進階搜尋


 
系統識別號 U0026-0309201118002200
論文名稱(中文) 濕氣引起 eWLB 封膠晶圓膨脹研究
論文名稱(英文) Moisture Induced Swell Study of eWLB Molded Wafer
校院名稱 成功大學
系所名稱(中) 工程科學系專班
系所名稱(英) Department of Engineering Science (on the job class)
學年度 99
學期 2
出版年 100
研究生(中文) 陳鴻勝
研究生(英文) Hung-Sheng Chen
電子信箱 albert3.chen@msa.hinet.net
學號 n9796121
學位類別 碩士
語文別 中文
論文頁數 65頁
口試委員 指導教授-周榮華
口試委員-曾憲正
口試委員-吳村木
中文關鍵字 eWLB  封膠晶圓  吸濕率  Non-Fickian 模式  尺寸膨脹  濕氣膨脹係數 
英文關鍵字 eWLB  molded wafer  moisture sorption rate  Non-Fickian model  swelling  coefficient of moisture expansion 
學科別分類
中文摘要 消費性電子產品之構裝方式因應市場需求及技術演進,在塑膠封裝方面由釘架產品P-DIP、PLCC、PQFP,至球狀陣列產品BGA 、LBGA 、VFBGA,乃至覆晶封裝的FCBGA等等,I/O 密度愈來愈高。為了降低成本,或以實現輕薄短小的需求,電子構裝因此而發展出CSP的構裝方式。由於後段封裝製程的線路密集度更新速度遠比 PWB 快很多,為了提高電性功能,簡化封裝流程,降低成本以及真正實現晶片尺寸構裝 (chip size package) 的目標,晶圓級封裝方式乃隨著bumping的發展應運而生。
同樣由於前段晶圓製程的線路密集度更新速度遠比後段封裝快,使得晶圓表面的bump pad 尺寸愈來愈小,甚至小於錫球的製程能力,造成WLCSP產品的發展及應用受到限制。因此有別於一般晶圓級封裝(STD wafer level package) 的製程與結構,Infineon公司 Brunnbauer et. al. [1] 開發出使用塑膠封裝材料的擴張型晶圓封裝 eWLBTM (embedded wafer level ball grid array)。
由於高分子材料容易吸收濕氣,而吸濕後一些特性也會有些許改變。本論文主要就是以英飛凌eWLBTM製程及結構為基礎,探討溫、濕度 (30℃/60%RH、85℃/60%RH、85℃/85%RH) 對封膠晶圓半成品吸濕率及尺寸膨脹的影響。由實驗結果可以得知,封膠晶圓半成品的吸濕率及尺寸膨脹確實受到溫、濕度的影響,其中吸濕率受到溫、濕度的影響程度接近,符合 Non-Fickian 擴散模式,而尺寸膨脹同樣受到溫、濕度的影響,以濕度影響程度較大。最後由實驗結果求得擴散係數、活化能,吸濕率對時間的擬合方程式,並得到應變對時間的擬合方程式與濕度膨脹係數。
英文摘要 The electrical packaging methods follow the market requirement and technology trend. Therefore the consumer electronics progresses from P-DIP, PLCC, PQFP, through BGA, LBGA and VFBGA, to FCBGA that is packaged by flip chip structure. In order to meet the trend of the cost down or small/thin requirement, the CSP packaging was developed. Because of the trace width upgrading speed in back-end packaging is much faster than that of PWB, the WLCSP packaging was developed following bumping technology to meet the requirements of better electrical function, shorter assembling process flow and cost down issue.
For the same reason, the trace width upgrading speed in front-end packaging is much faster than that of back-end packaging, the bump pad pitch on WLCSP is getting smaller and smaller, and even smaller than the solder ball manufacturing capability. Thus, the development and application of WLCSP products are restricted. Infineon’s Brunnbauer et. al. [1] announced a new processes and structure compared to the standard wafer level package, namely the fan-out type eWLBTM (embedded wafer level ball grid array) reconfigurated by molding compound.
It is well known that the polymer is easy to sorb moisture, and some of the properties will be therefore changed more or less. This thesis is primarily based on the processes and structure of Infineon eWLBTM semi-product to discuss the moisture sorption and swelling impact at different temperature / humidity environments (30℃/60%RH, 85℃/60%RH, 85℃/85%RH). It is known from the experimental results that the moisture sorption and swelling are indeed involved by the environmental temperature and humidity. There are the closely impact to moisture sorption, the moisture sorption follows the Non-Fickian diffusion model, the humidity impact to swelling is more critical than that by temperature. Finally the moisture diffusion coefficient and the activation energy are found from this experiment, also the fitting equations of the time related moisture sorption rate and the time related strain, and the coefficient of moisture expansion.
論文目次 中文摘要...............................................................II
ABSTRACT...........................................................III
致謝................................................................... V
英文名詞縮寫對照.......................................................VI
目錄.................................................................VIII
表目錄.................................................................XI
圖目錄............................................................... XII
符號說明..............................................................XIV
第一章 緒論............................................................1
1.1 前言........................................................... 1
1.2 電子構裝的層級................................................. 1
1.3 電子構裝的分類................................................. 3
1.4 電子構裝的流程................................................. 4
1.4.1 P-DIP / PLCC / QFP 流程....................................4
1.4.2 BGA / LBGA / VFBGA 流程..................................5
1.4.3 FCBGA流程...............................................6
1.4.4 WLCSP 流程.............................................. 7
1.5 電子構裝的趨勢................................................. 8
1.6 晶圓級封裝技術................................................10
1.7 本論文的產品封裝結構的優點.................................... 13
1.8 本產品的應用例子. .............................................14
1.9 研究動機...................................................... 14
1.10 研究目的..................................................... 15
第二章 文獻回顧與相關研究.............................................17
2.1 電子構裝塑膠封膠材料 (compound) 的組成........................17
2.2 封膠材料吸濕模型.............................................. 18
2.3 封膠材料擴散係數.............................................. 22
2.4 封膠材料濕氣吸收現象.......................................... 23
2.5 濕氣吸收對封膠材料物性的影響.................................. 26
2.6 濕氣吸收對封膠材料膨脹的影響.................................. 26
第三章 實驗方法及步驟................................................. 28
3.1 實驗材料......................................................28
3.2 實驗樣品製備.................................................. 29
3.2.1 無測試晶片晶圓製造流程...................................29
3.2.2 無測試晶片晶圓吸濕實驗樣本製造流程.......................30
3.2.3 含測試晶片晶圓製造流程...................................30
3.3 實驗量測......................................................34
3.4 儀器設備......................................................35
3.4.1 貼膜機台.................................................35
3.4.2 植晶粒機台...............................................36
3.4.3 壓模封膠機台.............................................37
3.4.4 離膜機台.................................................38
3.4.5 恆溫恆濕機...............................................39
3.4.6 標準分析天平.............................................40
3.4.7 CNC光學量測系統.........................................41
3.5 實驗步驟..................................................... .42
3.5.1 無測試晶片晶圓實驗流程...................................42
3.5.2 含測試晶片晶圓實驗流程...................................42
第四章 實驗結果與討論..................................................45
4.1 實驗結果..................................................... .45
4.1.1吸濕率與時間的關係........................................45
4.1.2應變與時間的關係..........................................45
4.1.2.1 無測試晶片晶圓.................................... 45
4.1.2.2 含測試晶片晶圓.................................... 45
4.2結果討論..................................................... .49
4.2.1吸濕率與時間的關係........................................49
4.2.1.1 吸濕時間對吸濕率的影響............................ 49
4.2.1.2 溫濕度對吸濕率的影響.............................. 49
4.2.1.3 擴散模式.......................................... 50
4.2.2應變與時間的關係......................................... 53
4.2.2.1 吸濕時間對應變的影響.............................. 53
4.2.2.2 溫濕度對應變的影響................................ 54
4.2.2.3 應變模式.......................................... 54
4.2.3 吸濕率與應變之間的關係...................................56
第五章 結論與展望..................................................... 58
5.1 結論.......................................................... 58
5.2 展望.......................................................... 59
參考文獻.......................................................... ....60
簡歷...................................................................65



表目錄
表1-1 The Hierarchy of Interconnection.....................................2
表 2-1封膠材料濕氣吸收現象............................................25
表4-1 無測試晶片晶圓的吸濕率對時間的關係..............................46
表4-2 無測試晶片晶圓的應變對時間的關係................................47
表4-3 含測試晶片晶圓的應變對時間的關係................................48



圖目錄
圖1-1 P-DIP / PLCC / QFP 流程...........................................4
圖1-2 BGA / LBGA / VFBGA 流程..........................................5
圖1-3 FCBGA流程.......................................................7
圖1-4 WLCSP 流程......................................................8
圖1-5 Heremetic glass-sealed ceramic DIPs before and after lead trimming......9
圖1-6 不同構裝方式對產品尺寸的影響....................................10
圖1-7 FOC type WLCSP.................................................11
圖1-8 Re-passivation type WLCSP........................................11
圖1-9 Re-distribution (fan-in) type WLCSP.................................12
圖1-10 Re-distribution (fan-out) type WLP.................................12
圖1-11 Fan-in 和 Fan-out 不同結構可容許的I/O 數目示意圖................13
圖1-12 單晶矽以單鍵鍵結成八偶體屬於SP3結構............................15
圖1-13 晶片對位偏移示意圖.............................................16
圖2-1 典型封膠材料的組成...............................................17
圖2-2 平板擴散模型....................................................18
圖2-3典型環氧樹酯的化學反應...........................................23
圖3-1 無測試晶片晶圓製造流程..........................................31
圖3-2 含測試晶片晶圓製造流程..........................................32
圖3-3 無測試晶片晶圓樣品..............................................33
圖3-4 含測試晶片晶圓樣品..............................................33
圖3-5 貼膜流程........................................................35
圖3-6 植晶粒流程......................................................36
圖3-7 壓模封膠流程.................................................... 37
圖3-8 離膜流程........................................................38
圖3-9恆溫恆濕機內部配置...............................................39
圖3-10 恆溫恆濕機動作原理.............................................39
圖3-11 標準分析天平....................................................40
圖3-12光學量測示意圖..................................................41
圖3-13光學量測流程....................................................41
圖3-14 無測試晶片晶圓實驗流程......................................... 43
圖3-15 含測試晶片晶圓實驗流程.........................................44
圖4-1 無測試晶片晶圓的吸濕率對時間的關係..............................46
圖4-2 無測試晶片晶圓的應變對時間的關係................................47
圖4-3 含測試晶片晶圓的應變對時間的關係................................48
圖4-4 無測試晶片晶圓的吸濕率vs. Fickian curve 對時間的關係...............51
圖4-5 無測試晶片晶圓在30℃/RH60% 條件下吸濕率對時間的擬合方程式......52
圖4-6 無測試晶片晶圓在85℃/RH60% 條件下吸濕率對時間的擬合方程式......52
圖4-7 無測試晶片晶圓在85℃/RH85% 條件下吸濕率對時間的擬合方程式......53
圖4-8 無測試晶片晶圓的應變對時間的擬合方程式..........................55
圖4-9 含測試晶片晶圓的應變對時間的擬合方程式..........................56
圖4-10 無測試晶片晶圓的吸濕率與應變的關係.............................57
參考文獻 [1] Brunnbauer M., Fürgut E., Beer G., Meyer T., Hedler H., Belonio J., Nomura E., Kiuchi K., Kobayashi K., “An Embedded Device Technology Based on a Molded Reconfigured Wafer”, 2006 Electronic Components and Technology Conference.
[2] Manzione Louis T., Plastic Packaging of Microelectronic Devices, Nostrand Reinhold, New York, 1990.
[3] Computer History Museum, http://www.computerhistory.org/semiconductor/timeline/1965-Package.html
[4] EE TIMES India, http://www.eetindia.co.in/ART_8800503826_1800005_NP_e5ad435c.HTM
[5] Shen Chi-Hung, Springer George S., “Moisture Absorption and Desorption of Composite Materials”, Journal of Composite Materials, vol. 10, pp2-10, 1976.
[6] Trigo J., “Dimensional Stability Caracterization of Carbon Fiber with Epoxy and Cyanate Ester Resins Laminates due to Moisture Absorption”, 1996 Proceeding Conference on Spacecraft Structures,Materials & Mechanical Testing.
[7] Jacobs P. M., Jones F. R., “Diffusion of Moisture into Two-Phase Polymers, Part 1 the Development of an Analytical Mode/and its Application to Styrene-Ethylene/Butylene-Styrene Block Copolymer”, Journal of Materials Science, vol.24, pp2331-2342, 1989.
[8] Jacobs P. M., Jones F. R., “Diffusion of Moisture into Two-Phase Polymers, Part 2 Styrenated Polyester Resins”, Journal of Materials Science, vol.24, pp2343-2348, 1989.
[9] Maggana C., Pissis P., “Water Sorption and Diffusion Studies in an Epoxy Resin System”, Journal of Polymer Science: Part B: Polymer Physics, Vol. 37, pp1165–1182, 1999.
[10] Kontou E., Spathis G., Theocaris P. S., “The Heterogeneity of the Network Structure of Epoxy Polymers Studied by Dynamic and DSC Tests”, Journal of Polymer Science, Polymer Chemistry ed., vol. 23, pp1493-1503, 1985.
[11] Spathis G., Kontou E., Theocaris P. S., “Network-Structure of Plasticized Epoxy Resins by Dynamic Measurements”, Rheologica Acta, vol.24, No.1, pp63-68, 1985.
[12] Uschitsky M., Suhir E., “Moisture Diffusion in Epoxy Molding Compounds Filled with Particles”, Journal of Electronic Packaging, vol. 123, pp47-51, 2001.
[13] Ardebili Haleh, Hillman Craig, McCluskey Patrick, Pecht Michael G., “Moisture Diffusion in Plastic Encapsulated Microelectronics”, IEEE Transaction on Components and Packaging Technologies, vol. 25, No. 1, pp132-139, 2002.
[14] Carrascal I., Casado J.A., Polanco J.A., Gutie’rrez-Solana F., “Absorption and Diffusion of Humidity in Fiberglass-Reinforced Polyamide”, Polymer Composites, pp580-586, 2005.
[15] Chen Xu, Zhao Shufeng, Zhai Linda, “Moisture Absorption and Diffusion Characterization of Molding Compound”, Journal of Electronic Packaging, vol. 127, pp460-465, 2005
[16] Ma Xiaosong, Jansen K.M.B., Zhang G.Q., Ernst L.J., “Filler Contents Effects on the Moisture Absorption and Viscoelasticity of Thermosetting IC Packaging Polymers”, 2006 7th International Conference on Electronics Packaging Technology.
[17] 王玉果,“三維編織碳纖維增強環氧樹酯複合材料的吸濕特性”,天津大學學報, vol. 42, No.10, pp867-871, 2009.
[18] Galloway Jesse E., Miles Barry M., “Moisture Absorption and Desorption Predictions for Plastic Ball Grid Array Packages”, 1996 Intersociety Conference on Thermal Phenomena.
[19] Morgan Roger J., O'neal James Ames E., Fanter Dale L., ”The Effect of Moisture on the Physical and Mechanical Integrity of Epoxies”, Journal of Materials Science, vol. 15, pp751-764, 1980.
[20] Adamson Michael J., “Thermal Expansion and Swelling of Cured Epoxy Resin used in Graphite/Epoxy Composite Materials”, Journal of Materials Science, vol. 15, pp1736-1745, 1980.
[21] Ma Xiaosong, Jansen K.M.B., Ernst L.J., van Driel W.D., Sluis O. van der, Zhang G.Q., “Characterization of Moisture Properties of Polymers for IC Packaging”, Microelectronics Reliability, vol. 27, pp1685–1689, 2007.
[22] Gupta V. B., Drzal L. T., “The Physical Basis of Moisture Transport in a Cured Epoxy Resin System”, Journal of Applied Polymer Science, vol. 30, 4467-4493 1985.
[23] Yang F., Gilbert R. D., Fornes R. E., Memory J. D., “Factors Affecting H2O Absorption of the Epoxy Tetraglycidyl-4,4′-Diaminodiphenyl Methane Cured with Diaminodiphenyl Sulfone”, Journal of Polymer Science, Polymer Chemistry ed., vol. 24, issue 10, pp2609-2618, 1986.
[24] Vanlandingham M. R., Eduljee R. F., Gillespie JR. J. W., “Moisture Diffusion in Epoxy Systems”, Journal of Applied Polymer Science, vol. 71, pp787–798, 1999.
[25] Merdas I., Thominette F., Tcharkhtchi A., Verdu J., “Factors Governing Water Absorption by Composite Matrices”, Composites Science and Technology, vol. 62 pp487-492, 2002.
[26] Shimamura Yoshinobu, Urabe Takashi, Todoroki Akira, Kobayashi Hideo, “Measurement of Moisture Absorption Ratio of FRP using Micro Polymer Sensor”, Key Engineering Materials, vols. 270-273, pp. 1957-1964, 2004.
[27] Lin Y.C., Chen Xu, “Investigation of Moisture Diffusion in Epoxy System: Experiments and Molecular Dynamics Simulations”, Chemical Physics Letters, vol. 412, pp322–326, 2005.
[28] 垣內弘著,賴耿陽譯著,“化工製造用書-環氧樹酯應用實務 EPOXY RESINS,再刷版”,復漢出版社,台南市,民國82年。
[29] Chen R. S., Tu C. Y., Tsai H. S., ‘‘The Effects of Moisture upon the Optimal Temperature Path of the Viscoelastic Symmetric Composite Laminates after Post Cure’’, Journal of Composite Materials, 27, No. 16, pp. 1578–1596, 1993
[30] Roy S., Xu W. X., Park S. J., Liechti K. M., “Anomalous Moisture Diffusion in Viscoelastic Polymers: Modeling and Testing”, ASME Journal of Applied Mechanics, vol. 67, pp391-396, 2000.
[31] Wong E. H., Chen K. C., Lim T. B., and Lam T. F., “Non-Fickian Moisture Properties Characterization and Diffusion Modeling for Electronic Package”, IEEE Electronic Components and Technology Conference, pp302-306, 1999.
[32] Bhattacharyya B. K., Huffman W. A., Jahsman W. E., Natarajan B., “Moisture Absorption and Mechanical Performance of Surface Mountable Plastic Packages” in Proceedings of the 38th Electronics Components Conference, pp 49–58, 1988.
[33] Frémont H., Delétage J. Y., Pintus A., Danto Y., “Evaluation of the Moisture Sensitivity of Molding Compounds of IC’s Packages,” ASME Journal of Electronic Packaging, vol.123, pp. 407–412, 2001.
[34] Ferguson T., Qu J., “Moisture Absorption Analysis of Interfacial Fracture Test Specimens Composed of No-Flow Underfill Materials,” ASME Journal of Electronic Packaging, vol.125, pp. 24–30, 2003.
[35] Zhang G. Q., Tay A. A. O., Ernst L. J., Liu S., Qian Z. F., Bressers H. J. L., Janssen J., “Virtual Thermal-Mechanical Prototyping of Electronic Packaging-Challenges in Materials Characterization and Modeling” , in Proceeding of the 51st Electronic Components and Technology Conference, pp1479-1486, 2001.
[36] Roy S., “Modeling of Anomalous Diffusion in Polymer Matrix Composites: A Finite Element Approach,” Journal of Composite Materials, vol. 33, pp1318–1343, 1999.
[37] Wong E. H., Rajoo R., “Moisture Absorption and Diffusion in Characterization of Packaging Materials-Advanced Treatment”, Microelectronics Reliability, vol. 43, pp2087-2096, 2003.
[38] Frisch H. L., “Isothermal Diffusion in Systems with Glasslike Transitions”, Journal of Chemical Physics, vol. 41, pp. 3379–3683, 1964.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-09-06起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-09-06起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw