進階搜尋


 
系統識別號 U0026-0308202011290400
論文名稱(中文) 風機控制系統對支撐結構行為之研究
論文名稱(英文) Study on Support Structure Behaviors under Different Wind Turbine Control Systems
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 108
學期 2
出版年 109
研究生(中文) 陳政誼
研究生(英文) Cheng-Yi Chen
學號 N66074221
學位類別 碩士
語文別 英文
論文頁數 103頁
口試委員 指導教授-朱聖浩
口試委員-徐德修
口試委員-鍾興陽
口試委員-劉光晏
口試委員-吳淑珍
中文關鍵字 大型風力發電機  套管式風力發電機  控制系統  PID控制器  設計用鋼量  風機支撐結構 
英文關鍵字 Large-scale wind turbine  Jacket-type wind turbine support structure  Control system  PID controller  Design steel consumption 
學科別分類
中文摘要 近年來,由於全球暖化威脅和能源供應的減少,可再生能源的發展至關重要。其中,風能是最常用的可再生能源之一,但適合安裝風力發電機的地方有限。將時常面臨颱風和地震的地區納入考量,或是提高現有風場利用風能的效率也是重要的發展方向。IEC61400在2019年改版就有提出將地震與熱帶氣旋放入設計載重範例的選擇。本篇研究中所使用之設計載重均參考自新版規範。
引用美國國家可再生能源實驗室(NREL)在2009年發表的5MW參考風力發電機與丹麥技術大學(DTU)在2013年發表的10MW參考風機,比較其中控制系統的運作。兩者均使用PID控制器求解,NREL控制器中在計算葉片轉角時使用PID控制器;DTU控制器則是使用了兩組PID控制器分別應用在葉片轉角與計算發電扭矩時使用。由於控制風力發電機支撐結構的鋼材用量的主要設計載重都是發生在控制系統故障或是停機時,因此不同的控制系統對於鋼材用量的影響有限。控制系統之間的比較主要項目是轉子轉速與發電功率。為了確認新版IEC規範中對地震與颱風的建議值,針對主要支撐結構的塔、柱、斜撐、樁在考慮包含颱風與地震的所有設計載重、只考慮颱風與常規設計載重、只考慮地震與常規設計載重、只考慮常規設計載重四種組合的設計載重範例對於鋼材用量的變化。
英文摘要 In recent years, due to the threat of global warming and the reduction in energy supply, the development of renewable energy is crucial. Among them, wind energy is one of the most commonly used renewable energy sources, but there are limited places suitable for installing wind turbines. It is also an important development direction to take into account areas that are often faced with typhoons and earthquakes, or to improve the efficiency of using wind energy in existing wind farms. In the revision of IEC61400 in 2019, it was proposed to include earthquakes and tropical cyclones into the design load cases. The design loads used in this study refer to the new version of the standard.
Reference the 5MW reference wind turbine published by the National Renewable Energy Laboratory (NREL) in 2009 and the 10MW reference wind turbine published by the Technical University of Denmark (DTU) in 2013 to compare the operation of the control system. Both are solved by a PID controller. The NREL controller uses the PID controller when calculating the blade rotation angle; the DTU controller uses two sets of PID controllers for the blade rotation angle and calculating the generating torque.
Since the main design loads that control the steel consumption of the supporting structure of the wind turbine all occur when the control system fails or shuts down, different control systems have limited influence on the steel consumption. In order to confirm the recommended values for earthquakes and typhoons in the new version of the IEC code, the changes in the amount of steel used for the towers, columns, braces, and piles of the main supporting structures are considered in different load combinations.
論文目次 摘要 i
Abstract ii
Acknowledgement iii
Content iv
List of Table vi
List of Picture viii
Chapter 1 Introduction 1
1.1 Background and Purpose 1
1.2 Literature Review 2
1.2.1 Control Systems for Large Wind Turbines 2
1.2.2 Support Structures for Large Wind Turbines 4
1.3 Overview 6
Chapter 2 Control Systems of Large Wind Turbines 8
2.1 DTU 10MW Control Systems 8
2.2 The control system of the NREL 5 MW wind turbine 18
2.3 Brief Discussion of Other Control Systems 20
Chapter 3 Finite Element Analysis Programs of Wind Turbine Support Structures 22
3.1 Program outline 22
3.2 Input file commands and parameters for windturb.exe 25
3.3 Design Load Cases (DLC) and Wind Turbines Designs 43
Chapter 4 Comparison of The Wind Turbine Analysis Results Between NREL and DTU Control Systems 52
4.1 DLC 1 Power Production 52
4.2 DLC 2 Power Production plus Occurrence of Fault 61
4.3 DLC 3 Start Up 69
4.4 DLC 4 Normal Shut Down 75
4.5 DLC 5 Emergency Stop 76
Chapter 5 Compare the Steel Consumption of Supporting Structures for Large-Scale Wind Turbines 78
5.1 Comparison of Steel Consumption with NREL and DTU Control Systems 78
5.2 Comparison of Steel Consumption for Wind Turbines of Different Sizes 80
5.2.1 Tower steel consumption 80
5.2.2 Columns steel consumption 85
5.2.3 Braces steel consumption 89
5.2.4 Piles steel consumption 93
Chapter 6 Conclusion 96
Reference 100

參考文獻 Agalar, S, Kaplan, YA, 2017, Power quality improvement using STS and DVR in wind energy system, Renewable Energy, vol. 118, pp. 1031-1040.
Amirinia, G, Jung, S, 2017, Buffeting response analysis of offshore wind turbines subjected to hurricanes, Ocean Engineering, vol. 141, pp. 1-11.
Cai, X, Wang, YZ, Xu, B, Feng, JH, 2020, Performance and Effect of Load Mitigation of a Trailing-Edge Flap in a Large-Scale Offshore Wind Turbine, Journal of Marine Science and Engineering, vol. 8(2), no. 72.
Cheon, J, Kim, J, Lee, J, Lee, K, Choi, Y, 2019, Development of Hardware-in-the-Loop-Simulation Testbed for Pitch Control System Performance Test, Energies, vol. 12(10), no. 2031.
Chiu, YC, 2017, Parallel Processing Techniques and Applications in Design of the Jacket-Type Offshore Wind Turbine, Department of Civil Engineering, National Cheng Kung University.
Chou, JS, Tu, WT, 2011, Failure Analysis and Risk Management of a Collapsed Large Wind Turbine Tower, Engineering Failure Analysis, vol. 18(1), pp. 295-313.
Corradini, ML, Ippoliti, G, Orlando, G, 2016, An observer-based blade-pitch controller of wind turbines in high wind speeds, Control Engineering Practice, vol. 58(SI), pp.186-192.
Fan, J, Li, Q, Zhang, YP, 2019, Collapse analysis of wind turbine tower under the coupled effects of wind and near-field earthquake, Wind Energy, vol. 22(3), pp.407-419.
Gao, R, Gao, ZW, 2016, Pitch control for wind turbine systems using optimization, estimation and compensation, Renewable Energy, vol. 91, pp. 501-515.
Geng, H, Yang, G, 2010, Output Power Control for Variable-Speed Variable-Pitch Wind Generation Systems, IEEE Transactions on Energy Conversion, vol. 25(2), pp. 494-503.
Goupee, AJ, Kimball, RW, Dagher, HJ, 2017, Experimental observations of active blade pitch and generator control influence on floating wind turbine response, Renewable Energy, vol. 104, pp. 9-19.
Guerrero, JM, Lumbreras, C, Reigosa, DD, Garcia, P, Briz, F, 2017, Control and Emulation of Small Wind Turbines Using Torque Estimators, IEEE Transactions on Industry Applications, vol. 53(5), pp.4863-4876.
Hallowell, ST, Myers, AT, Arwade, SR, Pang, WC, Rawal, P, Hines, EM, Hajjar, JF, Qiao, C, Valamanesh, V, Wei, K, Carswell, W, Fontana, CM, 2018, Hurricane risk assessment of offshore wind turbines, Renewable Energy, vol. 125, pp.234-249.
Hansen, MH, Henriksen, LC, 2013, Basic DTU Wind Energy controller, DTU Wind Energy, DTU Wind Energy E, No. 0028.
Hemmati, A, Oterkus, E, 2018, Semi-Active Structural Control of Offshore Wind Turbines Considering Damage Development, Journal of Marine Science and Engineering, vol. 6(3), no. 102.
IEC61400-1, 2019, Wind energy generation systems - Part 1: Design requirements, ed. 4, International Electrotechnical Commission.
IEC61400-3-1, 2019, Wind energy generation systems - Part 3-1: Design requirements for fixed offshore wind turbines, ed. 1, International Electrotechnical Commission.
Jelavic, M, Peric, N, 2009, Wind Turbine Control for Highly Turbulent Winds, Automatika, vol. 50(3-4), pp. 135-151.
Jonkman, J. M., Buhl Jr, M. L., 2005, Fast user's guide-updated august 2005, No. NREL/TP-500-38230, National Renewable Energy Lab.(NREL), Golden, CO (United States).
Jonkman, J., Butterfield, S., Musial, W., & Scott, G., 2009, Definition of a 5-MW reference wind turbine for offshore system development, No. NREL/TP-500-38060, National Renewable Energy Lab.(NREL), Golden, CO (United States).
Ke, ST, Ge, YJ, Wang, TG, Cao, JF, Tamura, Y, 2015, Wind field simulation and wind-induced responses of large wind turbine tower-blade coupled structure, Structural Design of Tall and Special Buildings, vol. 24(8), pp. 571-590.
Kim, E, Manuel, L, 2016, Hurricane risk assessment for offshore wind plants, Wind Engineering, vol. 40(3), pp.261-269.
Lavassas, I, Nikolaidis, G, Zervas, P, Efthimiou, E, Doudoumis, IN, Baniotopoulos, CC, 2003, Analysis and design of the prototype of a steel 1-MW wind turbine tower, Engineering Structures, vol. 25(8), pp. 1097-1106
Lian, JJ, Jia, YY, Wang, HJ, Liu, F, 2016, Numerical Study of the Aerodynamic Loads on Offshore Wind Turbines under Typhoon with Full Wind Direction, Energies, vol. 9(8), no. 613.
Palejiya, D, Chen, DM, 2016, Performance Improvements of Switching Control for Wind Turbines, IEEE Transactions on Sustainable Energy, vol. 7(2), pp. 526-534.
Perng, JW, Chen, GY, Hsieh, SC, 2014, Optimal PID Controller Design Based on PSO-RBFNN for Wind Turbine Systems, Energies, vol. 7(1), pp. 191-209.
Silva, GJ, Datta, A, Bhattacharyya, SP, 2002, New results on the synthesis of PID controllers, IEEE Transactions on Automatic Control, vol. 47(2), pp. 241-252.
Smith, V, Mahmoud, H, 2016, Multihazard Assessment of Wind Turbine Towers under Simultaneous Application of Wind, Operation, and Seismic Loads, Journal of Performance of Constructed Facilities, vol. 30(6), no. 04016043.
Turksoy, O, Ayasun, S, Hames, Y, Sonmez, S, 2020, Computation of Robust PI-Based Pitch Controller Parameters for Large Wind Turbines, Canadian Journal of Electrical and Computer Engineering-Revue Canadienne De Genie Electrique Et Informatique, vol. 43(1), pp. 57-63.
Wang, WH, Li, X, Pan, ZX, Zhao, ZX, 2019, Motion Control of Pentapod Offshore Wind Turbines under Earthquakes by Tuned Mass Damper, Journal of Marine Science and Engineering, vol. 7(7), no. 224.
Wu, D, Nariman, GS, Mohammed, SQ, Shao, ZH, Rezvani, A, Mohajeryami, S, 2020, Modeling and simulation of novel dynamic control strategy for PV-wind hybrid power system using FGS-PID and RBFNSM methods, Soft Computing, vol. 24(11), pp. 8403-8425.
Yan, S, Shi, SP, Chen, XM, Wang, XD, Mao, LZ, Liu, XJ, 2018, Numerical simulations of flow interactions between steep hill terrain and large scale wind turbine, Energy, vol. 151, pp. 740-747.
Yang, JS, Peng, CY, Xiao, JY, Zeng, JC, Yuan, Y, 2012, Application of videometric technique to deformation measurement for large-scale composite wind turbine blade, Applied Energy, vol. 98, pp. 292-300.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2020-08-12起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2020-08-12起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw