進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0308201814305600
論文名稱(中文) 以物理混合法合成高比表面積之多重孔洞碳材應用於超級電容及電容脫鹽
論文名稱(英文) Using a Physical Blending Method to Synthesize Multiporous Carbon with High Surface Areas for Applications in Supercapacitor and Capacitive Deionization
校院名稱 成功大學
系所名稱(中) 化學系
系所名稱(英) Department of Chemistry
學年度 106
學期 2
出版年 107
研究生(中文) 鍾政翰
研究生(英文) Cheng-Han Chung
學號 L36054304
學位類別 碩士
語文別 中文
論文頁數 90頁
口試委員 指導教授-林弘萍
口試委員-鍾博文
口試委員-林建宏
口試委員-許君漢
中文關鍵字 孔洞碳材  氧化鋅  碳酸鈣  超級電容  電容脫鹽技術  綠色化學 
英文關鍵字 multiporous carbon  supercapacitor  green chemistry  capacitive deionization  pyrolysis oil 
學科別分類
中文摘要 本研究致力於以簡單製程、環境友善、低成本的方式合成多重孔洞碳材,利用其豐富的孔洞性,提升超級電容及電容脫鹽裝置元件之性能。實驗上以簡單的物理混合法將模板(ZnO、CaCO3)與碳源(裂解油)混合均勻,透過900℃高溫碳化即得高比表面積孔洞碳材,實驗中不需使用有機溶劑,模板以稀釋的HCl(aq)移除,產生的鋅離子廢液也能透過酸鹼中和回收再製成模板使用,相較於傳統的氧化矽模板法,不僅不需使用到高毒性的HF(aq)移除模板,也不需要繁瑣的實驗步驟,在量化生產上得以簡化生產流程,同時避免過多的汙染造成環境負擔,達成綠色化學的概念。
以物理混合法合成高比表面積多重孔洞碳材,透過調整ZnO/裂解油比例2~5,其比表面積可達1280~1770 m2 g-1,孔洞豐富性高有助於提升超級電容效益,較大的中孔有助於碳材的通透度及離子傳輸,較小的中孔與微孔用來提高比表面積並且儲存離子。在二極式超級電容方面,在有機電解液1M LiClO4/PC的環境下,可以達到130 F g‒1之高比電容值(掃描速率= 5 mV s‒1),在掃描速率= 500 mV s‒1,仍能維持70%高保留率;另外,可藉由添加三聚氰胺,在碳的結構中擔載含氮官能基,利用快速法拉第反應增加電荷儲存量,進一步提升電容值到約150 F g-1。電容脫鹽方面,透過混合酚醛樹脂再次碳化的方式,提高多重孔洞碳材之體密度(bulk density),便於電極的塗佈,其鹽吸附量可達7.61 mg g-1;另外,可藉由在碳的結構中擔載含氮官能基提高表面電荷,降低同離子排斥效應,增加鹽吸附量,將陽極更換為含氮多重孔洞碳材,其鹽吸附量可達9.01 mg g-1,且在吸附時間10分鐘內即達總吸附量90%,有助於縮短一趟電容脫鹽循環時間,優化電容脫鹽效益。
英文摘要 Supercapacitors are promising energy sources for many different applications due to their high power density, short charge time and long cycle life. However, they have a low energy density due to the poor surface area and porosity of their carbon electrodes. Accordingly, this study proposes a method for synthesizing porous carbon with an increased surface area and optimized pore properties. In the proposed approach, the carbon is produced from biomass using an eco-friendly process based on a ZnO nanoparticle templating technique. Compared with previous silica hard templating approaches, the proposed method is more environmentally friendly since the ZnO templates are removed using hydrochloric acid rather than toxic hydrofluoric acid. Moreover, the carbon source is provided by the pyrolysis oil produced as a by-product in the wood cracking process, and hence reduces the pollution which is otherwise caused if this oil is simply discarded. Applied in a supercapacitor, the porous carbon exhibits a high capacity (up to 130 F/g) and a high retention rate (70%) even under a scan rate of 500 mV/s. Moreover, for capacitive deionization (CDI) application, the synthesized carbon results in a maximum electrosorption capacity of 9.01 mg g‒1 at 1.2 V in 5.0 mM NaCl solution.
論文目次 目錄
第一章 緒論 1
1.1孔洞材料介紹 1
1.2多重孔洞碳材介紹 1
1.3孔洞碳材合成 2
1.3.1硬模板法 2
1.3.2化學活化法 3
1.4電容 3
1.4.1超級電容簡介 3
1.4.2電化學量測系統 6
1.4.3超級電容器儲能原理 7
1.5電容脫鹽 (Capacitive Deionization, CDI) 10
1.5.1電容脫鹽技術的發展 10
1.5.2電容脫鹽技術的原理 12
1.5.3電雙層重疊效應 (Electric double layer overlapping) 13
第二章 實驗步驟及材料鑑定 15
2.1化學藥品 15
2.2物理混合法合成多重孔洞碳材 16
2.2.1以ZnO為模板 16
2.2.2以CaCO3為模板 17
2.3物理混合法合成含氮多重孔洞碳材 17
2.4添加酚醛樹脂再裂解合成法(高密度碳材) 18
2.5鋅離子廢液回收再製 18
2.6二極式超級電容器製備方法 19
2.6.1電極片的準備: 19
2.6.2二極式超級電容碳電極制備 19
2.6.3二極式超級電容組裝 20
2.7二極式電容器檢測方法 21
2.7.1循環伏安法(Cyclic Voltammetry, CV): 21
2.7.2充放電測試:定電流操作(Galvanostatic charge and discharge, CM) 24
2.7.3交流阻抗分析(AC Impedance) 25
2.8電容脫鹽(CDI)裝置組裝 29
2.8.1碳電極製備 29
2.8.2組裝電容脫鹽裝置 30
2.8.3 CDI實驗檢測方法 30
2.8.4 CDI結果分析 31
2.9實驗儀器鑑定與分析 34
2.9.1穿透式電子顯微鏡 (Transmission Electron Microscopy;TEM) 34
2.9.2氮氣等溫吸附-脫附測量 (N2 adsorption/desorption isotherm) 35
2.9.3掃描式電子顯微鏡 (Scanning Electron Microscopy;SEM) 39
2.9.4熱重分析儀 (Thermal Gravimetric Analysis;TGA) 40
2.9.5元素分析儀(Elemental analyzer;EA) 41
2.9.6微波加熱器(microwave radiation heater) 41
2.9.7火焰原子吸收光譜儀(Atomic Absorption Spectrophotometer;AA) 42
第三章 以物理混合法合成多重孔洞碳材 43
3.1研究動機與實驗目的 43
3.2以物理混合法製備多重孔洞碳材之概論 44
3.3合成多重孔洞碳材之碳化溫度探討 45
3.4合成多重孔洞碳材模板/碳源重量比之探討 47
3.5多重孔洞碳材應用於超級電容 48
3.6樹脂回填再裂解對孔洞性質影響 51
3.7微波後處理對碳材穩定度影響 53
3.8製程放大對材料性質影響 54
3.9氧化鋅廢液回收再利用 55
3.10合成多重孔洞碳材之模版替換(OT) 56
3.11章節小節(量產循環) 58
第四章 多重孔洞碳材應用於超級電容 60
4.1研究動機與實驗目的 60
4.2導電助劑及黏結劑的使用 60
4.3多重孔洞碳材應用於超級電容 62
4.3.1比表面積因素 62
4.3.2孔洞結構因素 64
4.3.3模板因素 66
4.3.4含氮官能基對電容值貢獻 67
4.4章節小結 70
第五章 電容脫鹽應用 72
5.1研究動機與實驗目的 72
5.2碳材體密度對CDI電極製作之影響 73
5.3電容脫鹽技術之操作變因 74
5.3.1工作電壓 74
5.3.2溶液濃度 76
5.3.3流速 76
5.4碳材耐久性分析 77
5.5不同模板合成之多重孔洞碳材應用於CDI電極 79
5.6含氮碳材對電容脫鹽的增益效果 80
5.7電容去離子對銅離子移除效果 82
5.8章節小結 83
第六章 結論 85
參考文獻 87
參考文獻 1. D. H. Everett, Pure Appl. Chem, 31, 579-638, 1971.
2. I. Moriguch, F. Nakahara, H. Furukawa, H. Yamada, T. Kudo, Electrochem Solid-State Lett, 7, 8, A221–3, 2004.
3. L. Guo, L. Zhang, J. Zhang, J. Zhou, Q. He, S. Zeng, X. Cui and J. Shi, Chem Commun, 40, 6071-6073, 2009.
4. I.A.W. Tan, A.L. Ahmad, and B.H. Hameed, J. Hazard. Mater, 154, 337–346, 2008.
5. C. Liang and S. Dai, J. Amer. Chem. Soc., 128, 5316-5317, 2006.
6. Y. Zhang, W.-S. Zhang, A.-Q. Wang, S. Li-Xian, M.-Q. Fan, H.-L. Chu, J.-C. Sun and T. Zhang, INT J HYDROGEN ENERG, 32, 3976-3980, 2007.
7. J. Ding, K.-Y. Chan, J. Ren and F.-s. Xiao, Electrochimica Acta, 50, 3131-3141, 2005.
8. F. Goettmann, A. Fischer, M. Antonietti and A. Thomas, Angew. Chem. Int. Ed., 45, 4467-4471, 2006.
9. F. Su, J. Zeng, X. Bao, Y. Yu, J. Y. Lee and X. S. Zhao, Chem Mater, 17, 3960-3967, 2005.
10. J. Huang, B. G. Sumpter and V. Meunier, Chemistry, 2008, 14, 6614-6626.
11. C. H. Hou, C. Y. Huang, C. Y. Hu, J. Environ. Sci. Technol, 10, 753–760,2013.
12. R. Ryoo, S. H. Joo, and S. Jun, J. Phys. Chem. B, 103, 7743-7746, 1999.
13. J. Lee, J. Kim, and T. Hyeon, Advanced Materials 18, 2073-2094, 2006.
14. 劉冠彣, Hierarchical Porous Carbons Synthesized with ZnO Templates and Petroleum Pitch via a Solvent-Free Process for Supercapacitor and Capacitive Deionization Applications, 2017.
15. 活性碳材料, 工研院, 2012.
16. B. E. Conway, J. Electrochem. Soc., 138, 1539-1548, 1991.
17. E. Frackowiak, Phys Chem Chem Phys., 9, 1774-1785, 2007.
18. L. L. Zhang, and X. S. Zhao, Chem. Soc. Rev., 38, 2520-2531, 2009.
19. R. Kötz, and M. Carlen, Electrochim. Acta., 45, 2483-2498, 2000.
20. 陳宗億. Syntheisis and Application of Mesoporous Carbon Based High Energy Density Supercapacitor, 2013.
21. E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, and F. Beguin, J. Power Sources., 153, 413-418, 2006.
22. G. Lewin, G. Myers, V. Parsonnet and I. Zucker, ASAIO Journal, 13, 345-349, 1967.
23. F. Ide and A. Hasegawa, J. Appl. Polym. Sci., 18, 963-974, 1974.
24. K. Kataoka, A. Harada and Y. Nagasaki, Adv. drug deliv. rev., 47, 113-131, 2001.
25. V. Peykov, A. Quinn and J. Ralston, Colloid. Polym. Sci., 278, 789-793, 2000.
26. A. Bourdon, V. Pasko, N. Y. Liu, S. Célestin, P. Ségur and E. Marode, Plasma Sources Sci. Technol., 16, 656, 2007.
27. R. J. Crawford, I. H. Harding and D. E. Mainwaring, J Colloid Interf Sci, 181, 561-570, 1996.
28. D. E. Yates, S. Levine and T. W. Healy, J. Chem. Soc., Faraday Trans. 1, 70, 1807-1818, 1974.
29. K. B. Oldham, J Electroanal Chem, 613, 131-138, 2008.
30. K. Xu, Y. Lam, S. S. Zhang, T. R. Jow and T. B. Curtis, J. Phys. Chem. C, 111, 7411-7421, 2007.
31. R. W. Impey, M. Sprik and M. L. Klein, J. Am. Chem. Soc., 109, 5900-5904, 1987.
32. J. Prue and P. Sherrington, Transactions of the Faraday Society, 57, 1795-1808, 1961.
33. S. Levine, D. Calvert, and G. M. Bell, Can. J. Chem.-Rev. Can. Chim. 40, 518-&, 1962.
34. S. Levine, and C. W. Outhwaite, J. Chem. Soc., Faraday Trans., 74, 1670-1689, 1978.
35. C. W. Outhwaite, and L. B. Bhuiyan, J. Chem. Soc., Faraday Trans., 79, 707-718, 1983.
36. C. W. Outhwaite, L. B. Bhuiyan, and S. Levine, J. Chem. Soc., Faraday Trans., 76, 1980.
37. A. Burke, J Power Sources, 91, 37-50, 2000.
38. J. P. Zheng, P. J. Cygan and T. R. Jow, J Electrochem Soc, 142, 2699-2703, 1995.
39. http://www.un.org/News/Press/docs/2010/ga10967.doc.htm.
40. M. A. Anderson, A. L. Cudero, and J. Palma, Electrochim. Acta, 55, 3845-3856, 2010.
41. S. Obaidani et al. J. Membr. Sci. 323, 85-98, 2008.
42. L. M. Camacho et al. Water, 5, 94-196, 2013.
43. C. Fritzmann, J. Lowenberg, T. Wintgens, and T. Melin, Desalination 216, 1-76, 2007.
44. L. F. Greenlee, D. F. Lawler, B. D. Freeman, B. Marrot, and P. Moulin, Water Res. 43, 2317-2348, 2009.
45. K. P. Lee, T. C. Arnot, and D. Mattia, J. Membr. Sci. 370, 1-22, 2011.
46. S. K. Adhikary, U. K. Tipnis, W. P. Harkare, and K. P. Govindan, Desalination 71, 301-312, 1989.
47. A. A. Sonin, and R. F. Probstein, Desalination 5, 3, 293-329,1968.
48. S. Porada et al. Energy Environ. Sci. 6, 3700-3712, 2013.
49. D. D. Caudle, J. H. Tucker, J. L. Cooper, B. B. Arnold, and A. Papastamataki, Oklahoma University Research Institute, 1966.
50. A. M. Johnson, A. W. Venolia, J. Newman, R. G. Wilbourne, C. M. Wong, W. S. Gillam, S. Johnson, and R. H. Horowitz, Washington, D.C. : U.S. Dept. of the Interior, 200 056, 1970.
51. A. M. Johnson, A. W. Venolia, R. G. Wilbourne, and J. Newman, p36, 1970.
52. J. C. Farmer, D. V. Fix, G. V. Mack, R. W. Pekala, and J. F. Poco, J. Electrochem. Soc., 143, 159-169, 1996.
53. C. J. Gabelich, T. D. Tran, and I. H. Suffet, Environ. Sci. Technol., 36, 3010-3019, 2002.
54. C. C. Huang and Y. J. Su, J. Hazard. Mater., 175, 477-483, 2010.
55. C. Tsouris et al. Environ. Sci. Technol. 45, 10243-10249, 2011.
56. C. H. Hamann, A. Hamnett, and V. Wolf, "Electrochemistry," WILEY-VCH, 1998.
57. C. Lin, J. A. Ritter, and B. N. Popov, J. Electrochem. Soc., 146, 3639-3643, 1999.
58. L. Nadjo and J. Savéant, J. Electroanal. Chem. Interfac., 48, 113-145, 1973.
59. K. Aoki, K. Akimoto, K. Tokuda, H. Matsuda and J. Osteryoung, J. Electroanal. Chem. Interfac., 171, 219-230, 1984.
60. C. Amatore and J. Savéant, J. Electroanal. Chem. Interfac., 85, 27-46, 1977.
61. M. Doyle, T. F. Fuller and J. Newman, J Electrochem Soc, 140, 1526-1533, 1993.
62. B. Conway, H. Angerstein‐Kozlowska, M. Sattar and B. Tilak, J Electrochem Soc, 130, 1825-1836, 1983.
63. D. Harrington and B. Conway, J. Electroanal. Chem. Interfac., 221, 1-21, 1987.
64. B. Conway, L. Bai and D. Tessier, J. Electroanal. Chem. Interfac., 161, 39-49, 1984.
65. J. Saxena, K. Butler, V. Jayaram, S. Kundu, N. Arvind, P. Sreeprakash and M. Hachinger, in International test conference, pp. 1098-1104, 2003.
66. F. MANSFELD, Corrosion, 32, 143-146, 1976.
67. A. H. Ajami, K. Banerjee, A. Mehrotra and M. Pedram, in Quality Electronic Design, 2003. Proceedings. Fourth International Symposium on, IEEE, pp. 35-40 , 2003.
68. D. McCumber, J. Appl. Phys., 39, 3113-3118, 1968.
69. F. Mansfeld, M. Kendig and S. Tsai, Corrosion, 38, 570-580, 1982.
70. F. Mansfeld, M. Kendig and S. Tsai, Corrosion, 38, 478-485, 1982.
71. M. E. Orazem and B. Tribollet, Electrochemical impedance spectroscopy, Wiley-Interscience, 2011.
72. K. Jüttner, Electrochim. Acta, 35, 1501-1508, 1990.
73. F. Mansfeld, J. Appl. Electrochem., 25, 187-202, 1995.
74. 蔡定平. 奈米檢測技術, 2009.
75. D. Langmuir, P. Hall and J. Drever, Environ. Geochem. Health, Englewood Cliffs: Prentice-Hall, 1997.
76. O. Franke, G. Schulz-Ekloff, J. Rathouský, J. Stárek and A. Zukal, J. Chem. Soc., Chem. Commun., 724-726, 1993.
77. R. Liu, Y. Shi, Y. Wan, Y. Meng, F. Zhang, D. Gu, Z. Chen, B. Tu, and D. Zhao, J. Amer. Chem. Soc, 35, 128, 11652–11662.2006.
78. A. Kumar, H. M. Jena, Appl. Surf. Sci., 356, 753–761,2015.
79. P. Strubel, S. Thieme, T. Biemelt, A. Helmer, M. Oschatz, J. B. Holger, and A. S. Kaskel, Adv. Funct. Mater, 25, 2, 287-297, 2015.
80. B. E. Conway, Electrochemical Supercapacitors, ch13, 350, 1999.
81. https://baike.baidu.com/item/%E9%94%8C%E7%A6%BB%E5%AD%90
82. E. Frackowiak, K. Metenier, V. Bertagna, and F. Beguin, Appl. Phys. Lett, 77, 2421, 2000.
83. C. X. Guo ab, and C. M. Li, Energy Environ. Sci., 4, 4504-4507, 2011.
84. Z. Zhu1, S. Tang1, J. Yuan1, X. Qin1, Y. Deng, R. Qu, and G. M. Haarberg, Int. J. Electrochem. Sci., 11, 8270 – 8279, 2016
85. L. H. Wang, M. Toyoda, M. Inagaki, New Carbon Mater, 23,2, 111–115, 2008.
86. O. Barbieri, M. Hahn, A. Herzog, R. Kotz, Carbon, 43, 1303–1310, 2005.
87. U. B. Nasini, V. G. Bairi, S. K. Ramasahayama, S. E. Bourdo, T. Viswanathan, and A. U. Shaikh, J. Power Sources, 250, 15, 257-265,2014.
88. P. Liu, H. Wang, T. Yan, J. Zhang, L. Shi and D. Zhang, J. Mater. Chem. A, 4,5303, 2016.
89. S. Jeon, H. Park, J. Yeo, S. Yang, C. H. Cho, M. H. Han, and D. K. Kim, Energy Environ. Sci., 6, 1471, 2013.
90. X. Gao, A. Omosebi, J. Landon, and K. Liu, Energy Environ. Sci., 8, 897, 2015.
91. S. Y. Huang, C. S. Fan, C. H. Hou, J. Hazard. Mater., 278, 8, 15, 2014.
92. H. Jin, X. Wang, Z. Gu, J. Polin, J. Power Sources, 236, 285-292, 2013.
93. M. E. Suss, S. Porada, X. Sun, P. M. Biesheuvel, J. Yoon, and V. Presser, Energy Environ. Sci., 8, 2296-2319, 2015.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2023-06-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2023-06-01起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw