進階搜尋


下載電子全文  
系統識別號 U0026-0308201716503300
論文名稱(中文) 改善車輛保險桿樑吸能性的最佳化設計
論文名稱(英文) Design of Automotive Bumper Beam for Improving Energy Absorbing Capacity Based on Optimization
校院名稱 成功大學
系所名稱(中) 機械工程學系
系所名稱(英) Department of Mechanical Engineering
學年度 105
學期 2
出版年 106
研究生(中文) 邱昱凱
研究生(英文) Yu-Kai Chiou
學號 N16041367
學位類別 碩士
語文別 中文
論文頁數 126頁
口試委員 指導教授-黃才烱
口試委員-陳家豪
口試委員-劉至行
中文關鍵字 行人碰撞  車輛保險桿樑  有限元素法  田口品質工程  響應曲面法  克利金法  最佳化設計 
英文關鍵字 Pedestrian Safety Bumper Beam  Finite Element Method  Kriging Response Surface Method  Taguchi Method  Optimum Design 
學科別分類
中文摘要 隨著車輛工業的進步以及普及,在人口密集的都市裡,行人車禍的發生越來越頻繁,其中又以下肢傷害占了非常大的比例。下肢傷害需要非常久的時間復原以及不斷的復健,且伴隨著永久傷殘的可能,因此行人下肢保護的議題不容忽視。在車輛安全逐漸受到重視的現代,各國都已經建立了相關的法規以約束車輛製造商在相關方面的重視,因此許多車輛都已經裝備有保險桿系統的安全設計,例如柔軟的保險桿以及用於吸收能量的泡棉。儘管如此,下肢傷害依然無法全面地避免,原因在於剛性遠高於人體下肢的車輛前保險桿樑,係碰撞過程中帶給人體傷害的主要來源。因此,本論文的研究宗旨在於改變保險桿樑的結構設計增加其吸能性,試圖降低給行人帶來的傷害,同時在低速碰撞的條件下能夠保持足夠的剛性以避免車體在低速撞擊意外中過於容易受損。
在研究過程中,本論文將會先決定一個保險桿樑的幾何型態,並且定義設計參數。接著使用變異數分析(ANOVA)的方式分析各參數之貢獻度,可以將貢獻度低的參數去除以簡化設計難度。而車輛結構的完整性與行人安全保護的問題本身就是一個經典的最佳化問題,故本論文就以碰撞時保險桿樑的能量吸收量以及塑性變形量作為最佳化問題的兩個目標函數。
但是以經典力學的方式是幾乎不可能推導出結構設計參數與這兩個目標函數的關係式,因此本論文就以統計學中的克利金方法理論來進行響應曲面的建模工作。一旦建立完目標函數的定義,執行最佳化就變得非常可行。最後將本論的最佳設計進行高速下肢撞擊的有限元素模擬,以說明本論文之研究方法對於行人下肢保護帶來的改善程度。
英文摘要 Pedestrian car accidents have become more frequent in densely populated cities where lower extremity injuries with very large proportion, therefore, pedestrian lower extremity protection issue can’t be ignore. Many countries have established relevant regulation as constraint to automotive manufacture to force them value this issue. Thus, there have been many cars equipped safety design for bumper beam system. Nevertheless, lower extremity injury still can’t be absolutely avoided because of high stiffness of bumper beam which is far more than pedestrian lower limb’s. It’s the main source of the damage to human body during crash impact progress.
The main topic of this study is to improve the energy absorbing capacity of bumper beam by changing its geometry shape. Intend to decrease the damage to pedestrians and remain enough stiffness to avoid crush easily under low speed impact accident.
In this study, bumper beam cross-section shape will be defined first, as well its design variables. The choice between integrity of vehicle construction and pedestrian safety is a classical optimum problem, hence it’ll be defined the energy absorption and the plastic deformation of bumper beam during crash impact progress as two objective function for optimization.
In this study, the task of modeling response surface will be developed by Kriging method theory which is a branch of geostatistics. Then optimization can be implement. Finally, high speed lower extremity impact test will be implemented via finite element simulation with the optimum design, to evaluate the improvement of the protection for pedestrian lower extremity.
論文目次 摘要 I
誌謝 VII
目錄 VIII
表目錄 XI
圖目錄 XIII
符號與縮寫 XVI
第一章 緒論 1
1.1 保險桿樑簡介 1
1.2 前言 2
1.3 文獻回顧 6
1.4 低速碰撞法規簡介 8
1.5 研究動機與目的 11
1.6 論文架構 14
第二章 設計與問題建模 15
2.1 保險桿樑的結構設計 15
2.2 碰撞力學分析 18
2.3 定義最佳化問題 20
2.4 響應曲面法 21
第三章 碰撞測試的有限元素法模擬與分析 27
3.1 有限元素模型的建立與設定 27
3.2 田口氏品質工程 34
3.3 訊號雜音比分析 39
3.4 變異數分析 43
第四章 克利金響應曲面法 49
4.1 核函數與非線性映射 49
4.2 徑向基函數法 53
4.3 克利金響應曲面法 56
4.4 克利金法的迴歸模型 66
4.5 克利金法的空間相關模型 69
4.6 克利金模型的改善方法 70
第五章 響應曲面之建立 73
5.1 拉丁方格取樣法 73
5.2 克利金響應曲面建模結果 74
5.3 數學模型的誤差檢查 77
第六章 保險桿內樑的最佳化設計 83
6.1 基因遺傳演算法 83
6.2 應用多目標最佳化於保險桿內樑的設計 87
6.3 其他限制條件的設定與結果 92
6.4 最佳化結果之討論 95
第七章 應用LS-DYNA進行高速碰撞驗證 98
7.1 行人下肢碰撞傷害 98
7.2 EEVC次系統測試方法 99
7.3 高速碰撞有限元素模擬配置 101
7.4 高速碰撞模擬結果與討論 104
第八章 結論與建議 109
8.1 研究結論 109
8.2 未來發展與建議 110
參考文獻 112
附錄一 最大似然推估法 117
附錄二 150個取樣資料 119
附錄三 二維高斯分布 124
附錄四 共軛梯度法 126
參考文獻 [1] EXTREME TECH. Available: https://www.extremetech.com/wp-content/uploads/2015/07/BMW-7-Series-LF-frame-P90176663_highRes.jpg
[2] Davoodi, M. M., Sapuan, S. M., Aidy, A., Abu Osman, N. A., Oshkour, A. A., and Wan Abas, W. A. B., "Development process of new bumper beam for passenger car: A review." Materials & Design, vol. 40, pp. 304-313, 2012.
[3] Cheon, S. S., Choi, J. H., and Lee, D. G., "Development of the composite bumper beam for passenger cars." Composite Structures, 32:4919 , 1995.
[4] Marzbanrad, J., Alijanpour, M., and Kiasat, M. S., "Design and analysis of an automotive bumper beam in low-speed frontal crashes." Thin-Walled Structures, vol. 47, pp. 902-911, 2009.
[5] UNITED NATIONS AGREEEMENT, "Uniform Provisions Concerning the Approval of Vehicles with Regard to Their Front and Rear Protective Devices." E.C.E., United Nation, 1994.
[6] Belingardi, G., Beyene, A. T., and Koricho, E. G., "Geometrical optimization of bumper beam profile made of pultruded composite by numerical simulation." Composite Structures, vol. 102, pp. 217-225, 2013.
[7] INSURANCE INSTITUTE FOR HIGHWAY SAFTY, "Bumper Test Protocol Version VI." IIHS, Alington, 2007.
[8] Park, D. K., Jang, C. D., Lee, S. B., Heo, S. J., Yim, H. J., and Kim, M. S., "Optimizing The Shape of a Bumper Beam Section Consider Pedestrian Protection." International Journal of Automotive Technology, vol. 11, pp. 489-494, 2010.
[9] U.S. DEPARTMENT OF TRANSPORTATION, "Laboratory Test Procedure for Regulation Part 581 Bumper Standard." FMVSS, Washington, 1990.
[10] K. J. Kim, S. T. W., "Effect of Structural Variables on Automotive Body Bumper Impact Beam." International Journal of Automotive Technology, vol. 9, pp. 713-717, 2008.
[11] P. J. Schuster, "Current Trends in Bumper Design for Pedestrian Impact." SAE International, California, 2006.
[12] Concept TECH. Available: http://www.concept-tech.com/files/291_2082_/PDS_A4_Bumper+Pendulum_200416.pdf
[13] Mizuno, Y., "Summary of IHRA Pedestrian Safety WG Activities - Proposed Test Method to Evaluate Pedestrian Protection Afforded by Passenger Cars." International Technical Conference on the Enhanced Safety of Vehicles (ESV), Paper No. 05-0138, 2005.
[14] Yang, J., "Review of Injury Biomechanics in Car-Pedestrian Collisions." International Journal of Vehicle Safety (IJVS), vol. 1, No. 1/2/3, 2005.
[15] Milwich, M., "Thermoplastic Briad Pultrusion." International Committee of Composite Materials, Edinburgh (UK), pp.27-31, 2009.
[16] Saiphon, C., C., Bank Lawrence, E., Plesha Michel, "Progressive Tearing Failure in Pultruded Composite Profiles." Composite Structures, 63: pp45-52, 2004.
[17] Boria, S., G., Belingardi, "Numerical Investigation of Energy Absorbers in Composite Materials for Automotive Applications." International Journal of Crashworthiness, vol. 17(), pp. 345-356, 2012.
[18] Raymond, H. M., Douglas, C. M., "Response Surface Methodology : Process and Product Optimization Using Designed Experiments." Wiley, New York, 2002.
[19] George, E. P. B., Norman, R. D., "Empirical Model-Building and Response Surfaces." Wiley, New York, 1987.
[20] Pan, J. N., "Product and Process Quality Improvement Using a Computerized Response Surface Methodology." Tainan, 2002.
[21] Wang, G., Shan, S., "Review of Metamodeling Techniques in Support of Engineering Design Optimization." Journal of Mechanical Design, 129:370-379, 2007.
[22] Montgomery, D., "Design and Analysis of Experiments." Wiley, New Jersey, 2005.
[23] Haykin, S., "Neural Networks, a Comprehensive Foundation." Prentice Hall, New Jersey, 1998.
[24] Simpson, T., Booker, A., Ghosh, D.,Ginuta, A., Koch, P., Yang, R., "Approximation Method in Multidisciplinary Analysis and Optimization - a Panel Discussion." Struct. Multidisc. Optim., 27:302-313, 2004.
[25] Sondergaard, J., Lophaven, S., Nielsen, H., "Dace, a MATLAB Kriging Toolbox." Techinical University of Denmark Techical Report, IMM-TR-2002-12, 2002.
[26] Arora, J. S., "Introduction to Optimum Design." Elsevier, Iowa City, 2012.
[27] Sharpe, N., Vendrig, R., "Improved Design for Frontal Protection." TNO Automot, 2001.
[28] ANSYS, "ANSYS Mechanical User's Guide." ANSYS, Inc., Canonsburg, 2013.
[29] Dange, M. V., Buktar, R. J., Raykar, N. R., "Design and Analysis of an Autoumotive Front Bumper Beam for Low-Speed Impact." IOSR Journal of Mechanical and Civil Engineering, vol. 12, pp. 17-27, 2015.
[30] Liu, Y., "ANSY and LS-DYNA used for structure analysis." International Journal of Computer Aided Engineering and Technology, vol. 1, pp. 31-44, 2008.
[31] Mullur, A. A. M., A., "Metamodeling Using Extended Radial Basiss Functions : A Comparative Approach." Engineering with Computers, vol. 21, pp. 203-217, 2006.
[32] Krige, D. G., "A Statistical Approach to Some Mine Valuation and Allied Problems on the Witwatersrand." University of Witwatersrand, Johannesburg, 1951.
[33] Agterberg, F. P., "Georges Matheron : Founder of Spatial Statistics." Earth Sciences History, vol. 23, pp. 205-334, 2007.
[34] Booker, A. J., Dennis, J. E., Frank, P. D., Serafini, D. B., "Optimization Using Surrogate Objectives on a Helicopter Test Example." Center of Research on Parallel Computation, Houston, 1997.
[35] Park, K., Oh, P. K., Lim, H., "The Application of The CFD and Kriging Method to an Optimization of Heat Sink." International Journal of Heat and Mass Transfer, no.49, pp. 3439-3447, 2006.
[36] Nyquist, G. W., "Injury Tolerance Characteristics of the Adult Human Lower Extremities Under Static and Dynamic Loading." Society of Automotive Engineers (SAE), Paper No. 861925, 1986.
[37] Kajzer, J., Cavallero, C., Bonnoit, J., Morjane, A., Ghanouchi, S., "Response of the Knee Joint in Lateral Impact : Effect of Bending Moment." In Proceedings of International IRCOBI Conference, Eindhoven, the Netherlands, 1993, pp. 105-116.
[38] EEVC, "EEVC Working Group 10 Report-Proposals for Methods to Evaluate Pedesrian Protection for Passenger Cars." European Experimental Vehicles Committee, 1994.
[39] EEVC, "EEVC Working Group 17 Report-Improved Test Methods to Evaluate Pedesrian Protection Afforded by Passenger Cars." European Experimental Vehicles Committee, 1998.
[40] Jensen, M. R., Graf, O., Bui, K. D., Burger, M., Maurath, C. A., "LSTC Legform Impactor Finite Element Model." LSTC Inc, 2014.
[41] Available: https://www.ccsa.gmu.edu/models/2012-toyota-camry/
[42] Haldar, A., Mahadevan, S., "Probability, Reliability, and Statistical Method in Engineering Design." John Wiley, Sons, Inc, 2000.
[43] Multivariate normal distribution from Wikipedia. Available: https://en.wikipedia.org/wiki/Multivariate_normal_distribution
[44] Flecther, R., Reeves, R. M., "Function Minimization by Conjugate Gradients." The Computer Journaul, vol. 7, pp. 149-160, 1964.
[45] Conjugate gradient method form Wikipedia. Available: https://en.wikipedia.org/wiki/Conjugate_gradient_method
中文文獻:
[46] 小栗富士雄,小栗達男,標準機械設計圖表便覽,眾文圖書,新北市,台灣,2006。
[46] 吳復強,產品穩健設計:田口方法之原理與應用,全威圖書有限公司,台北市,台灣,2005
[47] 徑向基(Radial basis function)神經網路、核函數的一些理解,經由:http://blog.csdn.net/heyijia0327/article/details/38090229
[48] 劉智豪,壓力瓶在不確定因素之下之構形最佳化設計,成功大學,台南市,台灣,2008。
[49] 薛仲宏,類神經網路與一般克利金法在空間內插值之比較,中華大學,新竹市,台灣,2005。
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2017-08-16起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2017-08-16起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw