參考文獻 |
[1] K. Helge, Quantum Generations: A History of Physics in the Twentieth Century Reprint. Princeton University Press, 2002.
[2] D. Deutsch and A. Ekert, "Quantum computation," Physics World, vol. 11, pp. 47-52, 1998.
[3] R. P. Feynman, "Simulating Physics with Computers," International Journal of Theoretical Physics, vol. 21, pp. 467-488, 1982.
[4] C. H. Bennett and P. W. Shor, "Quantum information theory," Information Theory, IEEE Transactions on, vol. 44, pp. 2724-2742, 1998.
[5] V. Giovannetti, S. Lloyd, and L. Maccone, "Quantum metrology," Physical Review Letters, vol. 96, p. 4, 2006.
[6] C. Branciard, E. G. Cavalcanti, S. P. Walborn, V. Scarani, and H. M. Wiseman, "One-sided device-independent quantum key distribution: Security, feasibility, and the connection with steering," Physical Review A, vol. 85, p. 010301, 2012.
[7] Y.-N. Chen, C.-M. Li, N. Lambert, S.-L. Chen, Y. Ota, G.-Y. Chen, et al., "Temporal steering inequality," Physical Review A, vol. 89, p. 032112, 2014.
[8] M. Vujicic and F. Herbut, "Distant steering: Schrodinger's version of quantum non-separability," Journal of Physics A: Mathematical and GeneralEmail alert RSS feed, vol. 21, p. 2913.
[9] H. M. Wiseman, S. J. Jones, and A. C. Doherty, "Steering, Entanglement, Nonlocality, and the Einstein-Podolsky-Rosen Paradox," Physical Review Letters, vol. 98, p. 140402, 2007.
[10] E. G. Cavalcanti, S. J. Jones, H. M. Wiseman, and M. D. Reid, "Experimental criteria for steering and the Einstein-Podolsky-Rosen paradox," Physical Review A, vol. 80, p. 032112, 2009.
[11] D. J. Saunders, S. J. Jones, H. M. Wiseman, and G. J. Pryde, "Experimental EPR-steering using Bell-local states," Nat Phys, vol. 6, pp. 845-849, 2010.
[12] B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, et al., "Loophole-free Einstein–Podolsky–Rosen experiment via quantum steering," New Journal of Physics vol. 14, p. 053030, 2012.
[13] D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, et al., "Conclusive quantum steering with superconducting transition-edge sensors," Nature Communications, vol. 3, p. 625, 2012.
[14] Q. Y. He and M. D. Reid, "Genuine Multipartite Einstein-Podolsky-Rosen Steering," Physical Review Letters, vol. 111, p. 250403, 2013.
[15] S. Armstrong, M. Wang, R. Y. Teh, Q. Gong, Q. He, J. Janousek, et al., "Multipartite Einstein-Podolsky-Rosen steering and genuine tripartite entanglement with optical networks," Nature Physics, vol. 11, pp. 167-172, 2015.
[16] D. Cavalcanti, P. Skrzypczyk, G. H. Aguilar, R. V. Nery, P. H. S. Ribeiro, and S. P. Walborn, "Detecting multipartite entanglement with untrusted measurements in asymmetric quantum networks," arXiv:1412.7730, 2014.
[17] C.-M. Li, K. Chen, Y.-N. Chen, Q. Zhang, Y.-A. Chen, and J.-W. Pan, "Genuine High-Order Einstein-Podolsky-Rosen Steering," arXiv:1501.01452, 2015.
[18] C. H. Bennett and G. Brassard, "Quantum cryptography: Public key distribution and coin tossing," In Proceedings of the IEEE International Conference on Computers, Systems and Signal, vol. 175, pp. 175–179, 1984.
[19] A. K. Ekert, "Quantum cryptography based on Bell's theorem," Physical Review Letters, vol. 67, pp. 661-663, 1991.
[20] N. Cerf, "Information-Theoretic Aspects of Quantum Copying," in Quantum Computing and Quantum Communications. vol. 1509, 218-234, 1999.
[21] N. J. Cerf, "Pauli Cloning of a Quantum Bit," Physical Review Letters, vol. 84, pp. 4497-4500, 2000.
[22] C. A. Fuchs, N. Gisin, R. B. Griffiths, C.-S. Niu, and A. Peres, "Optimal eavesdropping in quantum cryptography. I. Information bound and optimal strategy," Physical Review A, vol. 56, pp. 1163-1172, 1997.
[23] W. K. Wootters and W. H. Zurek, "A single quantum cannot be cloned," Nature, vol. 299, pp. 802-803, 1982.
[24] V. Bužek and M. Hillery, "Quantum copying: Beyond the no-cloning theorem," Physical Review A, vol. 54, pp. 1844-1852, 1996.
[25] I. Csiszár and J. Körner, "Broadcast Channels with Confidential Messages," Transaction information theory, vol. 24, p. 339, 1978.
[26] H. Bechmann-Pasquinucci and N. Gisin, "Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography," Physical Review A, vol. 59, pp. 4238-4248, 1999.
[27] C. H. Bennett, C. C. G. Brassard, and U. M. Maurer, "Generalized Privacy Amplification," IEEE International Symposium on Information Theory, 1994.
[28] J. I. Cirac and N. Gisin, "Coherent Eavesdropping Strategies for the Four State Quantum Cryptography Protocol," Physical Letters A, vol. 299, pp. 1-7, 1997.
[29] N. Lütkenhaus, "Estimates for practical quantum cryptography," Physical Review A, vol. 59, pp. 3301-3319, 1999.
[30] N. J. Cerf, M. Bourennane, A. Karlsson, and N. Gisin, "Security of Quantum Key Distribution Using d-Level Systems," Physical Review Letters, vol. 88, p. 127902, 2002.
[31] L. Sheridan and V. Scarani, "Security proof for quantum key distribution using qudit systems," Physical Review A, vol. 82, p. 030301, 2010.
[32] M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information: Cambridge university press, 2010.
[33] J. S. Bell, "On the Einstein Podolsky Rosen Paradox," Physics vol. 1, pp. 195-200, 1964.
[34] H.-P. Breuer and F. Petruccione, The Theory of Open Quantum Systems, 2002.
[35] O. Gühne and G. Tóth, "Entanglement detection," Physics Reports, vol. 474, pp. 1-79, 2009.
[36] K. Kraus, "States, effects, and operations: fundamental notions of quantum theory," Lectures in mathematical physics at the University of Texas at Austin, vol. 190, 1983.
[37] A. Einstein, B. Podolsky, and N. Rosen, "Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?," Physical Review, vol. 47, pp. 777-780, 1935.
[38] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, "Proposed Experiment to Test Local Hidden-Variable Theories," Physical Review Letters, vol. 23, pp. 880-884, 1969.
[39] E. Schrödinger, "Probability relations between separated systems," Mathematical Proceedings of the Cambridge Philosophical Society, vol. 32, pp. 446-452, 1936.
[40] R. W. Spekkens, "Evidence for the epistemic view of quantum states: A toy theory," Physical Review A, vol. 75, p. 032110, 2007.
[41] F. Verstraete, K. U. Leuven, K. U. Leuven, and M. Fannes, "A Study Of Entanglement In Quantum Information Theory," 2002.
[42] M. Vujicic and F. Herbut, "Distant steering: Schrodinger's version of quantum non-separability," Journal of Physics A: Mathematical and GeneralEmail alert RSS feed, vol. 21, p. 2931, 1983.
[43] K. A. Kirkpatrick, "The Schrödinger-HJW Theorem," Foundations of Physics Letters, vol. 19, p. 95, 2006.
[44] C. E. Shannon, "A mathematical theory of communication," Mobile Computing and Communications Review, vol. 5, pp. 3-55, 2001.
[45] T. M. Cover and J. A. Thomas, Elements of Information Theory, 1991.
[46] I. I. Hirschman, "A note on entropy," American Journal of Mathematics, vol. 79, pp. 177-183, 1957.
[47] N. J. Cerf and C. Adami, "Accessible information in quantum measurement," arXiv:quant-ph/9611032, 1996.
[48] M. Tomamichel and R. Renner, "Uncertainty Relation for Smooth Entropies," Physical Review Letters, vol. 106, p. 110506, 2011.
[49] W. Heisenberg, "Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik," Zeitschrift für Physik, vol. 43, pp. 172-198, 1927.
[50] A. S. Holevo, "Bounds for the quantity of information transmitted by a quantum communication channel," Problems of Information Transmission, vol. 9, pp. 177-183, 1973.
[51] M. Takeoka, H. Krovi, and S. Guha, "Achieving the Holevo capacity of a pure state classical-quantum channel via unambiguous state discrimination," in Information Theory Proceedings (ISIT), 2013 IEEE International Symposium on, 2013, pp. 166-170.
[52] V. Giovannetti, S. Lloyd, and L. Maccone, "Achieving the Holevo bound via sequential measurements," Physical Review A, vol. 85, p. 012302, 2012.
[53] M. Bourennane, A. Karlsson, G. Björk, N. Gisin, and N. J. Cerf, "Quantum key distribution using multilevel encoding: security analysis," Journal of Physics A: Mathematical and General, vol. 35, p. 10065, 2002.
[54] T. Durt, D. Kaszlikowski, J.-L. Chen, and L. C. Kwek, "Security of quantum key distributions with entangled qudits," Physical Review A, vol. 69, p. 032313, 2004.
[55] V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dušek, N. Lütkenhaus, and M. Peev, "The security of practical quantum key distribution," Reviews of Modern Physics, vol. 81, pp. 1301-1350, 2009.
[56] Vapnyarskii, Encyclopedia of Mathematics, 2001.
[57] A. Ferenczi and N. Lütkenhaus, "Symmetries in quantum key distribution and the connection between optimal attacks and optimal cloning," Physical Review A, vol. 85, p. 052310, 2012.
[58] J. Mora, M. Garcia, x00F, V. oz, A. Ruiz-Alba, W. Amaya, et al., "Experimental demonstration of a novel configuration for BB84 frequency coded QKD," in Information Photonics (IP), 2011 ICO International Conference on, 2011, pp. 1-2.
[59] S. Goyal, A. H. Ibrahim, F. S. Roux, and A. F. Thomas Konrad, "Experimental orbital angular momentum based quantum key distribution through turbulence," arXiv:1412.0788, 2014.
[60] A. C. Dada, J. Leach, G. S. Buller, M. J. Padgett, and E. Andersson, "Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities," Nature Physics, vol. 7, pp. 677-680, 2011.
[61] H.-P. Lo, C.-M. Li, A. Yabushita, Y.-N. Chen, C.-W. Luo, and T. Kobayashi, "Experimental Violation of Bell Inequalities for Systems of over 4000 Dimensions," arXiv:1501.06429, 2015.
[62] D. Collins, N. Gisin, N. Linden, S. Massar, and S. Popescu, "Bell Inequalities for Arbitrarily High-Dimensional Systems," Physical Review Letters, vol. 88, p. 040404, 2002.
[63] J. B. Pors, S. S. R. Oemrawsingh, A. Aiello, M. P. van Exter, E. R. Eliel, G. W. ’t Hooft, et al., "Shannon Dimensionality of Quantum Channels and Its Application to Photon Entanglement," Physical Review Letters, vol. 101, p. 120502, 2008.
[64] D. Bruß, "Optimal Eavesdropping in Quantum Cryptography with Six States," Physical Review Letters, vol. 81, pp. 3018-3021, 1998.
|