進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0308201912493700
論文名稱(中文) 乙醇在白金/鈀及白金/金複合電極上的氧化行為
論文名稱(英文) A Study on Electro-oxidation of Ethanol on Pt/Pd and Pt/Au Composite Electrodes
校院名稱 成功大學
系所名稱(中) 化學工程學系
系所名稱(英) Department of Chemical Engineering
學年度 107
學期 2
出版年 108
研究生(中文) 葉柏瑄
研究生(英文) Po-Hsuan Yeh
學號 N36064490
學位類別 碩士
語文別 中文
論文頁數 141頁
口試委員 指導教授-李玉郎
口試委員-張憲彰
口試委員-張鑑祥
口試委員-吳昭燕
中文關鍵字 乙醇氧化反應  雙層複合金屬電極  表面增顯紅外光譜儀  循環伏安法 
英文關鍵字 Ethanol electro-oxidation  Bilayer composite electrode  Surface-enhanced infrared absorption spectroscopy  Cyclic voltammetry 
學科別分類
中文摘要 本研究利用循環伏安儀(CV)與表面增顯紅外線光譜儀(SEIRAS),以即時量測的方式探討過氯酸水溶液中,乙醇分子於鉑、鈀、金、及雙層複合金屬電極表面上的氧化行為,同時分析不同電極上乙醇氧化反應的效率及穩定性。在一般乙醇氧化行為的研究中,多以鉑作為電極材料,但由於CO對鉑會造成毒化效應,故常在鉑中添加鈀、錫、銠、金等金屬製成合金。本研究中利用濺鍍法及化學無電鍍法將鉑沉積在鈀基材與金基材上,製成鉑/鈀及鉑/金雙層複合金屬電極,並探討不同電極系統中,鉑沉積量對乙醇氧化效率、電極抗毒化能力、及電極穩定性之影響。
由SEIRAS實驗結果顯示,鉑/鈀及鉑/金兩種複合電極的二氧化碳特徵峰訊號皆與由鉑電極所得之訊號強度相當,但一氧化碳特徵峰的訊號卻明顯下降,表示這兩種複合電極皆能達到高氧化效率,並有較佳的抗毒化效果。本研究中另以CV曲線中的氧化峰電流(If)對毒化峰電流(Ib)之比值(If/Ib)來評估電極的抗毒化能力。結果顯示,鉑電極的If/Ib值為0.49,但在鉑/鈀及鉑/金複合電極上,藉由鉑沉積量的控制,其抗毒化能力可分別提升至1.41及8.08。
在具有雙層結構的電極中,因為兩種金屬軌域重疊會導致電子組態改變,進而影響毒化物與金屬鍵結的混成軌域位置。在鉑/鈀電極中,上層鉑金屬粒徑較大,因此d軌域能帶分佈會變寬、中心位置下降,導致CO與電極間的鍵結力減弱,吸附於電極表面的CO容易脫附離開電極表面,因而達到減緩電極毒化之效果。而鉑/金電極則因上層鉑金屬粒徑較小,d軌域能帶分佈變窄、中心位置上升,CO與電極間較不易形成鍵結,如此達到抗毒化的效果。
英文摘要 Surface-enhanced infrared absorption spectroscopy (SEIRAS) and cyclic voltammetry (CV) are utilized to study the electro-oxidation behavior of ethanol (EtOH) on Pt, Pd, Au, and composite electrode surfaces. Although Pt electrode provides high oxidation efficiency, carbon monoxide (CO) would poison Pt during the reaction, leading to the passivation of electrode. In this study, Pt is used as catalyst layer deposited on the Pd or Au substrate by electroless plating method, and the produced composite electrode Pt/Pd and Pt/Au provide better ability to decline poison effect.
The SEIRAS spectrums show that the intensity of carbon dioxide (CO2) signal on Pt/Pd and Pt/Au are nearly to which on Pt, while the signal of CO decrease obviously. It is meaning that both composite electrode Pt/Pd and Pt/Au would not only remain the oxidation efficiency, but also avoid the poison effect. Furthermore, in the CV results, when current density of oxidation peak during the forward scan (If) divide to the current density of poison peak during the backward scan (Ib), the obtained ratio (If/Ib) indicate the ability in declining poison effect, the results show that the If/Ib of Pt is 0.49, while the Pt/Pd and Pt/Au are 1.41 and 8.08, respectively.
In terms of bilayer composite electrode, the orbital overlap of two metal would modify the electronic structure, bring about the change of the hybrid orbitals between adsorbate and surface metal. For Pt/Pd electrode, the radius of overlayer metal is lager than substrate metal, the d-orbital overlap is increased, resulting in a wider d-band width than that of the corresponding decrease of d-band center energy to maintain the overall d-band filling. According to d-band theory, the decrease of d-band center would make the bond strength of adsorbate and surface metal become weaker, the adsorbed CO can easily desorb, contribute to the declination of poison effect. On the other hand, Pt/Au electrode provides the opposite phenomena, the d-band center decreases, makes CO require more energy to bond with Pt.
論文目次 摘要 I
Extended abstract III
目錄 XII
表目錄 XVII
圖目錄 XVIII
第一章 緒論 1
1-1 前言 1
1-2 研究動機 3
第二章 文獻回顧 4
2-1 直接乙醇燃料電池 4
2-1-1 直接乙醇燃料電池的特性 4
2-1-2 直接乙醇燃料電池的工作原理 5
2-1-3 直接乙醇燃料電池的挑戰 7
2-2 乙醇氧化反應 12
2-2-1 乙醇氧化的反應機制 12
2-2-2 pH值對乙醇氧化反應的影響 14
2-3 陽極觸媒 17
2-3-1 鉑金屬 17
2-3-2 二元合金 18
2-4 探討乙醇氧化反應的分析方法 25
2-4-1 循環伏安法 25
2-4-2 表面增顯紅外光譜 29
2-5 影響電極表面毒化現象之效應 33
2-5-1 d-band理論(d-band theory) 33
2-5-2 影響d-band的效應 34
第三章 實驗 36
3-1 藥品及相關耗材 36
3-2 儀器設備 38
3-2-1循環伏安儀(Cyclic Voltammetry, CV) 38
3-2-2表面增顯紅外光譜儀(Surface-enhanced infrared absorption spectroscopy, SEIRAS) 41
3-3 實驗步驟 44
3-3-1 工作電極的製備 44
3-3-2 表面增顯紅外光譜儀之操作 47
3-3-3 以SEIRAS觀測乙醇氧化反應行為 48
第四章 結果與討論 49
4-1 單一金屬電極之乙醇氧化行為 49
4-1-1 多晶鉑金屬電極 49
4-1-1-1循環伏安圖 49
4-1-1-2表面增強紅外光譜 51
4-1-1-3 電極之電化學穩定性 56
4-1-1-4 多晶鉑電極於乙醇氧化之毒化效應 58
4-1-2 多晶鈀金屬電極 59
4-1-2-1循環伏安圖 59
4-1-2-2 電極之電化學穩定性 61
4-1-3 多晶金電極 62
4-1-3-1循環伏安圖 62
4-1-3-2表面增強紅外光譜 64
4-1-3-3電極之電化學穩定性 69
4-2 鉑/鈀雙層金屬電極之乙醇氧化行為 71
4-2-1 以濺鍍法製備鉑/鈀雙層金屬電極 71
4-2-1-1 以10 mA濺鍍電流製備鉑觸媒層 71
4-2-1-2 以20 mA濺鍍電流製備鉑觸媒層 73
4-2-1-3 以30 mA濺鍍電流製備鉑觸媒層 76
4-2-1-4 以40 mA濺鍍電流製備鉑觸媒層 79
4-2-2 以無電鍍沉積法與濺鍍法製備鉑/鈀雙層金屬電極 82
4-2-2-1 以無電鍍沉積30秒製備鉑觸媒層 82
4-2-2-2 以無電鍍沉積60秒製備鉑觸媒層 85
4-2-2-3 以無電鍍沉積120秒製備鉑觸媒層 88
4-2-2-4 以無電鍍沉積180秒製備鉑觸媒層 90
4-2-3表面增強紅外光譜 93
4-2-4 鉑/鈀雙層電極於乙醇氧化之抗毒化效應 97
4-3 鉑/金雙層金屬電極之乙醇氧化行為 99
4-3-1 以濺鍍法製備鉑/金雙層金屬電極 99
4-3-1-1 以10 mA濺鍍電流製備鉑觸媒層 99
4-3-1-2 以20 mA濺鍍電流製備鉑觸媒層 101
4-3-1-3 以30 mA濺鍍電流製備鉑觸媒層 104
4-3-1-4 以40 mA濺鍍電流製備鉑觸媒層 107
4-3-2 以無電鍍沉積法與濺鍍法製備鉑/金雙層金屬電極 110
4-3-2-1 以無電鍍沉積5秒製備鉑觸媒層 110
4-3-2-2 以無電鍍沉積10秒製備鉑觸媒層 113
4-3-2-3 以無電鍍沉積20秒製備鉑觸媒層 115
4-3-2-4 以無電鍍沉積30秒製備鉑觸媒層 118
4-3-2-5 以無電鍍沉積60秒製備鉑觸媒層 120
4-3-2-6 以無電鍍沉積120秒製備鉑觸媒層 123
4-3-3表面增強紅外光譜 126
4-3-4 鉑/金電極於乙醇氧化之抗毒化效應 132
第五章 結論 134
第六章 參考文獻 136

參考文獻 [1] F. Vigier, C. Coutanceau, A. Perrard, E. Belgsir, C. Lamy. Development of anode catalysts for a direct ethanol fuel cell. Journal of Applied Electrochemistry. 2004, 34, 439-446.
[2] K. Matsuoka, Y. Iriyama, T. Abe, M. Matsuoka, Z. Ogumi. Alkaline direct alcohol fuel cells using an anion exchange membrane. Journal of Power Sources. 2005, 150, 27-31.
[3] M. Kamarudin, S. K. Kamarudin, M. Masdar, W. R. W. Daud. Direct ethanol fuel cells. International Journal of Hydrogen Energy. 2013, 38, 9438-9453.
[4] S. Rousseau, C. Coutanceau, C. Lamy, J-M. Léger. Direct ethanol fuel cell (DEFC): electrical performances and reaction products distribution under operating conditions with different platinum-based anodes. Journal of Power Sources. 2006, 158, 18-24.
[5] E. Antolini. Catalysts for direct ethanol fuel cells. Journal of Power Sources. 2007, 170, 1-12.
[6] S. Song, P. Tsiakaras. Recent progress in direct ethanol proton exchange membrane fuel cells (DE-PEMFCs). Applied Catalysis B: Environmental. 2006, 63, 187-193.
[7] G. Andreadis, P. Tsiakaras. Ethanol crossover and direct ethanol PEM fuel cell performance modeling and experimental validation. Chemical Engineering Science. 2006, 61, 7497-7508.
[8] S. Kontou, V. Stergiopoulos, S. Song, P. Tsiakaras. Ethanol/water mixture permeation through a Nafion® based membrane electrode assembly. Journal of Power Sources. 2007, 171, 1-7.
[9] D. D. James, P. G. Pickup. Effects of crossover on product yields measured for direct ethanol fuel cells. Electrochimica Acta. 2010, 55, 3824-3829.
[10] H. Maab, S. P. Nunes. Modified SPEEK membranes for direct ethanol fuel cell. Journal of Power Sources. 2010, 195, 4036-4042.
[11] S. Heysiattalab, M. Shakeri, M. Safari, M. Keikha. Investigation of key parameters influence on performance of direct ethanol fuel cell (DEFC). Journal of Industrial and Engineering Chemistry. 2011, 17, 727-729.
[12] M. Nacef, A. Affoune. Comparison between direct small molecular weight alcohols fuel cells’ and hydrogen fuel cell’s parameters at low and high temperature. Thermodynamic study. International Journal of Hydrogen Energy. 2011, 36, 4208-4219.
[13] S. Shuqin, W. Yi, S. Peikang. Thermodynamic and kinetic considerations for ethanol electrooxidation in direct ethanol fuel cells. Chinese Journal of Catalysis. 2007, 28, 752-754.
[14] H. Pramanik, A. Wragg, S. Basu. Studies of some operating parameters and cyclic voltammetry for a direct ethanol fuel cell. Journal of Applied Electrochemistry. 2008, 38, 1321-1328.
[15] S. Shen, T. Zhao, Q. Wu. Product analysis of the ethanol oxidation reaction on palladium-based catalysts in an anion-exchange membrane fuel cell environment. International Journal of Hydrogen Energy. 2012, 37, 575-582.
[16] Y. Wang, S. Zou, W. B. Cai. Recent advances on electro-oxidation of ethanol on Pt-and Pd-based catalysts: From reaction mechanisms to catalytic materials. Catalysts. 2015, 5,1507-1534.
[17] C. Busó‐Rogero, E. Herrero, J. M. Feliu. Ethanol oxidation on pt single‐crystal electrodes: surface‐structure effects in alkaline medium. ChemPhysChem. 2014, 15, 2019-2028.
[18] W. Zhou, M. Li, L. Zhang, S. H. Chan. Supported PtAu catalysts with different nano-structures for ethanol electrooxidation. Electrochimica Acta. 2014, 123, 233-239.
[19] E. Pastor, T. Iwasita. D/H exchange of ethanol at platinum electrodes. Electrochimica acta. 1994, 39, 547-551.
[20] H. Razmi, E. Habibi, H. Heidari. Electrocatalytic oxidation of methanol and ethanol at carbon ceramic electrode modified with platinum nanoparticles. Electrochimica Acta. 2008, 53, 8178-8185.
[21] S. C. S. Lai, S. E. F. Kleijn, F. T. Z. Öztürk, V. C. R. Vellinga, J. Koning, P. Rodriguez, M. T. M. Koper. Effects of electrolyte pH and composition on the ethanol electro-oxidation reaction. Catalysis Today. 2010, 154, 92-104.
[22] M. Akhairi, S. K. Kamarudin. Catalysts in direct ethanol fuel cell (DEFC): An overview. International Journal of Hydrogen Energy. 2016, 41, 4214-4228.
[23] E. Antolini, E. Gonzalez. Alkaline direct alcohol fuel cells. Journal of Power Sources. 2010, 195, 3431-3450.
[24] B. Braunchweig, D. Hibbitts, M. Neurock, A. Wieckowski. Electrocatalysis: A direct alcohol fuel cell and surface science perspective. Catalysis today. 2013, 202, 197-209.
[25] M. Heinen, Z. Jusys, R. Behm. Ethanol, acetaldehyde and acetic acid adsorption/electrooxidation on a Pt thin film electrode under continuous electrolyte flow: an in situ ATR-FTIRS flow cell study. The Journal of Physical Chemistry C. 2010, 114, 9850-9864.
[26] R. B. Kutz, B. Braunschweig, P. Mukherjee, R. L. Behrens, D. D. Dlott, A. Wieckowski. Reaction pathways of ethanol electrooxidation on polycrystalline platinum catalysts in acidic electrolytes. Journal of Catalysis. 2011, 278, 181-188.
[27] R. B. Kutz, B. Braunschweig, P. Mukherjee, D. D. Dlott, A. Wieckowski. Study of ethanol electrooxidation in alkaline electrolytes with isotope labels and sum-frequency generation. The Journal of Physical Chemistry Letters. 2011, 2, 2236-2240.
[28] W. Zhou, Z. Zhou, S. Song, W. Li, G. Sun, P. Tsiakaras, Q. Xi. Pt based anode catalysts for direct ethanol fuel cells. Applied Catalysis B: Environmental. 2003, 46, 273-285.
[29] J. Suntivich, Z. Xu, C. E. Carlton, J. Kim, B. Han, S. W. Lee, N. Bonnet, N. Marzari, L. F. Allard, H. A. Gasteiger, K. H. Schifferli, S. H. Yang. Surface composition tuning of Au–Pt bimetallic nanoparticles for enhanced carbon monoxide and methanol electro-oxidation. Journal of the American Chemical Society. 2013, 135, 7985-7991.
[30] C. H. A. Tsang, K. N. Hui, K. Hui. Influence of Pd1Ptx alloy NPs on graphene aerogel/nickel foam as binder-free anodic electrode for electrocatalytic ethanol oxidation reaction. Journal of Power Sources. 2019, 413,98-106.
[31] L. Zhang, Q. Chang, H. Chen, M. Shao. Recent advances in palladium-based electrocatalysts for fuel cell reactions and hydrogen evolution reaction. Nano Energy. 2016, 29, 198-219.
[32] C. Zhang, A. Zhu, R. Huang, Q. Zhang, Q. Liu. Hollow nanoporous Au/Pt core–shell catalysts with nanochannels and enhanced activities towards electro-oxidation of methanol and ethanol. International Journal of Hydrogen Energy. 2014, 39, 8246-8256.
[33] C. Zhu, S. Guo, S. Don. PdM (M= Pt, Au) Bimetallic Alloy Nanowires with Enhanced Electrocatalytic Activity for Electro‐oxidation of Small Molecules. Advanced Materials. 2012, 24, 2326-2331.
[34] L. Han, H. Ju, Y. Xu. Ethanol electro-oxidation: Cyclic voltammetry, electrochemical impedance spectroscopy and galvanostatic oscillation. international journal of hydrogen energy. 2012, 37, 15156-15163.
[35] M. Brandalise, R. W. R. Verjulio-Silva, M. M. Tusi, O. V. Correa, L. A. Farias, M. Linardi, E. V. Spinacé, A. O. Neto. Electro-oxidation of ethanol using PtRuBi/C electrocatalyst prepared by borohydride reduction. Ionics. 2009, 15, 743.
[36] V. Díaz, S. Real, E. Téliz, C. Zinola, M. Martins. New experimental evidence on the formation of platinum superactive sites in an electrochemical environment. International Journal of Hydrogen Energy. 2009, 34, 3519-3530.
[37] S. Chen, M. Schell. Bistability and excitability in the electrochemical oxidation of ethanol. Electrochimica Acta. 1999, 44, 4773-4780.
[38] P. Katikawong, T. Ratana, W. Veerasai. Temperature dependence studies on the electro-oxidation of aliphatic alcohols with modified platinum electrodes. Journal of Chemical Sciences. 2009, 121, 329-337.
[39] F.C. Simões, F. Vigier, J.-M. Léger, F. Hahn, C. Coutanceau, E.R. Gonzalez, G. Tremiliosi-Filho, A.R. de Andrade, P. Olivi, K.B. Kokoh. Electroactivity of tin modified platinum electrodes for ethanol electrooxidation. Journal of Power Sources. 2007, 167, 1-10.
[40] S. Sun, M. Heinen, Z. Jusys, R.J. Behm. Ethanol electrooxidation on a carbon-supported Pt catalyst at elevated temperature and pressure: A high-temperature/high-pressure DEMS study. Journal of Power Sources. 2009, 190, 2-13.
[41] Y. Zhao, X. Li, J. M. Schechter, Y. Yang. Revisiting the oxidation peak in the cathodic scan of the cyclic voltammogram of alcohol oxidation on noble metal electrodes. The Royal Society of Chemistry Advances. 2016, 6, 384-390.
[42] Y. C. Lin, H. L. Chou, M. C. Tsai, B. J. Hwang, L. S. Sarma, Y. C. Lee, C. I. Chen. Combined experimental and theoretical investigation of nanosized effects of Pt catalyst on their underlying methanol electro-oxidation activity. The Journal of Physical Chemistry C. 2009, 113, 9197-9205.
[43] A. Miki, S. Ye, M. Osawa. Surface-enhanced IR absorption on platinum nanoparticles: an application to real-time monitoring of electrocatalytic reactions. Chemical Communications. 2002, 1500-1501.
[44] Y. X. Chen, A. Miki, S. Ye, H. Sakai, M. Osawa. Formate, an active intermediate for direct oxidation of methanol on Pt electrode. Journal of the American Chemical Society. 2003, 125, 3680-3681.
[45] A. Miki, S. Ye, T. Senzaki, M. Osawa. Surface-enhanced infrared study of catalytic electrooxidation of formaldehyde, methyl formate, and dimethoxymethane on platinum electrodes in acidic solution. Journal of Electroanalytical Chemistry. 2004, 563, 23-31.
[46] G. Samjeské, M. Osawa. Current oscillations during formic acid oxidation on a Pt electrode: Insight into the mechanism by time‐resolved IR spectroscopy. Angewandte Chemie International Edition. 2005, 44, 5694-5698.
[47] M. F. Silva, B. C. Batista, E. Boscheto, H. Varela, G. A. Camara. Electrooxidation of ethanol on Pt and PtRu surfaces investigated by ATR surface-enhanced infrared absorption spectroscopy. Journal of the Brazilian Chemical Society. 2012, 23, 831-837.
[48] C. Zhu, B. Lan, R. L. Wei, C. N. Wang, Y. Y. Yang. Potential-Dependent Selectivity of Ethanol Complete Oxidation on Rh Electrode in Alkaline Media: A Synergistic Study of Electrochemical ATR-SEIRAS and IRAS. ACS Catalysis. 2019, 9, 4046-4053.
[49] S. Bhattacharjee, U. V. Waghmare, S. C. Lee. An improved d-band model of the catalytic activity of magnetic transition metal surfaces. Scientific reports. 2016, 6, 35916.
[50] M. T. Greiner, T. Jones, S. Beeg, L. Zwiener, M. Scherzer, F. Girgsdies, S. Piccinin, M. Armbrüster, A. Knop-Gericke, R. Schlögl. Free-atom-like d states in single-atom alloy catalysts. Nature Chemistry. 2018, 10, 1008-1015.
[51] I. Yagi, S. Nakabayashi, K. Uosaki. Excitation wavelength dependent three-wave mixing at a CO-covered platinum electrode. The Journal of Physical Chemistry B. 1997, 101, 7414-7421.
[52] M. V. Ganduglia-Pirovano, V. Natoli, M. H. Cohen, J. Kudrnovský, I. Turek. Potential, core-level, and d band shifts at transition-metal surfaces. Physical Review B. 1996, 54, 8892-8898.
[53] B. Hammer, Y. Morikawa, J. K. Nørskov. CO chemisorption at metal surfaces and overlayers. Physical Review Letters. 1996, 76, 2141-2144.
[54] S. Yang, H. Noguchi, K. Uosaki. Electronic Structure of CO Adsorbed on Electrodeposited Pt Thin Layers on Polycrystalline Au Electrodes Probed by Potential-Dependent IR/Visible Double-Resonance Sum Frequency Generation Spectroscopy. The Journal of Physical Chemistry C. 2018, 122, 8191-8201.
[55] S. Yang. Electronic Structure of CO/Pt Electrochemical Interfaces Investigated by Potential Dependent Double Resonance Sum Frequency Generation Spectroscopy. 2016.
[56] T. Awatani, I. Yagi, H. Noguchi, K. Uosaki. Second harmonic generation study on electrochemical deposition of palladium on a polycrystalline gold electrode. Journal of Electroanalytical Chemistry. 2002, 524, 184-193.
[57] J. Kitchin, J. K. Nørskov, M. Barteau, J. Chen. Modification of the surface electronic and chemical properties of Pt (111) by subsurface 3d transition metals. The Journal of Chemical Physics. 2004, 120, 10240-10246.
[58] K. Ataka, T. Yotsuyanagi, M. Osawa. Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy. The Journal of Physical Chemistry. 1996, 100, 10664-10672.

論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2024-08-02起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2024-08-02起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw