進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0308202022323000
論文名稱(中文) 二氟磷酸鋰添加劑對於石墨負極鈍化層之影響
論文名稱(英文) LiPO2F2 as an effective additive to improve SEI performance of graphite electrodes
校院名稱 成功大學
系所名稱(中) 材料科學及工程學系
系所名稱(英) Department of Materials Science and Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 廖禹茹
研究生(英文) Yu-Ju Liao
學號 N56074148
學位類別 碩士
語文別 中文
論文頁數 97頁
口試委員 指導教授-黃肇瑞
共同指導教授-張家欽
口試委員-劉全璞
口試委員-林士剛
口試委員-許文東
中文關鍵字 二氟磷酸鋰  固態電解質界面  鋰離子電池 
英文關鍵字 lithium difluorophosphate  solid electrolyte interphase  lithium-ion batteries 
學科別分類
中文摘要 鋰離子電池首圈化成時,於電解質與負極活性材表面間生成一層固態電解質界面 (Solid Electrolyte Interface,SEI),此界面生成來自於電解液處低電
壓不穩定態發生還原反應,SEI 膜為在表面生成的鈍化膜,是鋰離子優良導體,允許鋰離子自由進出活性材料,同時,是電子絕緣體,有效阻止電子傳遞於負極材料與電解液中,因此有效抑制電解液持續性還原,並避免電池內部短路,且防止溶劑分子嵌入活性材料而造成破壞。然而,較厚且不均勻的SEI 的生成也會增加鋰離子的不可逆消耗,而在電容量上的損失。
改善SEI 膜有效使電池效能上的提升,其中加入少量添加劑為相對經濟利益上佔優勢的方法,極少量的物質卻能大幅優化電池性能,本研究以二氟磷酸鋰 (LiPO2F2) 作為添加劑於改良SEI 性能研究,LiPO2F2 分子中含有鋰離子,有效增強鋰離子的傳遞,且氟離子的高電負度使最低未佔滿軌域降低,優先於電解液還原反應前生成保護膜,另外,分子結構中的不飽和雙鍵使分子反應活性提高,期許些少二氟磷酸鋰的加入於電性上的提升,且透過表面與影像分析於添加劑的作用機理上的推測。
研究結果顯現二氟磷酸鋰作為添加劑,改變電池中電化學反應路徑,降低第一圈不可逆性,且經過50 圈循環,保有較高的維持率93.5%。電化學交流阻抗中,添加劑的加入使電池運作過程阻抗大幅降低,眾多結果證明二氟磷酸鋰作為添加劑於鋰離子電池未來應用上的優勢性。
英文摘要 Solid Electrolyte Interphase (SEI) have the crucial impact on lithium ion batteries. In this work, we use lithium difluorophosphate (LiPO2F2) as an electrolyte additive to modify
SEI performance on graphite electrode and figure out its working mechanism. The SEI film formation and properties was measured by electrochemical and microscopy techniques, such as electrochemical impedance spectroscopy (EIS) and cyclic voltammetry
(CV). The morphology of SEI is analyzed by scanning electron microscope (SEM) and transmission electron microscope (TEM). Through all measurements to speculate the reason of its contribution to higher capacity and better cycling performance.
論文目次 中文摘要 I
Extended abstract II
致謝 X
總目錄 XII
圖目錄 XVI
表目錄 XXIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
第二章 文獻回顧 3
2.1 鋰離子電池發展與應用 3
2.2 鋰離子電池組成與工作原理 6
2.3 鋰離子電池材料介紹 8
2.3.1 鋰離子電池正極材料 8
2.3.2 鋰離子電池負極材料 9
2.3.3 鋰離子電池電解液 13
2.4 固態電解質界面 (Solid electrolyte Interphase ; SEI) 15
2.4.1 SEI膜之形成機制 15
2.4.2 電解液之氧化還原反應 17
2.4.3 SEI膜之鑑測分析 19
2.4.4 SEI膜之變因 23
2.5 電解液添加劑 26
2.5.1 添加劑之效用 26
2.5.2 添加劑於SEI膜的改善 29
2.5.3 二氟磷酸鋰作為添加劑之研究 33
第三章 實驗方法與步驟 38
3.1 實驗設計與架構 38
3.2 材料鑑定分析 39
3.2.1 Xray繞射分析儀 (Xray diffraction spectrometer : XRD) 39
3.2.2 電子能譜化學分析儀 (Electron Spectroscopy for 40
Chemical Analysis: ESCA) 40
3.2.3 拉曼光譜分析儀 (Raman spectroscopy : Raman) 41
3.2.4 傅立葉轉換紅外線光譜儀 (Fourier Transform Infrared Spectrometer : FTIR)…...……………………………………………………..42
3.2.5 高解析場發射掃描式電子顯微鏡 (High resolution field emission scanning electron spectrometer 43
3.2.6 高解析分析電子顯微鏡 (Ultrahigh Resolution Analytical 44
Electron Spectroscopy: HR-AEM) 44
3.3 鈕扣型半電池組裝及電化學性質測試 45
3.3.1 極片與電解液的配製 46
3.3.2 半電池組裝 46
3.3.3 半電池拆解 47
3.3.4 半電池充放電測試 48
3.3.5 循環伏安法測試 49
3.3.6 交流阻抗測試 50
第四章 結果與討論 54
4.1 活性材料特性分析 54
4.1.1 SEM分析表面形貌與顯微結構 54
4.1.2 XRD定性分析 55
4.1.3 Raman分析碳原子結構 56
4.2 電解液鍵結分析 57
4.3 電化學性能分析 59
4.3.1 電池化成行為分析 59
4.3.2 循環壽命充放電測試 65
4.3.3 循環伏安法分析 67
4.3.4 交流阻抗分析 70
4.4 負極鈍化層分析 72
4.4.1 SEM分析表面形貌與顯微結構 72
4.4.2 TEM分析表面形貌與顯微結構 76
4.4.3 XRD定性分析 79
4.4.4 Raman分析碳原子結構變化 80
4.4.5 FTIR表面官能基分析 81
4.4.6 ESCA分析鍵結能貢獻與變化 85
第五章 結論 89
參考文獻 91
參考文獻 [1] M. S. WHITTINGHAM, "Electrical Energy Storage and Intercalation Chemistry," Science, vol. 192, no. 4244, pp. 1126-1127, 1976.
[2] K. M. P. C. J. P. J. W. J.B.Goodenough, "LixCoO2 (0[3] J.-M. T. M. Armand, "Issues and challenges facing rechargeable lithium batteries," nature, vol. 414, no. 6861, pp. 359-367, 2001.
[4] T. Randall, "Here’s How Electric Cars Will Cause the Next Oil Crisis," 2016
[5] "The battery decade: How energy storage could revolutionize industries in the next 10 years," 2019
[6] J.-M. T. M. Armand, "Issues and challenges facing rechargeable lithium batteries," nature, vol. 414, 2001.
[7] S. M. B. Scrosati, "Lithium-ion rechargeable batteries," Journal of Power Sources,, vol. 51, pp. 79-104, 1994.
[8] I. R. Dick Wieboldt, Matthias Hahn, "Techniques for Raman Analysis of Lithium-Ion Batteries," Spectroscopy, vol. 30, no. 6, 2015.
[9] H. D. Yoo, E. Markevich, G. Salitra, D. Sharon, and D. Aurbach, "On the challenge of developing advanced technologies for electrochemical energy storage and conversion," Materials Today, vol. 17, no. 3, pp. 110-121, 2014
[10] M. R. Palacin, "Recent advances in rechargeable battery materials: a chemist's perspective," Chem Soc Rev, vol. 38, no. 9, pp. 2565-75, 2009
[11] S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, and C. Capiglia, "Review on recent progress of nanostructured anode materials for Li-ion batteries," Journal of Power Sources, vol. 257, pp. 421-443, 2014
[12] X. B. Cheng, R. Zhang, C. Z. Zhao, and Q. Zhang, "Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review," Chem Rev, vol. 117, no. 15, pp. 10403-10473, 2017
[13] 陳. 吳弘俊. 非晶型碳才在電動車的應用狀況. 工業材料雜誌.
[14] B. N. Loeffler, D. Bresser, S. Passerini, and M. Copley, "Secondary Lithium-Ion Battery Anodes: From First Commercial Batteries to Recent Research Activities," Johnson Matthey Technology Review, vol. 59, no. 1, pp. 34-44, 2015
[15] A. Vlahov, Graphite from Central and Eastern Rhodopes: genesis and characteristics. 2019.
[16] F. D. P. Natalia Lebedeva, Lois Boon-Brett, "Lithium ion battery value chain and related opportunities for Europe," JRC Science Hub, 2016.
[17] C. Pillot, "The worldwide rechargeable battery market 2015-2025," Avicenne Energy, 2016.
[18] J. A. Riddick, Organic solvents : physicial proeties and methods of purification fourth edition, 1986.
[19] K. Xu, "Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries," Chem. Rev, vol. 104, pp. 4303-4417, 2004.
[20] J. S. Alexandre Chagnes, "Electrolyte and Solid-Electrolyte Interphase Layer in Lithium-Ion Batteries," 2012.
[21] S. J. An, J. Li, C. Daniel, D. Mohanty, S. Nagpure, and D. L. Wood, "The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling," Carbon, vol. 105, pp. 52-76, 2016
[22] E. PELED, "Film forming reaction at the lithium/electrolyte interface," Journal of Power Sources, vol. 9, pp. 253-266, 1983.
[23] G. E. Peled, and G. Ardel, "Advanced Model for Solid Electrolyte Interphase Electrodes in Liquid and Polymer Electrolytes," J. Electrochem. Soc., vol. 144, 1997.
[24] A. J.Bard, Electrochemical methtods fundamenal and apllication. JOHN WILEY & SONS, INC.
[25] J. B. Goodenough and Y. Kim, "Challenges for Rechargeable Li Batteries," Chemistry of Materials, vol. 22, no. 3, pp. 587-603, 2010
[26] E. Markevich, R. Sharabia, V. Borgela, H. Gottlieb, "In situ FTIR study of the decomposition of N-butyl-N-methylpyrrolidinium bis(trifluoromethanesulfonyl)amide ionic liquid during cathodic polarization of lithium and graphite electrodes," Electrochimica Acta, vol. 55, no. 8, pp. 2687-2696, 2010
[27] J.-Y. Ye, Y.-X. Jiang, T. Sheng, and S.-G. Sun, "In-situ FTIR spectroscopic studies of electrocatalytic reactions and processes," Nano Energy, vol. 29, pp. 414-427, 2016
[28] M. Nie, D. Chalasani, D. P. Abraham, Y. Chen, A. Bose, and B. L. Lucht, "Lithium Ion Battery Graphite Solid Electrolyte Interphase Revealed by Microscopy and Spectroscopy," The Journal of Physical Chemistry C, vol. 117, no. 3, pp. 1257-1267, 2013
[29] P. Lanz and P. Novák, "Combined In Situ Raman and IR Microscopy at the Interface of a Single Graphite Particle with Ethylene Carbonate/Dimethyl Carbonate," Journal of The Electrochemical Society, vol. 161, no. 10, pp. A1555-A1563, 2014
[30] A. v Cresce, S. M. Russell, D. R. Baker, K. J. Gaskell, and K. Xu, "In situ and quantitative characterization of solid electrolyte interphases," Nano Lett, vol. 14, no. 3, pp. 1405-12, 2014
[31] J. Heine, P. Hilbig, X. Qi, P. Niehoff, M. Winter, and P. Bieker, "Fluoroethylene Carbonate as Electrolyte Additive in Tetraethylene Glycol Dimethyl Ether Based Electrolytes for Application in Lithium Ion and Lithium Metal Batteries," Journal of The Electrochemical Society, vol. 162, no. 6, pp. A1094-A1101, 2015
[32] A. Wang, S. Kadam, H. Li, S. Shi, and Y. Qi, "Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries," npj Computational Materials, vol. 4, no. 1, 2018
[33] D. Aurbach, "Recent studies on the correlation between surface chemistry, morphology,three-dimensional structures and performance of Li and Li-C
intercalation anodes in several important electrolyte systems," Journal of Power Sources, vol. 68, pp. 91-98, 1997.
[34] J.O. Besenhard a, M. Winter a, j. Yang a, W. Biberacher b, "Filming mechanism of lithium-carbon anodes in organic and inorganic electrolytes," Journal of Power Sources, vol. 54, pp. 228-231, 1995.
[35] Y. Kim Dae Sik Kim, Ji Hyun Um, "Revisiting Solid Electrolyte Interphase on the Carbonaceous Electrodes Using Soft X-ray Absorption Spectroscopy," ACS Appl Mater Interfaces, vol. 10, no. 35, pp. 29992-29999, 2018
[36] H. F. Xiang, H. Y. Xu, Z. Z. Wang, and C. H. Chen, "Dimethyl methylphosphonate (DMMP) as an efficient flame retardant additive for the lithium-ion battery electrolytes," Journal of Power Sources, vol. 173, no. 1, pp. 562-564, 2007
[37] H. Ota, A. Kominato, W.-J. Chun, E. Yasukawa, and S. Kasuya, "Effect of cyclic phosphate additive in non-flammable electrolyte," Journal of Power Sources, vol. 119-121, pp. 393-398, 2003
[38] S. S. Zhang, K. Xu, and T. R. Jow, "A Thermal Stabilizer for LiPF[sub 6]-Based Electrolytes of Li-Ion Cells," Electrochemical and Solid-State Letters, vol. 5, no. 9, 2002
[39] S. Z. S, "Tris(2,2,2-trifluoroethyl) phosphite as a co-solvent for nonflammable electrolytes in Li-ion batteries," Journal of Power Sources, vol. 113, pp. 166-172, 2003
[40] V. Prakash Reddy, M. Blanco, and R. Bugga, "Boron-based anion receptors in lithium-ion and metal-air batteries," Journal of Power Sources, vol. 247, pp. 813-820, 2014
[41] M. Herstedt, M. Stjerndahl, T. Gustafsson, and K. Edström, "Anion receptor for enhanced thermal stability of the graphite anode interface in a Li-ion battery," Electrochemistry Communications, vol. 5, no. 6, pp. 467-472, 2003
[42] C.-C. Chang and T.-K. Chen, "Tris(pentafluorophenyl) borane as an electrolyte additive for LiFePO4 battery," Journal of Power Sources, vol. 193, no. 2, pp. 834-840, 2009
[43] S. S. Zhang, "A review on electrolyte additives for lithium-ion batteries," Journal of Power Sources, vol. 162, no. 2, pp. 1379-1394, 2006
[44] X. Q. Y. H.S. Lee, C.L. Xiang, J. McBreen, L.S. Choi,"The Synthesis of a New Family of Boron‐Based Anion Receptors and the Study of Their Effect on Ion Pair Dissociation and Conductivity of Lithium Salts in Nonaqueous Solutions," J. Electrochem.Soc, vol. 145, p. 2813, 1998.
[45] J. Kalhoff, G. G. Eshetu, D. Bresser, and S. Passerini, "Safer Electrolytes for Lithium-Ion Batteries: State of the Art and Perspectives," ChemSusChem, vol. 8, no. 13, pp. 2154-75, 2015
[46] H. Zhao, Xueqing Yu, Jianding Li, "Film-forming electrolyte additives for rechargeable lithium-ion batteries: progress and outlook," Journal of Materials Chemistry A, vol. 7, no. 15, pp. 8700-8722, 2019
[47] Y. Kusachi, Z. Zhang, J. Dong, and K. Amine, "Electrode Surface Film Formation in Tris(ethylene glycol)-Substituted Trimethylsilane–Lithium Bis(oxalate)borate Electrolyte," The Journal of Physical Chemistry C, vol. 115, no. 48, pp. 24013-24020, 2011
[48] K. Xu, "Electrolytes and interphases in Li-ion batteries and beyond," Chem Rev, vol. 114, no. 23, pp. 11503-618, 2014
[49] Bin Li, Mengqing Xu, Benzhen Li, "Properties of solid electrolyte interphase formed by prop-1-ene-1,3-sultone on graphite anode of Li-ion batteries," Electrochimica Acta, vol. 105, pp. 1-6, 2013
[50] Y. Horowitz, H. L. Han, F. A. Soto, W. T. Ralston, P. B. Balbuena, and G. A. Somorjai, "Fluoroethylene Carbonate as a Directing Agent in Amorphous Silicon Anodes: Electrolyte Interface Structure Probed by Sum Frequency Vibrational Spectroscopy and Ab Initio Molecular Dynamics," Nano Lett, vol. 18, no. 2, pp. 1145-1151, 2018
[51] Nicholas P. W. Pieczonka, Li Yang, Michael P. Balogh, "Impact of Lithium Bis(oxalate)borate Electrolyte Additive on the Performance of High-Voltage Spinel/Graphite Li-Ion Batteries," The Journal of Physical Chemistry C, vol. 117, no. 44, pp. 22603-22612, 2013
[52] Chao Xu, Fredrik Lindgren, Bertrand Philippe, "Improved Performance of the Silicon Anode for Li-Ion Batteries: Understanding the Surface Modification Mechanism of Fluoroethylene Carbonate as an Effective Electrolyte Additive," Chemistry of Materials, vol. 27, no. 7, pp. 2591-2599, 2015
[53] Yasuhiro Domi, Manabu Ochida, Shigetaka Tsubouchi, "Electrochemical AFM Observation of the HOPG Edge Plane in Ethylene Carbonate-Based Electrolytes Containing Film-Forming Additives," Journal of The Electrochemical Society, vol. 159, no. 8, pp. A1292-A1297, 2012
[54] S. K. Heiskanen, J. Kim, and B. L. Lucht, "Generation and Evolution of the Solid Electrolyte Interphase of Lithium-Ion Batteries," Joule, vol. 3, no. 10, pp. 2322-2333, 2019
[55] D.-h. Yoon, "quantitative analysis of consumption of fluoroethylene carbonate additives on silicon alloy anode," J. Electrochem. Soc., vol. 165, pp. A2467-A2469, 2018.
[56] Weimin Zhao, Guorui Zheng, Min Lin, "Toward a stable solid-electrolyte-interfaces on nickel-rich cathodes: LiPO2F2 salt-type additive and its working mechanism for LiNi0.5Mn 0.25Co0.25O2 cathodes," Journal of Power Sources, vol. 380, pp. 149-157, 2018
[57] X. Zheng, G. Fang, Y. Pan, Q. Li, and M. Wu, "Synergistic effect of fluoroethylene carbonate and lithium difluorophosphate on electrochemical performance of SiC-based lithium-ion battery," Journal of Power Sources, vol. 439, 2019
[58] P. Shi, L. Zhang, H. Xiang, X. Liang, Y. Sun, and W. Xu, "Lithium Difluorophosphate as a Dendrite-Suppressing Additive for Lithium Metal Batteries," ACS Appl Mater Interfaces, vol. 10, no. 26, pp. 22201-22209, 2018
[59] B. Yang, H. Zhang, L. Yu, W. Fan, and D. Huang, "Lithium difluorophosphate as an additive to improve the low temperature performance of LiNi0.5Co0.2Mn0.3O2/graphite cells," Electrochimica Acta, vol. 221, pp. 107-114, 2016
[60] "What is XPS?" ULVAC-PHI Inc.
[61] Y. B. Yohannes, S. D. Lin, and N.-L. Wu, "In Situ DRIFTS Analysis of Solid Electrolyte Interphase of Si-Based Anode with and without Fluoroethylene Carbonate Additive," Journal of The Electrochemical Society, vol. 164, no. 14, pp. A3641-A3648, 2017
[62] Y. Chen, C. Zou, M. Mastalerz, S. Hu, C. Gasaway, and X. Tao, "Applications of Micro-Fourier Transform Infrared Spectroscopy (FTIR) in the Geological Sciences--A Review," Int J Mol Sci, vol. 16, no. 12, pp. 30223-50, 2015
[63] E. Barsoukov, "Comparison of kinetic properties of LiCoO2 and LiTi0.05Mg0.05Ni0.7Co0.2O2 by impedance spectroscopy," Solid State Ionics, vol. 161, no. 1-2, pp. 19-29, 2003,
[64] Z. Quanchao, X. shoudong, Q. Xiangyun, C. Yongli, F. Liang, and S. Shigang, "Diagnosis of Electrochemical Impedance Spectroscopy in Lithium Ion Batteries," PROGRESS IN CHEMISTRY, vol. 22, no. 6, pp. 1044-1057, 2010.
[65] N. Ogihara, S. Kawauchi, C. Okuda, Y. Itou, Y. Takeuchi, and Y. Ukyo, "Theoretical and Experimental Analysis of Porous Electrodes for Lithium-Ion Batteries by Electrochemical Impedance Spectroscopy Using a Symmetric Cell," Journal of The Electrochemical Society, vol. 159, no. 7, pp. A1034-A1039, 2012,
[66] G. Han, Y. Wang, H. Li, Z. Yang, and S. Pan, "The first lithium difluorophosphate LiPO2F2 with a neutral polytetrahedral microporous architecture," Chem Commun (Camb), vol. 55, no. 12, pp. 1817-1820, 2019
[67] S. Pérez-Villar, P. Lanz, H. Schneider, and P. Novák, "Characterization of a model solid electrolyte interphase/carbon interface by combined in situ Raman/Fourier transform infrared microscopy," Electrochimica Acta, vol. 106, pp. 506-515, 2013,
[68] Cyril Marino, Athmane Boulaoued, Julien Fullenwarth, "Solvation and Dynamics of Lithium Ions in Carbonate-Based Electrolytes during Cycling Followed by Operando Infrared Spectroscopy: The Example of NiSb2, a Typical Negative Conversion-Type Electrode Material for Lithium Batteries," The Journal of Physical Chemistry C, vol. 121, no. 48, pp. 26598-26606, 2017
[69] Qiang Liu, Shuai Li, Senhao Wang, "Kinetically Determined Phase Transition from Stage II (LiC12) to Stage I (LiC6) in a Graphite Anode for Li-Ion Batteries," J Phys Chem Lett, vol. 9, no. 18, pp. 5567-5573, 2018
[70] V. A. Sethuraman, L. J. Hardwick, V. Srinivasan, and R. Kostecki, "Surface structural disordering in graphite upon lithium intercalation/deintercalation," Journal of Power Sources, vol. 195, no. 11, pp. 3655-3660, 2010
[71] Ko-Eun Kim, Jun Yeong Jang, Inbok Park, "A combination of lithium difluorophosphate and vinylene carbonate as reducible additives to improve cycling performance of graphite electrodes at high rates," Electrochemistry Communications, vol. 61, pp. 121-124, 2015
[72] A. S. Norio Takami, Michikazu Hara, and Takahisa Ohsaki, "Rechargeable Lithium-Ion Cells Using Graphitized Mesophase-Pitch-Based Carbon Fiber Anodes," J. Electrochem. Soc., vol. 142, pp. 2564-2571, 1995.
[73] M. Y. Hongyu Wang, "Carbon-coated natural graphite prepared by thermal vapor decomposition process, a candidate anode material for lithium-ion battery," Journal of Power Sources, vol. 93, pp. 123-129, 2001.
[74] M. D. Levi and D. Aurbach, "Simultaneous Measurements and Modeling of the Electrochemical Impedance and the Cyclic Voltammetric Characteristics of Graphite Electrodes Doped with Lithium," The Journal of Physical Chemistry B, vol. 101, no. 23, pp. 4630-4640, 1997
[75] Mengyun Nie, Julien Demeaux, Benjamin T. Young, "Effect of Vinylene Carbonate and Fluoroethylene Carbonate on SEI Formation on Graphitic Anodes in Li-Ion Batteries," Journal of The Electrochemical Society, vol. 162, no. 13, pp. A7008-A7014, 2015
[76] Dongni Zhao, Sainan Song, Xiushen Ye, "New insight into the mechanism of LiPO2F2 on the interface of high-voltage cathode LiNi0.5Mn1.5O4 with truncated octahedral structure," Applied Surface Science, vol. 491, pp. 595-606, 2019
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-08-04起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-08-04起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw