進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0309201215000100
論文名稱(中文) 運動訓練與經皮神經電刺激對大鼠遭受皮膚肌肉切口牽拉所導致的持久性術後疼痛之影響
論文名稱(英文) Effect of Exercise Training and Transcutaneous Electric Nerve Stimulation on Persistent Postoperative Pain Caused by Skin/Muscle Incision and Retraction in Rats
校院名稱 成功大學
系所名稱(中) 物理治療研究所
系所名稱(英) Department of Physical Therapy
學年度 100
學期 2
出版年 101
研究生(中文) 林旻霏
研究生(英文) Min-Fei Lin
學號 T66991038
學位類別 碩士
語文別 英文
論文頁數 53頁
口試委員 指導教授-洪菁霞
口試委員-陳郁文
口試委員-劉彥青
中文關鍵字 皮膚肌肉切口牽拉手術  術後疼痛  觸痛覺過度敏感  痛覺過度敏感  運動  經皮神經電刺激 
英文關鍵字 SMIR  postoperative pain  allodynia  hyperalgesia  exercise  TENS 
學科別分類
中文摘要 研究背景與目的:接受手術處理的病人通常都會有術後疼痛的問題,在組織受傷後,脊髓內的發炎前趨物的細胞激素會增加,例如介白素6 (interleukin 6)、介白素1β (interleukin 1β)、腫瘤壞死因子α (tumor necrosis factor-α)、物質P (substance P)與NMDA受體1(NR1),進而導致觸痛覺過度敏感與痛覺過度敏感。在本篇實驗中,我們使用類似於臨床手術的SMIR術後疼痛模式。先前的研究透過動物實驗發現,運動訓練與經皮神經電刺激可以減緩術後疼痛的症狀,因此本實驗的目的主要在探討運動訓練與經皮神經電刺激是否可以改善因手術過後所帶來的感覺過度敏感以及其機制探討。方法:將六週大雄性Wistar大鼠進行手術模擬術後疼痛模式,分為假手術組、SMIR未訓練組、SMIR運動訓練組、SMIR經皮神經電刺激組。在成功誘發出術後疼痛後的第七天開始介入運動與電刺激。運動鼠於跑步機進行訓練,一週跑五天,每天跑60分鐘,每次以18公尺/分鐘的速度進行。經皮神經電刺激所設定的參數為頻率100 Hz、波寬100 μs,一週給予五天的電刺激,每天20分鐘。術後疼痛的症狀則是藉以測量觸覺敏感的 Von Frey filaments 和痛覺敏感的 plantar test來表示。在最後一天的介入治療後24小時,會取出坐骨神經、周邊神經、背根神經結與脊髓,NR1與SP的表現量是以西方墨點法來測量,細胞激素則是利用酵素連結免疫吸附法進行分析。結果:運動組與電刺激組的老鼠在觸痛覺過度敏感測試與痛覺過度敏感測試的部分,皆有顯著改善,其中又以電刺激的效果優於運動所帶來的效益。因為在脊髓與背根神經節中,物質P、NR1、介白素6、介白素1β與腫瘤壞死因子α在經過四周的運動訓練與經皮神經電刺激的治療後,兩組的表現量相較於靜態組有明顯降低,而降低的幅度又以經皮神經電刺激組較多。不過在坐骨神經與周邊神經,我們並未偵測有介白素1β與腫瘤壞死因子α的表現。結論:運動訓練與經皮神經電刺激有助於改善術後所造成的疼痛問題,並可能與降低物質P、NR1、介白素6、介白素1β與腫瘤壞死因子α有關。
英文摘要 Background and Purpose: Postoperative pain is a common problem for those who had underwent surgical procedures. After tissue was damaged, level of pro-inflammatory cytokines, ie. interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), interleukin-1beta (IL-1β), and the substance P (SP), N-methyl-D-aspartate (NMDA) receptor 1 (NR1) in spinal cord would be increased and lead to hyperalgesia and allodynia. In this study, we select a rat model of persistent postoperative pain evoked by skin/muscle incision and retraction (SMIR), similar to a clinical procedure. Previous studies have shown that exercise and transcutaneous electric nerve stimulation (TENS) which capable of reversing signs of sensory hypersensitivity. The purpose of this study is to determine the effects of exercise and TENS on postoperative pain and its underlying mechanism. Methods: Thirty-two male Sprague-Dawley rats were randomly assigned to one of the following groups: sham-operated group, SMIR rats without exercise training group, SMIR rats with exercise training group and SMIR rats with TENS group. The trained rats were trained to run on a forced treadmill at 18m/min, 60 min/day, 5 day/week for 4 weeks. The TENS were set at 100 Hz and 100μs, 20 min/day, 5 day/week for 4 weeks. Von Frey filaments and plantar test were used to evaluate the symptoms of postoperative pain. Twenty-four hours after the last exercise and TENS sessions, L4-L6 dorasl root ganglion (DRG) and spinal cord are collected for analysis. NR1 and SP expressions were determined by western blot and the levels of cytokines were detected by Enzyme-Linked ImmunoSorbent Assay (ELISA). Results: There were significant improvements in tactile allodynia and thermal hyperalgesia in SMIR rats with exercise training and TENS. Moreover, TENS group performed better benefits than exercise group. Expression of NR1, SP, IL-1β, IL-6 and TNF-α in spinal cord and dorsal root ganglion were suppressed after 4 weeks of exercise and TENS, and much more significance was observed in TENS group. However, the levels of IL-1β and TNF-α were under detective in sciatic and peripheral nerves. Conclusion: These results indicate that exercise training and TENS can reverse the symptoms of postoperative pain in SMIR-operated rats and are probably through decreasing of NR1, SP, IL-1β, IL-6 and TNF-α in nerves.
論文目次 Contents

Pages
Abbreviations---------------------------------------------------------------------Ⅰ
Abstract---------------------------------------------------------------------------Ⅱ
Chinese Abstract-----------------------------------------------------------------Ⅳ
誌謝-------------------------------------------------------------------------------Ⅵ
List of Figures-------------------------------------------------------------------Ⅷ
Introduction------------------------------------------------------------------------1
Methods----------------------------------------------------------------------------7
Results-----------------------------------------------------------------------------15
Discussion------------------------------------------------------------------------18
References------------------------------------------------------------------------27
參考文獻 References
1. Cunningham, J., et al., Cooperative hernia study. Pain in the postrepair patient. Ann Surg, 1996. 224(5): p. 598-602.
2. Eisenberg, E., et al., Prevalence and characteristics of post coronary artery bypass graft surgery pain (PCP). Pain, 2001. 92(1-2): p. 11-7.
3. Shea, R.A., et al., Pain intensity and postoperative pulmonary complications among the elderly after abdominal surgery. Heart Lung, 2002. 31(6): p. 440-9.
4. Pavlin, D.J., et al., Pain as a factor complicating recovery and discharge after ambulatory surgery. Anesth Analg, 2002. 95(3): p. 627-34, table of contents.
5. Brennan, T.J., E.P. Vandermeulen, and G.F. Gebhart, Characterization of a rat model of incisional pain. Pain, 1996. 64(3): p. 493-501.
6. Duarte, A.M., et al., Reduction of postincisional allodynia by subcutaneous bupivacaine: findings with a new model in the hairy skin of the rat. Anesthesiology, 2005. 103(1): p. 113-25.
7. Buvanendran, A., et al., Characterization of a new animal model for evaluation of persistent postthoracotomy pain. Anesth Analg, 2004. 99(5): p. 1453-60; table of contents.
8. Flatters, S.J., Characterization of a model of persistent postoperative pain evoked by skin/muscle incision and retraction (SMIR). Pain, 2008. 135(1-2): p. 119-30.
9. Brennan, T.J., P.K. Zahn, and E.M. Pogatzki-Zahn, Mechanisms of incisional pain. Anesthesiol Clin North America, 2005. 23(1): p. 1-20.
10. Sandkuhler, J., Models and mechanisms of hyperalgesia and allodynia. Physiol Rev, 2009. 89(2): p. 707-58.
11. DeSantana, J.M., et al., Effectiveness of transcutaneous electrical nerve stimulation for treatment of hyperalgesia and pain. Curr Rheumatol Rep, 2008. 10(6): p. 492-9.
12. Nishimura, W., et al., Characterization of N-methyl-D-aspartate receptor subunits responsible for postoperative pain. Eur J Pharmacol, 2004. 503(1-3): p. 71-5.
13. Kawamata, M., et al., Changes in response properties and receptive fields of spinal dorsal horn neurons in rats after surgical incision in hairy skin. Anesthesiology, 2005. 102(1): p. 141-51.
14. Stubhaug, A., et al., Mapping of punctuate hyperalgesia around a surgical incision demonstrates that ketamine is a powerful suppressor of central sensitization to pain following surgery. Acta Anaesthesiol Scand, 1997. 41(9): p. 1124-32.
15. Roytblat, L., et al., Postoperative pain: the effect of low-dose ketamine in addition to general anesthesia. Anesth Analg, 1993. 77(6): p. 1161-5.
16. Wei, H. and A. Pertovaara, Influence of preemptive treatment with MK-801, an N-methyl-D-aspartate receptor antagonist, on development of neuropathic symptoms induced by spinal nerve ligation in the rat. Anesthesiology, 1999. 91(1): p. 313-6.
17. Burton, A.W., et al., Preemptive intrathecal ketamine injection produces a long-lasting decrease in neuropathic pain behaviors in a rat model. Reg Anesth Pain Med, 1999. 24(3): p. 208-13.
18. Hamidi, G.A., et al., Co-administration of MK-801 and morphine attenuates neuropathic pain in rat. Physiol Behav, 2006. 88(4-5): p. 628-35.
19. Da Silva, L.F., et al., Changes in expression of NMDA-NR1 receptor subunits in the rostral ventromedial medulla modulate pain behaviors. Pain, 2010. 151(1): p. 155-61.
20. Sommer, C. and M. Kress, Recent findings on how proinflammatory cytokines cause pain: peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci Lett, 2004. 361(1-3): p. 184-7.
21. Woolf, C.J., et al., Cytokines, nerve growth factor and inflammatory hyperalgesia: the contribution of tumour necrosis factor alpha. Br J Pharmacol, 1997. 121(3): p. 417-24.
22. Opree, A. and M. Kress, Involvement of the proinflammatory cytokines tumor necrosis factor-alpha, IL-1 beta, and IL-6 but not IL-8 in the development of heat hyperalgesia: effects on heat-evoked calcitonin gene-related peptide release from rat skin. J Neurosci, 2000. 20(16): p. 6289-93.
23. Watkins, L.R. and S.F. Maier, Immune regulation of central nervous system functions: from sickness responses to pathological pain. J Intern Med, 2005. 257(2): p. 139-55.
24. Guo, W., et al., Glial-cytokine-neuronal interactions underlying the mechanisms of persistent pain. J Neurosci, 2007. 27(22): p. 6006-18.
25. Kawasaki, Y., et al., Cytokine mechanisms of central sensitization: distinct and overlapping role of interleukin-1beta, interleukin-6, and tumor necrosis factor-alpha in regulating synaptic and neuronal activity in the superficial spinal cord. J Neurosci, 2008. 28(20): p. 5189-94.
26. DeVane, C.L., Substance P: a new era, a new role. Pharmacotherapy, 2001. 21(9): p. 1061-9.
27. Hua, X.Y., et al., Intrathecal substance P-induced thermal hyperalgesia and spinal release of prostaglandin E2 and amino acids. Neuroscience, 1999. 89(2): p. 525-34.
28. Nakayama, T., et al., NMDA and AMPA receptors contribute to the maintenance of substance P-induced thermal hyperalgesia. Neurosci Res, 2010. 67(1): p. 18-24.
29. Dionne, R.A., et al., The substance P receptor antagonist CP-99,994 reduces acute postoperative pain. Clin Pharmacol Ther, 1998. 64(5): p. 562-8.
30. Korb, A., et al., Effect of treadmill exercise on serotonin immunoreactivity in medullary raphe nuclei and spinal cord following sciatic nerve transection in rats. Neurochem Res, 2010. 35(3): p. 380-9.
31. Ilha, J., et al., Endurance and resistance exercise training programs elicit specific effects on sciatic nerve regeneration after experimental traumatic lesion in rats. Neurorehabil Neural Repair, 2008. 22(4): p. 355-66.
32. van Meeteren, N.L., et al., Exercise training improves functional recovery and motor nerve conduction velocity after sciatic nerve crush lesion in the rat. Arch Phys Med Rehabil, 1997. 78(1): p. 70-7.
33. Seo, T.B., et al., Involvement of Cdc2 in axonal regeneration enhanced by exercise training in rats. Med Sci Sports Exerc, 2006. 38(7): p. 1267-76.
34. Stagg, N.J., et al., Regular exercise reverses sensory hypersensitivity in a rat neuropathic pain model: role of endogenous opioids. Anesthesiology, 2011. 114(4): p. 940-8.
35. Bement, M.K. and K.A. Sluka, Low-intensity exercise reverses chronic muscle pain in the rat in a naloxone-dependent manner. Arch Phys Med Rehabil, 2005. 86(9): p. 1736-40.
36. Sabatier, M.J., et al., Treadmill training promotes axon regeneration in injured peripheral nerves. Exp Neurol, 2008. 211(2): p. 489-93.
37. Shankarappa, S.A., E.S. Piedras-Renteria, and E.B. Stubbs, Jr., Forced-exercise delays neuropathic pain in experimental diabetes: effects on voltage-activated calcium channels. J Neurochem, 2011. 118(2): p. 224-36.
38. Kuphal, K.E., E.E. Fibuch, and B.K. Taylor, Extended swimming exercise reduces inflammatory and peripheral neuropathic pain in rodents. J Pain, 2007. 8(12): p. 989-97.
39. Melzack, R. and P.D. Wall, Pain mechanisms: a new theory. Science, 1965. 150(3699): p. 971-9.
40. Johnson, M., Transcutaneous electrical nerve stimulation (TENS). 1997. 17: p. 259-282.
41. Ainsworth, L., et al., Transcutaneous electrical nerve stimulation (TENS) reduces chronic hyperalgesia induced by muscle inflammation. Pain, 2006. 120(1-2): p. 182-7.
42. King, E.W. and K.A. Sluka, The effect of varying frequency and intensity of transcutaneous electrical nerve stimulation on secondary mechanical hyperalgesia in an animal model of inflammation. J Pain, 2001. 2(2): p. 128-33.
43. Sluka, K.A., et al., Treatment with either high or low frequency TENS reduces the secondary hyperalgesia observed after injection of kaolin and carrageenan into the knee joint. Pain, 1998. 77(1): p. 97-102.
44. Somers, D.L. and F.R. Clemente, Contralateral high or a combination of high- and low-frequency transcutaneous electrical nerve stimulation reduces mechanical allodynia and alters dorsal horn neurotransmitter content in neuropathic rats. J Pain, 2009. 10(2): p. 221-9.
45. Hargreaves, K., et al., A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain, 1988. 32(1): p. 77-88.
46. Sluka, K.A., et al., Treatment with either high or low frequency TENS reduces. Pain, 1998. 77: p. 97-102.
47. Ozaktay, A.C., et al., Effects of interleukin-1 beta, interleukin-6, and tumor necrosis factor on sensitivity of dorsal root ganglion and peripheral receptive fields in rats. Eur Spine J, 2006. 15(10): p. 1529-37.
48. Brenn, D., F. Richter, and H.G. Schaible, Sensitization of unmyelinated sensory fibers of the joint nerve to mechanical stimuli by interleukin-6 in the rat: an inflammatory mechanism of joint pain. Arthritis Rheum, 2007. 56(1): p. 351-9.
49. Flatters, S.J., Effect of analgesic standards on persistent postoperative pain evoked by skin/muscle incision and retraction (SMIR). Neuroscience Letters, 2010. 477: p. 43-47.
50. Hingne, P.M. and K.A. Sluka, Differences in waveform characteristics have no effect on the anti-hyperalgesia produced by transcutaneous electrical nerve stimulation (TENS) in rats with joint inflammation. J Pain, 2007. 8(3): p. 251-5.
51. Chen, Y.W., et al., Exercise training attenuates neuropathic pain and cytokine expression after chronic constriction injury of rat sciatic nerve. Anesth Analg, 2012. 114(6): p. 1330-7.
52. Hosseini, M., et al., Treadmill exercise reduces self-administration of morphine in male rats. Pathophysiology, 2009. 16(1): p. 3-7.
53. Meeusen, R. and K. De Meirleir, Exercise and brain neurotransmission. Sports Med, 1995. 20(3): p. 160-88.
54. Hwang, B.G., et al., Effects of electroacupuncture on the mechanical allodynia in the rat model of neuropathic pain. Neurosci Lett, 2002. 320(1-2): p. 49-52.
55. Dong, Z.Q., et al., Down-regulation of GFRalpha-1 expression by antisense oligodeoxynucleotide attenuates electroacupuncture analgesia on heat hyperalgesia in a rat model of neuropathic pain. Brain Res Bull, 2006. 69(1): p. 30-6.
56. Manni, L., F. Florenzano, and L. Aloe, Electroacupuncture counteracts the development of thermal hyperalgesia and the alteration of nerve growth factor and sensory neuromodulators induced by streptozotocin in adult rats. Diabetologia, 2011. 54(7): p. 1900-8.
57. Asensio-Pinilla, E., et al., Electrical stimulation combined with exercise increase axonal regeneration after peripheral nerve injury. Exp Neurol, 2009. 219(1): p. 258-65.
58. Kleiber, A.C., et al., Exercise training normalizes enhanced glutamate-mediated sympathetic activation from the PVN in heart failure. Am J Physiol Regul Integr Comp Physiol, 2008. 294(6): p. R1863-72.
59. Choi, J.H., et al., Effects of treadmill exercise combined with MK 801 treatment on neuroblast differentiation in the dentate gyrus in rats. Cell Mol Neurobiol, 2011. 31(2): p. 285-92.
60. Wang, L., et al., Electroacupuncture (EA) modulates the expression of NMDA receptors in primary sensory neurons in relation to hyperalgesia in rats. Brain Res, 2006. 1120(1): p. 46-53.
61. Ma, C., L. Yu, and L.P. Yan, [Effect of electroacupuncture on expression of ionotropic glutamate receptor subunits and their genes in lumbar segments of spinal cord in rats with neuropathic pain]. Zhen Ci Yan Jiu, 2010. 35(6): p. 403-8.
62. Liu, H.X., et al., Repeated 100 Hz TENS for the Treatment of Chronic Inflammatory Hyperalgesia and Suppression of Spinal Release of Substance P in Monoarthritic Rats. Evid Based Complement Alternat Med, 2007. 4(1): p. 65-75.
63. Lee, H.L., et al., Temporal expression of cytokines and their receptors mRNAs in a neuropathic pain model. Neuroreport, 2004. 15(18): p. 2807-11.
64. Arruda, J.L., et al., Increase of interleukin-6 mRNA in the spinal cord following peripheral nerve injury in the rat: potential role of IL-6 in neuropathic pain. Brain Res Mol Brain Res, 1998. 62(2): p. 228-35.
65. Winkelstein, B.A., et al., Nerve injury proximal or distal to the DRG induces similar spinal glial activation and selective cytokine expression but differential behavioral responses to pharmacologic treatment. J Comp Neurol, 2001. 439(2): p. 127-39.
66. Gim, G.T., et al., Electroacupuncture attenuates mechanical and warm allodynia through suppression of spinal glial activation in a rat model of neuropathic pain. Brain Res Bull, 2011. 86(5-6): p. 403-11.
67. Cha, M.H., et al., Changes in cytokine expression after electroacupuncture in neuropathic rats. Evid Based Complement Alternat Med, 2012. 2012: p. 792765.


論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-09-13起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw