系統識別號 U0026-0308201617202500
論文名稱(中文) 探討扳機指屈指肌腱的生物機械特性
論文名稱(英文) Biomechanical Behavior of the Flexor Tendon in Patients with Trigger Finger
校院名稱 成功大學
系所名稱(中) 生物醫學工程學系
系所名稱(英) Department of BioMedical Engineering
學年度 104
學期 2
出版年 105
研究生(中文) 蔡郁平
研究生(英文) Yuh-Ping Tsai
學號 p86024140
學位類別 碩士
語文別 英文
論文頁數 53頁
口試委員 指導教授-蘇芳慶
中文關鍵字 屈指深肌  屈指淺肌  超音波  扳機指  肌腱機械材料特性 
英文關鍵字 flexor digitorum superficialis  flexor digitorum profundus  ultrasound  Trigger finger  mechanical property 
中文摘要 在臨床上扳機指(trigger finger)或稱為狹窄性腱鞘炎為常見之手部疾病,雖發病位置可能僅為患者之單一或數個手指,但對於病患之手部功能、整體日常生活工作表現及生活品質等卻有極大的影響。目前由臨床觀察歸因於屈指肌腱與腱鞘之結構尺寸不合所造成肌腱滑動的不順暢,過去許多研究認為是病變發生於環狀腱鞘系統,然而,近期研究發現,扳機指肌腱的基因及病理表現與跟腱炎呈現相關性,進而推斷扳機指亦可能是一種肌腱炎的形式。已有許多研究利用超音波影像針對肌腱病變作機械與材料特性的探討,大部分都是對於跟腱、脛前肌腱、腓腸肌腱等下肢肌腱進行研究,結果顯示,肌腱炎會導致肌腱的機械與材料特性改變。
此研究運用超音波影像技術、力學設計及臨床觀察等研究方法,探究了手部健康之受測者及扳機指病患在不同手指姿勢運動下肌腱滑移與力量之間的關係。 藉由此實驗結果能提供更多扳機指肌腱病變的相關資訊,期能提供建議給予臨床扳機指治療介入或疾病預防的方式。
英文摘要 Trigger finger (TF), also called stenosing tenosynovitis, is a disease commonly seen in hand clinics. The disease may affect one or several digits, impairs hand function, and is likely to negatively affect working ability and quality of life. According to the current clinical observation, the cause of TF is attributed to the disparity in size between the flexor tendon and the A1 pulley. The pathophysiologic mechanism behind trigger digits remains controversial. It has generally been ascribed to primary changes in the first annular pulley. However, in recent findings, the gene expression and the pathology of TF resemble that of tendinosis in the Achilles tendon, and thus it has been speculated that TF may be a form of tendinosis and the mechanical properties of tendon may be affected. Previous studies investigated the tendon’s mechanical properties in vivo, and focused on the lower-extremity. The results indicated that tendinopathy might change the mechanical and material properties of the tendon.
The purpose of this study is to better understand the mechanical properties of flexor tendons and variations in the morphologies of the flexor digitorum tendon between normal and trigger fingers when in various positions. Sonographic and custom-designed isokinetic dynamometer are used to measure tendon force at different finger flexion angles. The measurements of the force and tendon displacement are used to learn more about the mechanical properties of flexor digitorum superficial (FDS) and profound tendons (FDP).
In this study, we recruited 15 healthy controls who did not have any hand disease or injury, and 6 patients with trigger finger. The results demonstrate that both the FDP and FDS tendons of the patients with trigger finger are significantly thicker and stiffer than in the controls. As a result, greater tendon forces were needed for the trigger finger patients to reach the same amount of tendon displacement. Our research also explored the effects of different joint postures on force production and tendon stiffness between the two groups. In both the distal and proximal interphalangeal joints of the healthy participants, the tendon force decreased when the joint angle was increased, and tendency not seen in the patient group. In conclusion, this study used imaging technology and the mechanical design to investigate the effects of different finger-joint positions on tendon force production and tendon displacement between healthy participants and patients with trigger finger. It is hoped that the findings from this experiment may provide some information to be used in clinical diagnosis, assessment, and care for patients suffering from trigger finger in the future.
論文目次 中文摘要 I
Abstract III
致謝 V
Contents VI
List of Table i
List of Figure i
Chapter 1 Introduction 1
1.1 Research Background 1
1.2 Anatomy of Finger 2
1.3 Trigger Fingers 4
1.4 Medical Imaging Evaluation on Trigger Finger 6
1.5 Flexor Tendon Excursion 7
1.6 Tendon Stiffness 9
1.7 Motivation 11
1.8 Specific Aims 13
Chapter 2 Materials and Methods 14
2.1 Subjects 14
2.2 Design of Finger Isokinetic Dynamometer 15
2.3 Experimental Setup 17
2.4 Experimental Procedure 18
2.5 Messurement of Finger Flexor Tendons Thickness 21
2.6 Measurement of Tendon Moment Arm and Tendon Displacement 22
2.7 Measurement of Tendon Force 24
2.8 Measurement of Tendon Stiffness 24
2.9 Statistical Analysis 25
Chapter 3 Results 26
3.1 Thickness of Flexor Digitorum Tendons 26
3.2 Interphalangeal Joint Flexion Torque 27
3.3 Tendon Force 30
3.4 Tendon Displacement 32
3.5 Tendon Stiffness 34
Chapter 4 Discussion 38
4.1 Tendon Thickness 38
4.2 Tendon Force 39
4.3 Tendon Stiffness 43
4.4 Limitations 47
Chapter 5 Conclusion 48
References 49
參考文獻 1. Akhtar, S., et al., Management and referral for trigger finger/thumb. BMJ, 2005. 331(7507): p. 30-3.
2. Stellbrink, G., Trigger finger syndrome in rheumatoid arthritis not caused by flexor tendon nodules. The Hand, 1971. 3(1): p. 76-79.
3. Froimson, A., Tenosynovitis and tennis elbow. Operative hand surgery, 1993. 2: p. 1989-2006.
4. Kuo, L.C., et al., Kinematical and functional improvements of trigger digits after sonographically assisted percutaneous release of the A1 pulley. Journal of Orthopaedic Research, 2009. 27(7): p. 891-896.
5. Tung, W.-L., et al., Quantitative evidence of kinematics and functional differences in different graded trigger fingers. Clinical Biomechanics, 2010. 25(6): p. 535-540.
6. Sato, J., et al., Sonographic appearance of the flexor tendon, volar plate, and A1 pulley with respect to the severity of trigger finger. J Hand Surg Am, 2012. 37(10): p. 2012-20.
7. Chiang, C.H., et al., The value of high-frequency ultrasonographic imaging for quantifying trigger digits: a correlative study with clinical findings in patients with different severity grading. Ultrasound Med Biol, 2013. 39(6): p. 967-74.
8. Guerini, H., et al., Sonographic appearance of trigger fingers. J Ultrasound Med, 2008. 27(10): p. 1407-13.
9. Kim, H.R. and S.H. Lee, Ultrasonographic assessment of clinically diagnosed trigger fingers. Rheumatol Int, 2010. 30(11): p. 1455-8.
10. Sato, J., et al., Sonographic analyses of pulley and flexor tendon in idiopathic trigger finger with interphalangeal joint contracture. Ultrasound Med Biol, 2014. 40(6): p. 1146-53.
11. Yoshii, Y., et al., Ultrasound assessment of the motion patterns of human flexor digitorum superficialis and profundus tendons with speckle tracking. J Orthop Res, 2011. 29(10): p. 1465-9.
12. Korstanje, J.W., et al., Ultrasonographic assessment of long finger tendon excursion in zone v during passive and active tendon gliding exercises. J Hand Surg Am, 2010. 35(4): p. 559-65.
13. Wehbé, M.A. and J.M. Hunter, Flexor tendon gliding in the hand. Part I. In vivo excursions. The Journal of hand surgery, 1985. 10(4): p. 570-574.
14. Wehbé, M.A. and J.M. Hunter, Flexor tendon gliding in the hand. Part II. Differential gliding. The Journal of hand surgery, 1985. 10(4): p. 575-579.
15. Wehbé, M.A., Tendon gliding exercises. The American journal of occupational therapy: official publication of the American Occupational Therapy Association, 1987. 41(3): p. 164-167.
16. McGrouther, D. and M. Ahmed, Flexor tendon excursions in “no-man's land”. The Hand, 1981. 13(2): p. 129-141.
17. Horibe, S., et al., Excursion of the flexor digitorum profundus tendon: a kinematic study of the human and canine digits. Journal of Orthopaedic Research, 1990. 8(2): p. 167-174.
18. Tanaka, T., et al., Flexor digitorum profundus tendon tension during finger manipulation: A study in human cadaver hands. Journal of Hand Therapy, 2005. 18(3): p. 330-338.
19. Panchal, J., et al., The range of excursion of flexor tendons in Zone V: a comparison of active vs passive flexion mobilisation regimes. British journal of plastic surgery, 1997. 50(7): p. 517-522.
20. Korstanje, J.-W.H., et al., Ultrasonographic assessment of flexor tendon mobilization: effect of different protocols on tendon excursion. The Journal of Bone & Joint Surgery, 2012. 94(5): p. 394-402.
21. Ryzewicz, M. and J.M. Wolf, Trigger digits: principles, management, and complications. J Hand Surg Am, 2006. 31(1): p. 135-46.
22. Saldana, M.J., Trigger digits: diagnosis and treatment. J Am Acad Orthop Surg, 2001. 9(4): p. 246-52.
23. Lundin, A.C., P. Eliasson, and P. Aspenberg, Trigger finger and tendinosis. J Hand Surg Eur Vol, 2012. 37(3): p. 233-6.
24. Lundin, A.C., P. Aspenberg, and P. Eliasson, Trigger finger, tendinosis, and intratendinous gene expression. Scand J Med Sci Sports, 2014. 24(2): p. 363-8.
25. Kubo, K., et al., Influence of static stretching on viscoelastic properties of human tendon structures in vivo. Journal of applied physiology, 2001. 90(2): p. 520-527.
26. Arya, S. and K. Kulig, Tendinopathy alters mechanical and material properties of the Achilles tendon. J Appl Physiol (1985), 2010. 108(3): p. 670-5.
27. Wang, H.K., et al., Effects of tendon viscoelasticity in Achilles tendinosis on explosive performance and clinical severity in athletes. Scand J Med Sci Sports, 2012. 22(6): p. e147-55.
28. Helland, C., et al., Mechanical properties of the patellar tendon in elite volleyball players with and without patellar tendinopathy. British journal of sports medicine, 2013: p. bjsports-2013-092275.
29. Kongsgaard, M., et al., Fibril morphology and tendon mechanical properties in patellar tendinopathy effects of heavy slow resistance training. The American journal of sports medicine, 2010. 38(4): p. 749-756.
30. Miyamoto, H., et al., Stiffness of the first annular pulley in normal and trigger fingers. J Hand Surg Am, 2011. 36(9): p. 1486-91.
31. Maganaris, C.N. and J.P. Paul, In vivo human tendon mechanical properties. J Physiol, 1999. 521 Pt 1: p. 307-13.
32. Wren, T.A., et al., Mechanical properties of the human achilles tendon. Clin Biomech (Bristol, Avon), 2001. 16(3): p. 245-51.
33. Arya, S. and K. Kulig, Tendinopathy alters mechanical and material properties of the Achilles tendon. Journal of Applied Physiology, 2010. 108(3): p. 670-675.
34. McAuliffe, J.A., Tendon disorders of the hand and wrist. J Hand Surg Am, 2010. 35(5): p. 846-53; quiz 853.
35. Hashemi, J., N. Chandrashekar, and J. Slauterbeck, The mechanical properties of the human patellar tendon are correlated to its mass density and are independent of sex. Clinical Biomechanics, 2005. 20(6): p. 645-652.
36. Hume, M.C., et al., Functional range of motion of the joints of the hand. J Hand Surg Am, 1990. 15(2): p. 240-3.
37. Lu, S.C., et al., Effects of different extents of pulley release on tendon excursion efficiency and tendon moment arms. J Orthop Res, 2015. 33(2): p. 224-8.
38. Lucas, B.D. and T. Kanade. An iterative image registration technique with an application to stereo vision. in IJCAI. 1981.
39. Ito, M., H. Akima, and T. Fukunaga, In vivo moment arm determination using B-mode ultrasonography. J Biomech, 2000. 33(2): p. 215-8.
40. Kubo, K., et al., Influences of tendon stiffness, joint stiffness, and electromyographic activity on jump performances using single joint. Eur J Appl Physiol, 2007. 99(3): p. 235-43.
41. Serafini, G., et al., High resolution sonography of the flexor tendons in trigger fingers. Journal of ultrasound in medicine, 1996. 15(3): p. 213-219.
42. Berme, N., J. Paul, and W. Purves, A biomechanical analysis of the metacarpo-phalangeal joint. Journal of Biomechanics, 1977. 10(7): p. 409-412.
43. Lee, J. and K. Rim, Measurement of finger joint angles and maximum finger forces during cylinder grip activity. Journal of Biomedical Engineering, 1991. 13(2): p. 152-162.
44. Amis, A., Variation of finger forces in maximal isometric grasp tests on a range of cylinder diameters. Journal of biomedical engineering, 1987. 9(4): p. 313-320.
45. Bemben, M.G., et al., Isometric muscle force production as a function of age in healthy 20-to 74-yr-old men. Medicine and science in sports and exercise, 1991. 23(11): p. 1302-1310.
46. Lindle, R., et al., Age and gender comparisons of muscle strength in 654 women and men aged 20–93 yr. Journal of Applied Physiology, 1997. 83(5): p. 1581-1587.
47. Josty, I., et al., Grip and pinch strength variations in different types of workers. Journal of Hand Surgery (British and European Volume), 1997. 22(2): p. 266-269.
48. Kursa, K., et al., In vivo forces generated by finger flexor muscles do not depend on the rate of fingertip loading during an isometric task. Journal of biomechanics, 2005. 38(11): p. 2288-2293.
49. Vigouroux, L., et al., Estimation of finger muscle tendon tensions and pulley forces during specific sport-climbing grip techniques. Journal of biomechanics, 2006. 39(14): p. 2583-2592.
50. Sbernardori, M.C. and P. Bandiera, Histopathology of the A1 pulley in adult trigger fingers. Journal of Hand Surgery (European Volume), 2007. 32(5): p. 556-559.
51. Sampson, S.P., et al., Pathobiology of the human A1 pulley in trigger finger. The Journal of hand surgery, 1991. 16(4): p. 714-721.
52. Rajeswaran, G., et al., Ultrasound-guided percutaneous release of the annular pulley in trigger digit. European radiology, 2009. 19(9): p. 2232-2237.
53. Guerini, H., et al., Sonographic appearance of trigger fingers. Journal of Ultrasound in Medicine, 2008. 27(10): p. 1407-1413.
54. Maffulli, N., H. Moller, and C. Evans, Tendon healing: can it be optimised? British journal of sports medicine, 2002. 36(5): p. 315-316.
55. Paavola, M., et al., Achilles tendinopathy. The Journal of Bone & Joint Surgery, 2002. 84(11): p. 2062-2076.
56. Makkouk, A.H., et al., Trigger finger: etiology, evaluation, and treatment. Current reviews in musculoskeletal medicine, 2008. 1(2): p. 92-96.
57. Seiler, J.G. and G.A. Kerwin, Adolescent trigger finger secondary to post-traumatic chronic calcific tendinitis. The Journal of hand surgery, 1995. 20(3): p. 425-427.
58. Nickisch, F., Anatomy of the Achilles tendon, in The Achilles Tendon. 2009, Springer. p. 2-16.
59. Uchiyama, S., et al., Gliding Resistance of Extrasynovial and Intrasynovial Tendons through the A2 Pulley*. The Journal of Bone & Joint Surgery, 1997. 79(2): p. 219-24.
  • 同意授權校內瀏覽/列印電子全文服務,於2021-08-01起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2021-08-01起公開。

  • 如您有疑問,請聯絡圖書館