被釘住的帶電巨分子鏈,並使其拉伸向著電場的傳播方向。分子鏈的週期平均拉伸量也會隨著電場強度而增加,但在電場波形的移動速度(以下簡稱波速)增快時反而減少。且因為旅波式電場的不對稱性,即便電場的週期平均為0仍可造成拉伸,這將會是令人驚奇的嶄新方法。
  因為自由能景觀(free energy landscape)在旅波式電場中,如同具有雙能量井或多重能量井的振動諧振子,分子鏈會因為熱擾動自較高能階的拉伸狀態(stretched state)躍遷至較低能階的溶球狀態(coil state)。因此在隨機性系統(第5章)的研究中,我們發展出一套理論,並經過布朗動態模擬驗證,只要電場波速仍在發生拉伸縮減的限界之下,且熱擾動不超過外力場的極限,增加電場波速有助於防止分子鏈躍遷回溶球狀態,進而保住分子鏈的拉伸。
  此外,依據拉伸量的不同,將導向兩種不同的躍遷動力學,並決定如何進行溶球-拉伸轉變(coil-stretch transition):雙能量井躍遷(double-well hopping)與多能量井躍遷(multiwell hopping),分別對應於雙能量井與多重能量井。這些特性是旅波式電場與熱擾動效應的共同作用結果,可由舌形的溶球-拉伸相圖描述,並得知在保持拉伸的條件。由上述的發現與研究成果,我們也提出了應用方法,利用週期拉伸的巨分子鏈在奈米尺度甚至單分子層級上進行動態的分子探測與控制。
英文摘要 A tunable cyclic stretching of a single tethered charged macromolecular chain can be realized through the use of a travelling wave electric field that generates a moving ratchet-like free energy landscape. In that case, the chain is trapped and pulled to a higher energy level. However, if the energy barrier is about kBT or less, it is not able to impede the chain to hop back to coiled state at lower energy level due to thermal fluctuations. We explore such unique stretching dynamics by using a simple dumbbell model for both deterministic and stochastic system without and with fluctuations, respectively. For the deterministic part, we find stretching can be enhanced by increasing the field strength, De, but damped with the increase of wave speed, α. For the stochastic part, we propose double-well hopping and multiwell hopping followed by correspondingly Arrhenius law and Kramers law. With all the knowledge from both deterministic and stochastic studies, we can understand the criteria of stretching through the tongue-like coil-stretch phase diagram confirmed by Brownian dynamics simulation. In addition, we provide two applications: (1) dynamic molecular probing and detection at single molecular level and (2) use of cyclic stretching in regulating molecular adsorption and desorption.
論文目次 摘要 i
Extended Abstract ii
致謝 vi
目錄 vii
圖目錄 x
表目錄 xii
第1章 緒論 1
1-1 研究背景 1
1-2 研究動機與方法 2
第2章 基本理論 5
2-1 電泳(Electrophoresis) 5
2-2 旅波式電場(Travelling Wave Electric Field) 8
2-3 巨分子鏈的模擬方法 10
第3章 分子鏈動態模型 16
3-1 旅波式電場微裝置 16
3-2 啞鈴模型(Dumbbell Model) 16
3-2.1 啞鈴模型的適用性 18
3-3 數值方法 20
3-3.1 確定性系統(Deterministic System) 20
3-3.2 隨機性系統(Stochastic System) 20
第4章 分子鏈的動態行為(確定性系統) 23
4-1 不對稱的拉力與壓縮力 23
4-2 分子鏈拉伸與回縮之競爭 24
4-2.1 旅波式電場的雙重性質 24
4-2.2 無翻轉拉伸 (no-flip stretching) 25
4-2.3 定義拉伸量 26
4-3 不同拉伸模式的效應 27
4-3.1 弱拉伸 (De << 1) 28
4-3.2 強拉伸 (De >> 1) 28
4-3.3 慢拉伸 (α << 1) 28
4-3.4 快拉伸 (α >> 1) 29
4-3.5 總結 29
4-3.6 實驗的參數選擇 30
4-4 分子鏈動態與自由能景觀的遲滯效應 31
第5章 分子鏈的動態行為(隨機性系統) 47
5-1 熱擾動所致躍遷行為及在震動諧振子中的溶球-拉伸轉變 47
5-1.1 雙能量井躍遷 (Double-Well Hopping) 49
5-1.2 多能量井躍遷 (Multiwell Hopping) 50
5-1.3 電場波速與熱擾動強度的效應 52
5-2 利用理論預測溶球-拉伸相圖與布朗動態模擬之驗證 53
第6章 應用旅波式電場的拉伸效應實現動態分子探測 60
6-1 連續脈衝式分子轟炸流的動態拉伸 60
6-2 利用循環拉伸過程調整分子吸附與脫附 63
第7章 結論 73
第8章 附錄 75
8-1 強電場的極限拉伸功 75
8-2 弱電場的平均位移 77
參考文獻 81
參考文獻 [1] A. Bensimon, A. Simon, A. Chiffaudel, V. Croquette, F. Heslot & D. Bensimon. 1994 Alignment and sensitive detection of DNA by a moving interface. Science 265(5181), 2096–2098.
[2] Eugene Y. Chan, Nuno M. Goncalves, Rebecca A. Haeusler, Amie J. Hatch, Jonathan W. Larson, Anthony M. Maletta, Gregory R. Yantz, Eugene D. Carstea, Martin Fuchs, Gordon G. Wong, Steven R. Gullans & Rudolf Gilmanshin. 2004 DNA mapping using microfluidic stretching and single-molecule detection of fluorescent site-specific tags. Genome Research 14, 1137–1146.
[3] Ji Hoon Kim, Venkat Ram Dukkipati, Stella W. Pang & Ronald G. Larson. 2007 Stretching and immobilization of DNA for studies of protein–DNA interactions at the single-molecule level. Nanoscale Research Letters 2, 185–201.
[4] Berenike Maier, David Bensimon & Vincent Croquette. 2000 Replication by a single DNA polymerase of a stretched single-stranded DNA. Proceedings of the National Academy of Sciences of the United States of America 97(22), 12002–12007.
[5] Jan Regtmeier, Ralf Eichhorn, Lukas Bogunovic, Alexandra Ros & Dario Anselmetti. 2010 Dielectrophoretic trapping and polarizability of DNA: The role of spatial conformation. Analytical Chemistry 82(17), 7141–7149.
[6] Vijay S. Pande, Alexander Yu. Grosberg & Toyoichi Tanaka. 2000 Heteropolymer freezing and design: Towards physical models of protein folding. Review of Modern Physics 72(1), 259–314.
[7] Jau-Ye Shiu, Chun-Wen Kuo & Peilin Chen. 2004 Actively controlled self-assembly of colloidal crystals in microfluidic networks by electrocapillary forces. Journal of the American Chemical Society 126(26), 8096–8097.
[8] Liz Y. Wu, Dino Di Carlo & Luke P. Lee. 2008 Microfluidic self-assembly of tumor spheroids for anticancer drug discovery. Biomedical Microdevices 10(2), 197–202.
[9] Zhihong Nie, Wei Li, Minseok Seo, Shengqing Xu & Eugenia Kumacheva. 2006 Janus and ternary particles generated by microfluidic synthesis: Design, synthesis and self-assembly. Journal of the American Chemical Society 128(29), 9408–9412.
[10] Joachim O. Rädler, Ilya Koltover, Tim Salditt & Cyrus R. Safinya. 1997 Structure of DNA–cationic liposome complexes: DNA intercalation in multilamellar membranes in distinct interhelical packing regimes. Science 275(5301) 810–814.
[11] Gerald S. Manning. 1969 Limiting laws and counterion condensation in polyelectrolyte solutions I. Colligative properties. The Journal of Chemical Physics 51(3), 924–933.
[12] Fumio Oosawa. 1971 Polyelectrolytes. Marcel Dekker.
[13] Victor A. Bloomfield. 1997 DNA condensation by multivalent cations. Biopolymers 44(3), 269–282.
[14] Shu-Fu Hsieh & Hsien-Hung Wei. 2009 Entropic trap, surface-mediated combing, and assembly of DNA molecules within submicrometer interfacial confinement. Physical Review E 79(2), 021901.
[15] Michelle D. Wang, Hong Yin, Robert Landick, Jeff Gelles & Steven M. Block. 1997 Stretching DNA with optical tweezers. Biophysical Journal 72, 1335–1346.
[16] Steven B. Smith, Laura Finzi & Carlos Bustamante. 1992 Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads. Science 258(5085), 1122–1126.
[17] Patrick S. Doyle, Benoit Ladoux & Jean-Louis Viovy. 2000 Dynamics of a tethered polymer in shear flow. Physical Review Letters 84(20), 4769–4772.
[18] Sean Ferree & Harvey W. Blanch. 2003 Electrokinetic stretching of tethered DNA. Biophysical Journal 85(4), 2539–2546.
[19] Jean-Louis Viovy. 2000 Electrophoresis of DNA and other polyelectrolytes: Physical mechanisms. Review of Modern Physics 72(3), 813–872.
[20] Hsien-Hung Wei. 2007 Dynamic surfing and trapping of charged colloids in a traveling-wave electrophoretic ratchet. Applied Physics Letters 90(20), 204103.
[21] Pierre-Gilles de Gennes. 1974 Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients. The Journal of Chemical Physics 60(12), 5030–5042.
[22] Vijay Namasivayam, Ronald G. Larson, David T. Burke & Mark A. Burns. 2002 Electrostretching DNA molecules using polymer-enhanced media within microfabricated devices. Analytical Chemistry 74(14), 3378–3385.
[23] David C. Duffy, J. Cooper McDonald, Olivier J. A. Schueller & George M. Whitesides. 1998 Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Analytical Chemistry 70(23), 4974–4984.
[24] J. Cooper McDonald & George M. Whitesides. 2002 Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices. Accounts of Chemical Research 35(7), 491–499.
[25] Allen J. Bard & Larry R. Faulkner. 2000 Electrochemical Methods – Fundamentals and Applications, 2nd ed. Wiley, pp.12–14.
[26] John Gregory. 2005 Particles in Water: Properties and Processes. CRC press, p. 54.
[27] Marian Ritter von Smolan Smoluchowski. 1903 Contribution a la theorie de l’endosmose electrique et de quelques phenomenes correlatifs. Bulletin International de L'Académie Des Sciences de Cracovie, Classe Des Sciences Mathématiques Et Naturelles 8, 182–200.
[28] Greg C. Randall & Patrick S. Doyle. 2004 Electrophoretic collision of a DNA molecule with an insulating post. Physical Review Letters 93(5), 058102.
[29] Greg C. Randall and Patrick S. Doyle. 2005 DNA deformation in electric fields: DNA driven past a cylindrical obstruction. Macromolecules 38, 2410–2418.
[30] Jie Wu, Yuxing Ben, David Battigelli & Hsueh-Chia Chang. 2005 Long-range AC electroosmotic trapping and detection of bioparticles. Industrial & Engineering Chemistry Research 44(8), 2815–2822.
[31] Wee Yang Ng, Shireen Goh, Yee Cheong Lam, Chun Yang & Isabel Rodríguez. 2009 DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels. Lab on a Chip 9(6), 802–809.
[32] Martin Pumera, Joseph Wang, Eli Grushka & Ronen Polsky. 2001 Gold nanoparticle-enhanced microchip capillary electrophoresis. Analytical Chemistry 73(22), 5625–5628.
[33] Li Cui, David Holmes & Hywel Morgan. 2001 The dielectrophoretic levitation and separation of latex beads in microchips. Electrophoresis 22(18), 3893–3901.
[34] B. Bakajin, T. A. J. Duke, C. F. Chou, S. S. Chan, R. H. Austin & E. C. Cox. 1998 Electrohydrodynamic stretching of DNA in confined environments. Physical Review Letters 80(12), 2737–2740.
[35] T. B. Jones, Jesse David Fowler, Young Soo Chang, Chang-Jin Kim. 2003 Frequency-based relationship of electrowetting and dielectrophoretic liquid microactuation. Langmuir 19(18), 7646–7651.
[36] M. B. Fox, D. C. Esveld, A. Valero, R. Luttge, H. C. Mastwijk, P. V. Bartels, A. van den Berg & R. M. Boom. 2006 Electroporation of cells in microfluidic devices: a review. Analytical and Bioanalytical Chemistry 385(3), 474–485.
[37] Dietrich Kohlheyer, Jan C. T. Eijkel, Stefan Schlautmann, Albert van den Berg & Richard B. M. Schasfoort. 2008 Bubble-free operation of a microfluidic free-flow electrophoresis chip with integrated Pt electrodes. Analytical Chemistry 80(11), 4111–4118.
[38] Mehdi Moini, Ping Cao & Allen J. Bard. 1999 Hydroquinone as a Buffer Additive for Suppression of Bubbles Formed by Electrochemical Oxidation of the CE Buffer at the Outlet Electrode in Capillary Electrophoresis/Electrospray Ionization-Mass Spectrometry. Analytic Chemistry 71(8), 1658–1661.
[39] Shengqin Wang, Hsueh-Chia Chang & Yingxi Zhu. 2010 Hysteretic conformational transition of single flexible polyelectrolyte under resonant AC electric polarization. Macromolecules 43(18), 7402–7405.
[40] Hongjun Liu, Yingxi Zhu & Edward Maginn. 2010 Molecular simulation of polyelectrolye conformational dynamics under an AC electric field. Macromolecules 43(10), 4805–4813.
[41] Pai-Yi Hsiao, Yu-Fu Wei & Hsueh-Chia Chang. 2011 Unfolding collapsed polyelectrolytes in alternating-current electric fields. Soft Matter 7(3), 1207–1213.
[42] Torsten Müller, W. Michael Arnold, Thomas Schnelle, Rolf Hagedorn, Günter Fuhr & Ulrich Zimmermann. 1993 A traveling-wave micropump for aqueous solutions: Comparison of 1 g and μg results. Electrophoresis 14(8), 764–772.
[43] 黃昱翔,2011,具端點釘附之DNA分子於外加電場作用下的拉伸及鬆弛行為探討,碩士論文,國立成功大學。
[44] Boyd F. Edwards, Aaron T. Timperman, R. Lloyd Carroll, Kyoo Jo, Jon M. Mease & Jarrod E. Schiffbauer. 2009 Traveling-wave electrophoresis for microfluidic separations. Physical Review Letters 102(7), 076103.
[45] S. G. Gregory et al. 2006 The DNA sequence and biological annotation of human chromosome 1. Nature 441, 315-321.
[46] Angelo Rosa & Ralf Everaers. 2008 Structure and dynamics of interphase chromosomes. PLOS Computational Biology 4(8), e1000153.
[47] Harold R. Warner, Jr. 1972 Kinetic theory and rheology of dilute suspensions of finitely extendible dumbbells. Industrial & Engineering Chemistry Fundamentals 11(3), 287–430.
[48] Markus Herrchen, Hans Christian Öttinger. 1997 A detailed comparison of various FENE dumbbell models. Journal of Non-Newtonian Fluid Mechanics 68, 17–42.
[49] Patrick T. Underhill & Patrick S. Doyle. 2007 DNA stretch during electrophoresis due to a step change in mobility. Physical Review E 76(1), 011805.
[50] Shu-Fu Hsieh, Chia-Pu Chang, Yi-Je Juang & Hsien-Hung Wei. 2008 Stretching DNA with electric fields beneath submicron interfacial constriction created by a closely fitting microdroplet in a microchannel. Applied Physics Letters 93(8), 084103.
[51] Earle Stellwagen & Nancy C. Stellwagen. 2002 Determining the electrophoretic mobility and translational diffusion coefficients of DNA molecules in free solution. Electrophoresis 23, 2794–2803.
[52] Nancy C. Stellwagen & Earle Stellwagen. 2009 Effect of the matrix on DNA electrophoretic mobility. Journal of Chromatography A 1216(10), 1917–1929.
[53] Kyoo D. Jo, Jarrod E. Schiffbauer, Boyd E. Edwards, R. Lloyd Carroll & Aaron T. Timperman. 2012 Fabrication and performance of a microfluidic traveling-wave electrophoresis system. Analyst 137, 875–883.
[54] Alan C. Hindmarsh. 1980 LSODE and LSODI, two new initial value ordinary differnetial equation solvers. ACM SIGNUM Newsletter 15(4), 10–11.
[55] Masanori Ueda, Kenichi Yoshikawa & Masao Doi. 1997 Stretching of long DNA under alternating current electric fields in a concentrated polymer solution. Polymer Journal 29(12), 1040–1043.
[56] Masanori Ueda, Kenichi Yoshikawa & Masao Doi. 1999 Molecular motion of long deoxyribonucleic acid chains in a concentrated polymer solution depending on the frequency of alternating electric field. Polymer Journal 31(8), 637–644.
[57] Robert A. Holt et al. 2002 The genome sequence of the malaria mosquito Anopheles gambiae. Science 298(5591), 129–149.
[58] Hazen P. Babcock, Rodrigo E. Teixeira, Joe S. Hur, Eric Stefan Garrido Shaqfeh & Steven Chu. 2003 Visualization of molecular fluctuations near the critical point of the coil−stretch transition in polymer elongation. Macromolecules 36(12), 4544–4548.
[59] Victor A. Beck & Eric Stefan Garrido Shaqfeh. 2006 Ergodicity breaking and conformational hysteresis in the dynamics of a polymer tethered at a surface stagnation point. The Journal of Chemical Physics 124(9), 094902.
[60] Hendrik Anthony Kramers. 1940 Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7(4), 284–304.
[61] Wilson C. K. Poon & D. Andelman. 2006 Soft Condensed Matter Physics in Molecular and Cell Biology. CRC Press, pp. 128–132.
[62] John C. Berg. 2010 An Introduction to Interfaces & Colloids: The Bridge to Nanoscience. World Scientific, pp. 135–137.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-09-10起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-09-10起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw