進階搜尋


下載電子全文  
系統識別號 U0026-0308201917423300
論文名稱(中文) 複合材料加勁鋼筋混凝土橋樑結構於樁土互制行為下之非線性有限元素分析
論文名稱(英文) Nonlinear Finite Element Analysis of RC Bridge Structures Strengthened by Composite Materials under the Soil-Pile Interaction
校院名稱 成功大學
系所名稱(中) 土木工程學系
系所名稱(英) Department of Civil Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 黃崇銘
研究生(英文) Chong-Ming Huang
電子信箱 wuboy5959@gmail.com
學號 N66061016
學位類別 碩士
語文別 中文
論文頁數 125頁
口試委員 指導教授-胡宣德
口試委員-吳俊霖
口試委員-蘇于琪
口試委員-蕭輔沛
口試委員-鍾興陽
共同指導教授-劉光晏
中文關鍵字 複合材料  鋼筋混凝土橋梁  樁土互制  有限元素法 
英文關鍵字 bridge-column system  pile-soil interaction  CDP  composite materials 
學科別分類
中文摘要 本研究透過混凝土非線性模式、鋼筋彈塑性模式、複合材料非線性破壞模式以及有限域、無限域結合之土壤元素分析橋柱系統,對於複合材料補強純橋柱系統以及樁土互制下橋柱系統,主要分為三大部分,即進行材料的破壞分析預測和純橋柱系統的最佳化補強以及樁土互制下橋柱系統之補強效果。
在混凝土非線性中,使用了CDP(Concrete Damaged Plastic Model)來模擬混凝土在循環性加載以及動力型加載下的運動模式,在此模式中利用損傷參數模擬混凝土裂縫行為。於複合材料之破壞前非線性分析,是假定複合材料軸向以及側向皆為彈塑性,本文使用了非定值之剪力參數來定義剪力之非線性行為。破壞時機使用的Tsai-Wu破壞準則來進行模擬。土壤元素則使用了具消能邊界之無限域元素模擬真實土壤邊界條件。
分析結果為利用力與位移關係求出最佳化情況,使用最佳化材料參數模擬樁土互制下橋柱系統運動情況,於深度與位移關係看出不同樁數下之分析結果差異,利用消除系統位移、轉角之橋柱絕對位移歷時反求最大橫推力比較純橋柱系統之降伏力是否合理。
英文摘要 This paper analyzes the bridge-column system through the concrete nonlinear model, the steel linear model, the composite nonlinear failure model, as well as the soil elements combined by the finite-domain and infinite-domain. Specifically, the composite reinforcing pure bridge-column system and the bridge-column system under pile-soil interaction are mainly divided into three parts, namely, the damage analysis and prediction of the materials, the optimization of the pure bridge-column system, and the reinforcement effect of the bridge-column system under the pile-soil interaction.
In the concrete nonlinear model, CDP is used to simulate the motion mode of the concrete under cyclic loading and dynamic loading. Damage parameters are used to simulate concrete crack behavior. The pre-destruction nonlinear analysis assumes that the composite materials are elastic and plastic in both axial and lateral directions. The non-constant shear parameters are used to define the nonlinear behavior of the shear force. The Tsai-Wu damage criterion is used for simulation at the time of destruction. As for the soil elements, the infinite domain elements with an energy dissipation boundary are used to simulate real soil boundary conditions.
The results show that the optimal condition is obtained by using the relationship between force and displacement. The optimal material parameters are used to simulate the movement of the bridge-column system under the pile-soil interaction. The relationship between depth and displacement shows the difference under different pile numbers. Furthermore, using the eliminated-system displacement and the absolute displacement duration of the corner bridge to get the maximum lateral thrust and compare it with the falling force of the pure bridge-column system to see if it is reasonable.
論文目次 摘要 I
致謝 V
目錄 VI
表目錄 IX
圖目錄 X
符號表 XV
第一章 緒論 1
1.1 研究動機與目的 1
1.2 研究方法 2
1.3 本文內容及架構 3
第二章 文獻回顧 4
2.1 複合材料簡介 4
2.2 正向性單層板的線性應力應變關係 4
2.3 正向性單層板的非線性分析模式 7
2.4 單層板在任意座標的非線性應力-應變關係 8
2.5 多層薄板拉伸應變之合力與合力矩的關係 11
2.6 Tsai-Wu破壞準則公式 12
第三章 數值模型 14
3.1 殼元素概述 14
3.2 橋柱之有限元素 15
3.3 土壤有限元素 16
3.4 鋼筋行為模式 18
3.5 混凝土行為模式 19
3.5.1 CDP塑性行為 19
3.5.2 CDP損傷行為 21
3.6 土壤塑性行為模式 25
3.7 橋梁結構圖 30
3.8 初始地應力平衡 33
3.9 自振阻尼概述 34
3.10 介面模擬概述 35
第四章 分析之結果與討論 36
4.1 ABAQUS基本理論驗證 36
4.1.1 多層薄板拉伸應變驗證 36
4.1.2 Tsai-Wu準則驗證 38
4.1.3 雙向版分析驗證 39
4.2 力與位移控制 43
4.3 收斂性分析 46
4.4 FRP線性與非線性差異 49
4.5 FRP角度適用性 55
4.6 單柱式橋梁補強後側推分析 58
4.6.1 擬靜態X軸側推降伏 58
4.6.2 混凝土柱破壞情形 62
4.6.3 側推最佳化補強 64
4.7 樁土互制下補強後側推深度變形曲線 67
4.7.1 樁數相同之載重不同深度變形 67
4.7.2 載重相同之不同樁數深度變形 77
4.8 樁土互制下橋柱系統之極限承載力 86
4.8.1 土壤零裸露下降伏時深度變形 89
4.8.2 土壤裸露下降伏時深度變形 92
4.8.3 土壤零裸露下側推降伏之柱頂力與位移關係 95
4.8.4 土壤裸露下側推降伏之柱頂力與位移關係 97
4.9 補強柱與樁之差異性 101
4.10 樁土互制下補強後地震歷時分析 103
4.10.1 單樁動態歷時 103
第五章 結論與建議 109
5.1 結論 109
5.2 建議 111
第六章 參考文獻 112
附錄 117
參考文獻 [1]Azzi, V. D. and Tsai, S. W., Anisotropic Strength of Composite, Experimental Mechanics, 5(9), pp. 283-288, 1965.
[2]Al-Saadi, N.T.K. and Mohammed, A. and Mahaidi, R.A. and Sanjayan, J., A state-of-the-art review: Near-surface mounted FRP composites for reinforced concrete structures, Construction and Building Materials, 209, pp. 748-769, 2019
[3]Baky, H.A. and Ebead, U.A. and Neale, K.W., Nonlinear micromechanics-based bond–slip model for FRP/concrete interfaces, Engineering Structures, 39, pp. 11-23, 2012.
[4]Castillo, E.R. and Griffith, M. and Ingham, J., Seismic behavior of RC columns flexurally strengthened with FRP sheets and FRP anchors, Composite Structures, 203, pp. 382-395, 2018
[5]Chen, C. and Wang, X. and Sui, L. and Xing, F. and Chen, X. and Zhou, Y. , Influence of FRP thickness and confining effect on flexural performance of HB-strengthened RC beams, Composites Part B: Engineering, 161, pp. 55-67, 2019
[6]Edge, E. C., Stress Based Grant-Sanders Method for Predicting failure of Composite Laminates, Composites Science and Technology, 58(7), pp. 1033-1041, 1998.
[7]Griffin, O. H. and Kamat, M. P. and Herakovich, C. T., Three-Dimensional Inelastic Finite Element Analysis of Laminated Composites, Journal of Composite Materials, 15(6), pp. 543-560, 1981.
[8]Gibson, R.F., PRINCIPLES OF COMPOSITE MATERIAL MECHANICS, R. R. Donnelley & Sons Company, Michigan, 1994.
[9]Hill, R., The Mathematical Theory of Plasticity, Oxford University Press, London, 1950.
[10]Hoffman, O., The Brittle Strength of Orthotropic Materials, Journal of Composite Materials, 1(2), pp. 200-206, 1967.
[11]Hahn, H. T. and Tsai, S.W., Nonlinear Elastic Behavior of Unidirectional Composite Laminae, journal of composite materials, 7(1), pp. 102-118, 1973.
[12]Hahn, H. T., Nonlinear Behavior of Laminated Composites, Journal of Composite Materials, 7(2), pp. 257-271, 1973.
[13]Hashin, Z. and Rotem, A., A Fatigue Failure Criterion for Fiber Reinforced Materials, Journal of Composite Materials, 7(4), pp. 448-464, 1973.
[14]Hashin, Z., Failure Criteria for Unidirectional Fiber Composites, Journal of Applied Mechanics, 47(2), pp. 329-334, 1980.
[15]Hu, H.T. and Schnobrich, W.C., Constitutive modeling of concrete by using nonassociated plasticity, Journal of Materials in Civil Engineering, 1, pp.199-216, 1989.
[16]Hu, H.T., Influence of In-plane Shear Nonlinearity on Buckling and Postbuckling Responses of Composite Laminate Plates and Shells, Journal of Composite Materials, 27(2), pp. 138-151, 1993.
[17]Hu, H.T. and Chou, T.F., Strengthening of BWR Mark III reinforced concrete containment with fibre composite laminate material, International Journal of Pressure Vessels and Piping, 79(4), pp. 297-308, 2002.
[18]Hasan, H.A. and Sheikh, M.N. and Hadi, M.N.S., Maximum axial load carrying capacity of Fibre Reinforced-Polymer (FRP) bar reinforced concrete columns under axial compression, Structures, 19, pp. 227-233, 2019
[19]Jones, R.M. and Morgant, H.S., Analysis of Nonlinear Stress-Strain Behavior of Fiber-Reinforced Composite Materials, AIAA JOURNAL, 15(12), pp.1669-1679, 1977.
[20]Lee, J. D., Three Dimensional Finite Element Analysis of Damage Accumulation in Composite Laminate, Computers & Structures, 15(3), pp. 335-350, 1982.
[21]Lesmana, C. and Hu, H.T. and Lin, F.M. and Huang, N.M., Numerical analysis of square reinforced concrete plates strengthened by fiber-reinforced plastics with various patterns, Composites Part B: Engineering, 55, pp. 247-262 , 2013.
[22]Lee, J. and Lopez, M.M., Frictional bond-slip model for the concrete-FRP interface under the FRP U-wrap region, Construction and Building Materials, 194, pp. 226-237, 2019.
[23]Menetrey, P., and Willam, K. J., Triaxial Failure Criterion for Concrete and its Generalization, Structural Journal, 92(3), pp. 311-318, 1995.
[24]Mosallam, A.S. and Mosalam, K.M., Strengthening of two-way concrete slabs with FRP composite laminates, Construction and Building Materials, 17 (1), pp. 43-54, 2003 .
[25]Pour, A.F. and Gholampour, A. and Zheng, J. and Ozbakkaloglu, T., Behavior of FRP-confined high-strength concrete under eccentric compression: Tests on concrete-filled FRP tube columns , Composite Structures, 220, pp. 261-272, 2019
[26]Siwowski, T. and Kulpa, M. and Rajchel, M. and Ponet, P., Design, manufacturing and structural testing of all-composite FRP bridge girder, Composite Structures, 206, pp. 814-827, 2018
[27]Tsai, S. W. and Wu, E. M., A General Theory of Strength for Anisotropic Materials, Journal of Composite Materials, 5(1), pp. 58-80, 1971.
[28]Wana, B. and Jiang, C. and Wuc, Y.F., Effect of defects in externally bonded FRP reinforced concrete, Construction and Building Materials, 172, pp. 63-76, 30 May 2018
[29]中華顧問工程司,921集集大地震專輯,1999。
[30]張荻薇,921集集大地震橋梁震害概要,921集集大地震結構勘災心得研討會,中華民國結構工程學會,1999。
[31]李秉乾、張國鎮、張順賓,圓形橋柱碳纖維耐震補強之研究,國家地震工程研究中心研究報告,NCREE- 99-037,1999。
[32]國家地震工程研究中心,921大地震橋梁及道路設施勘災報告,1999 。
[33]柯龍聖,開孔複合疊層曲面板受軸壓的最佳化自振分析,國立成功大學土木工程學系研究所碩士學位論文,2002。
[34]彭竑維,開孔複合疊層曲面板受軸壓的最佳化自振分析,國立成功大學土木工程學系研究所碩士學位論文,2010。
[35]代汝林、李忠芳、王姣,基於 ABAQUS的初始地應力平衡方法研究,重慶工商大學學報:自然科学版,29(9),76-81,2012。
[36]黃文秀,基礎裸露後橋墩之耐震能力與破壞機制,國立中興大學土木工程學系研究所碩士學位論文,2013。
[37]張會昇,受軸壓旋轉複合疊層圓錐截柱殼基本振頻對纖維角度之最佳化分析,國立成功大學土木工程學系研究所碩士學位論文,2014。
[38]葉鼎盛,離岸風機結構與土壤互制之有限元素自振分析,國立成功大學土木工程學系研究所碩士學位論文,2015。
[39]交通部橋梁座統計, 106年道路長度及橋梁座數概況,2018。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2019-08-16起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2019-08-16起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw