進階搜尋


 
系統識別號 U0026-0308201301224200
論文名稱(中文) 伏流水對地表逕流水質與魚類影響之研究
論文名稱(英文) Influence of Subsurface Flow in Hyporheic Zone to Surface Water Quality and Fish Assemblages
校院名稱 成功大學
系所名稱(中) 水利及海洋工程學系碩博士班
系所名稱(英) Department of Hydraulics & Ocean Engineering
學年度 101
學期 2
出版年 102
研究生(中文) 林馳源
研究生(英文) Chin-Yuan Lin
學號 N86004115
學位類別 碩士
語文別 中文
論文頁數 115頁
口試委員 指導教授-孫建平
口試委員-邱郁文
口試委員-莊明德
口試委員-羅偉誠
中文關鍵字 伏流水  魚類群聚  水質  垂直水力梯度  微測壓管  上湧 
英文關鍵字 Hyporheic zone  Fish assemblages  Water quality  Vertical hydraulic gradient  Minipiezometer  Upwelling 
學科別分類
中文摘要 台灣近幾年對於伏流水如何使用議題討論熱烈,藉由微測壓管量測垂直水力梯度可觀察伏流水上湧或下滲的情況,若能從調查之結果得到伏流水對溪流生態之影響,與伏流水與地表逕流水質之差異,將能夠提供河川管理者與往後使用伏流水作為參考。
本研究主要於2012年7月~2013年5月在台灣南部屏東縣東港溪上游的五溝水湧泉濕地流域做採樣調查,位於上游潭瀨河段和下游彎曲河段兩個河段,主要為以微測壓管調查垂直水力梯度,以電格法進行魚類資料採樣,以幫浦抽取量測伏流水水質和量測地表逕流水質,量測導電度、溶氧量、鹽度、硝酸鹽和pH值,而後利用T檢定了解上湧處和下滲處之差異與乾濕季之垂直水力梯度的差異性與使用相關分析了解伏流水之垂直水力梯度對地表逕流水質影響。
本研究結果顯示,乾濕季時之垂直水力梯度有顯著差異性,在濕季時之垂直水力梯度不論是上湧和下滲皆高於乾季,伏流水於濕季時之流動與地表逕流有較頻繁的交流,而伏流水與地表逕流在硝酸鹽、導電度與溶氧量有明顯的差異,而伏流水在上湧和下滲處於硝酸鹽、溶氧量與pH值有顯著差異,上湧處的伏流水硝酸鹽與溶氧量較低且水質較酸,在兩河段中的平均魚類生物多樣性指數於五次採樣中上湧處皆高於下滲處,且有顯著差異性,而在潭瀨分析上,在流速較快的瀨區之中,魚類生物多樣性指數與垂直水力梯度有著正相關,施工前後鯉科魚類於上湧處和下滲處的棲地利用改變很多,施工前的鯉科魚類密度為上湧處比下滲處高很多,但施工後的魚類密度卻呈現上湧和下滲處相差不多的情況,而不同的魚類也有不同的變化,台灣鬚鱲在工程後上湧處的魚類密度大幅下降,紅斑吻鰕虎和極樂吻鰕虎於工程施工時,河川濁度非常高時在上湧處有穩定的魚類密度,提供鰕虎魚類喜歡的棲地條件。
英文摘要 In recent years, people have found an interest on how to use water in hyporheic zone in Taiwan. It’s decided if the sites were upwelling or downwelling based on the vertical hydraulic gradient. The results show influence of subsurface flow in hyporheic zone to the surface water quality and the stream ecology. The river managers use water in hyporheic zone as a reference in the future.
Sampling sites were defined in the Wu Gou Shui River, and Ping Tung County, Taiwan. The sites are located on the upstream and the downstream of each river. The vertical hydraulic gradient datas were collected with the minipiezometers. The fish and environmental datas were collected by prepositioned electro-fishing methods. The water quality datas in hyporheic zone were collected with pump and recorded (pH, Conductivity, Dissolved Oxygen, Nitrate concentration). The T-test was used to investigate variables between Upwelling and Downwelling, and also to investigate the vertical hydraulic gradient between dry seasons and wet seasons. The Pearson Correlation Analysis was used to investigate the influnce of subsurface flow in hyporheic zone to surface water quality.
The result shows the vertical hydraulic gradient differences between wet seasons and dry seasons; the vertical hydraulic gradient is higher on wet seasons. The flow in hyporheic zone is faster and exchanges with the surface river during the wet season. The water quality (Conductivity, Dissolved Oxygen, Nitrate concentration) differs between flow in hyporheic zone and the surface river. The water quality (pH, Dissolved Oxygen, Nitrate concentration) in hyporheic zone differs between upwelling and downwelling. The upwelling sites’s water quality (pH, Dissolved Oxygen, Nitrate concentration) is lower. The upwelling sites’s average fish diversity index was higher than the downwelling sites on the five samples. The vertical hydraulic gradient has a positive correlation with the fish diversity index in the high-velocity zone (ex: riffle). When the government engineering is being conducted, the river’s turbidity is higher. The upwelling sites’s fish (Rhinogobius giurinus and Rhinogobius rubromaculatus) diversity index is stable. The Rhinogobius giurinus and Rhinogobius rubromaculatus like the upwelling habitat.
論文目次 摘要……………………………………………………………………………………………… I
Abstract………………………………………………………………………………… III
謝誌……………………………………………………………………………………………… V
目錄……………………………………………………………………………………………… VI
表目錄……………………………………………………………………… ……………………VIII
圖目錄………………………………………………………………………………………… XI
第一章 前言…………………………………………………………………………… 1
1.1 研究動機與目的……………………………………………………………… 1
1.2 論文架構…………………………………………………………………………… 2
第二章 文獻回顧…………………………………………………………………… 4
2.1 伏流水區(hyporheic zone)………………………………… 4
2.2 伏流水區之氮循環與水質差異變化…………………………… 9
2.3 在伏流水區之生態研究………………………………………………… 15
第三章 資料蒐集與方法……………………………………………………… 17
3.1 研究區域…………………………………………………………………………… 17
3.2 採樣時間…………………………………………………………………………… 26
3.3 採樣方法…………………………………………………………………………… 29
3.3.1 環境因子採樣與測量…………………………………………………29
3.3.2 微測壓管(minipiezometer)採樣方法………… 31
3.3.3 魚類採樣方法……………………………………………………………… 34
3.4 微測壓管之垂直水力梯度(VHG)………………………………… 38
3.5 統計方法…………………………………………………………………………… 41
3.5.1 辛普森多樣性指數…………………………………………………… 41
3.5.2 獨立樣本T檢定………………………………………………………… 42
3.5.3 皮爾森(Pearson)相關係數分析………………………… 44
第四章 結果與討論……………………………………………………………… 45
4.1 採樣結果…………………………………………………………………………… 45
4.1.1 魚類採樣結果……………………………………………………………… 45
4.1.2 水質及物理因子資料統計…………………………………… 49
4.2 地表逕流與伏流水水質差異性研究…………………………… 52
4.3 垂直水力梯度在乾濕季之差異性………………………………… 57
4.4 魚類利用棲地上湧與下滲之關係………………………………… 59
4.4.1 辛普森多樣性指數…………………………………………………… 59
4.4.2 不同棲地類型之上湧和下滲情況…………………………… 64
4.5 工程前後差異與魚類和垂直水力梯度之關係…………… 68
4.5.1 工程前和施工中之差異…………………………………………… 68
4.5.2 底棲魚類……………………………………………………………………… 71
4.5.3 鯉科魚類……………………………………………………………………… 75
第五章 結論與建議……………………………………………………………… 79
5.1 結論…………………………………………………………………………………… 79
5.2 建議…………………………………………………………………………………… 82
第六章 參考文獻…………………………………………………………………… 83
附錄1 獨立樣本T檢定………………………………………………………… 90
附錄2 電魚許可公文…………………………………………………………… 114


參考文獻 汪靜明,河川魚類棲息地生態調查之基本原則與技術,林務局森林溪流淡水魚保育訓練班論文集,119-137,(1991)
呂映昇、孫建平,魚類棲地多樣性與空間層級系統之關係探討及其於溪流復育之應用,臺灣生物多樣性研究12(1): 43-60,(2010)
杜偉賢,五溝水底棲無脊椎動物與伏流水之研究,國立成功大學水利及海洋工程研究所,碩士論文,2012
林震岩,多變量分析:SPSS的操作與應用,智勝文化事業有限公司,(2007)
林春吉,台灣淡水魚蝦生態大圖鑑,天下文化,(2007)
黃俊英,多變量分析,中國經濟企業研究所,(2000)
榮泰生,Excel與研究方法,五南圖書出版股份有限公司,(2009)
陳鈞華,陳星宇,盧惠敏,甘俊二,農村水域生態環境調查及螢火蟲捕食行為模擬-以屏東萬巒五溝水水圳為例 ,水利快訊第十二期
陳順宇、鄭碧娥,統計學,華泰書局,(2004)
陳義雄、方力行,台灣淡水及河口魚類誌,國立台灣海洋生物博物館籌備處,(1999)
盧惠敏、陳炤杰,鳥類多樣性與地景多樣性研究—以屏東縣五溝村水圳地景為例,中華民國建築學會「建築學報」第57 期,pp:123-141,(2006)
盧惠敏、彭仁君、郭文健、葉慶龍、丁澈士、陳鈞華,農村環境多樣性研究-以屏東縣五溝水水圳地景為例,中華民國建築學會「建築學報」第59 期,pp163-1188,(2007)
Alley, W. E., Healy, R. W., LaBaugh J. W., Reilly, T. E. “Flow and storage in grounderwater systems”, American Association for the Advancement of Science, 296: 1985-1990 (2002)
Bain, M. B., Finn, J. T. and Booke, H. E., “A Quantitative Method for Sampling Riverine Microhabitats by Electrofishing”, North American Journal of Fisheries Management, 5:489~493 (1985)
Baxter, C., Hauer, F. R. “Measuring grounder-Stream water exchange: New techniques for installing minipiezometers and estimating hydraulic conductivity”, Transactions of the American Fisheries Society, 132: 493-502 (2003)
Bencala, K. E., “Hyporheic zone hydrological processes”, Hydrological
Processes, 14: 2797 – 2798 (2000)
Boulton, A. J., Datry T., Kasahara T., Mutz M., Stanford J. A., “Ecology and management of the hyporheic zone: stream–groundwater interactions of running waters and their floodplains”, Benthol Soc., 29:26 – 40 (2010)
Catherine, G. and Vincent, C., “Nitrate Depletion During Wthin-Stream Transport: Effects of Exchange Processes between Streamwater, The Hyporheic and Riparian Zones”, Water, Air, and Soil Pollution, 124: 95 – 112 (2000)
Darcy, H. “Les fontaines publiques de la ville de dijon”, Dalmont, Paris (1856)
Edwards, R. T., Robert, J. N. and Robert, E. B. “The hyporheic zone in River Ecology and and Management Lessons from the Pacific Coastal Ecoregion”, New York: Springer-Verlag, 399 – 429 (l998)
Fernald, A. G., Landers D. H. and Wighngton, JR P. J., “Water quality changes in hyporheic flow paths between a large gravel bed river and off-channel alcoves in Oregon, USA”, River Research And Applications, 22: 1111-1124 (2006)
Findlay, S. and Sobczak, W., “Variability inrem oval of dissolved organic carbon in hyporheic sediments”, Journal of the North American Benthological Society, 15:35 – 41 (1996)
Gorman, O. T. and Karr, J. R., “Habitat structure and stream fish communities”, Ecology,59:507-515 (1978)
Grimaldi, C. and Chaplot, V., “Nitrate depletion during within-stream transport: effects of exchange processes between streamwater, the hyporheic and ripanian zones”, Water, Air, and Soil Pollution, 124: 95- 112 (2000)
Grimm, N. B., “Nitrogen dynam ics during succession in a desert stream”. Ecology, 68:1157-1170 (1987)
Garrett, J. W., Bennett D. H. and Frost F. O. and Thurow R. F. “Enhanced incubation success for kokanee spawning in groundwater upwelling sites in a small idaho stream“, North American Journal of Fisheries Management, 18:925 – 930 (1988)
Hancock, P. J., Boulton, A. J. and Humphreys W. F., “Aquifers and hyporheic zones: Towards an ecological understanding of groundwater”, Hydrogeology J., 13: 98-111 (2005)
Heide, S., Claudia, K., Susanne, I. S., Heike, B., Christian, S., Sven, E. B., Andreas, F., Hans, H., Barbara, T. and Christian, G. J., “Microhabitat use by two small benthic stream fish in a 2nd order stream”, Hydrobiology, 333:125-137 (1995)
Hill, A. R., Labadia, C. F. and Sanmugadas K., “Hyporheic zone hydrology and nitrogen dynam ics in relation to the streambed topography of a Nitrate rich stream”, Biogeochemistry, 42:285 – 310 (1998)
Hinkle, S. R., Duff, J. H., Triskab, F. J., Laenena, A., Gatesc, K. E., Bencalab, D. A. and Wentza, S. R., “Linking hyporheic flow and nitrogen cycling near the Willamette River - a large river in Oregon, USA”, Journal of Hydrology, 244:157 – 180 (2001)
Jones, J. B., Stuart, G. F. and Nancy, B. G., “Nitrification in the Hyporheic Zone of a Desert Stream Ecosystem”, Journal of the North American Benthological Society, 14:249 – 258 (1995)
Jones, J. B., Holmes, R. M., Fisher, S. G. and Grimm, N. B., “Chemoautotrophic production and respiration in the hyporheic zone of a Sonoran Desert stream. “, Second Internat Groundwat Ecol,33: 329–338 (1994)
Kruskal, J. B. and Wish, M., “Multidimensional scaling”, Beverly Hills CA:Sage Publications (1978)
Malard F., Tockner K., Dole-Olivier M. J., Mathieu, J. and Stoch, F., “Sampling Manual for the Assessment of Regional Groundwater Biodiversity Fifth Framework Programme Key Action”, Global Change, Climate and Biodiversity Assessing and conserving biodiversity Contract, 2:1 – 21 (2001)
Malard, F., Tockner, K., Dole-Olivier, M. J. and Ward, J. V., “A landscape perspective of surface-subsurface hydrological exchanges in river corridors” Freshwater Biology , 47: 621 – 640 (2002)
Malcolm, I. A., Soulsby, C., Youngson A. F., Hannah D. M., McLaren, I. S. and Thorne A., “Hydrological influences on hyporheic water quality: implications for salmon egg survival”, Hydrological Processes, 18: 1543 – 1560 (2004)
Meyer, E. I., Niepagenkemper, O., Molls, F. and Spanhoff, B., “An experimental assessment of the effectiveness of gravel cleaning operation in improving hyporheic water quality in potential salmonid spawning areas”, River Research And Applications, 24: 119 – 131 (2008)
Mouw J. E., Stanford J. A. and Alaback P. B. “Influences of flooding and hyporheic exchange on floodplain plant richness and productivity”, River Research And Applications, 25: 929-945 (2009)
Orghidan, T., "Ein neuer Lebensraum des unterirdischen Wassers: Der hyporheische Biotop", Hydrobiology, 55: 392–414 (1959)
Stein, H., Kellermann, C., Schmidt S. I., Brielmann H., Steube C., Berkhoff, S. E., Fuchs, A., Hahn, H. J., Thulin, B. and Griebler C., “The potential use of fauna and bacteria as ecological indicators for the assessment of groundwater quality”, Journal of Environmental Monitoring, 12: 242 – 254 (2010)
Soulsby, C., Malcolm, I. A., Tetzlaff, D. and Youngson, A. F., “Seasonal and inter-annual variability in hyporheic water quality revealed by continuous monitoring in a salmon spawning stream”, River Research and Applications, 25: 1304-1319 (2009)
Stelzer, R. S., Bartsch, L. A., Richardson, W. B. and Strauss, E. A., “The dark side of the hyporheic zone: depth profiles of nitrogen and its processing in stream sediments”, Freshwater Biology, 56: 2021 – 2033 (2011)

Valett, H. M., Hakenkamp, C. and Boulton, A. J. ”Perspectives on the hyporheic zone:integrating hydrology and biology Introduction”, Journal of the North American Benthological Society, 12:40 – 43 (1993)
Vervier, P. and Naiman, R., “Spatial and temporal fluctuations of dissolved organic carbon in subsurface flow of the Stillaguamish River”, Hydrohiologie, 123:40l – 402 (1992)
Wondzell, S. M. and Swanson, F. J., “Seasonal and storm dynamics of the hyporheic zone of a 4th-order mountain stream Nutrient cycling”, Journal of the North American Benthological Society, 15:20 – 34 (1996)
Wu, F. C., “Modeling embryo survival affected by sediment deposition into salmonid spawning gravels: Application to flushing flow prescriptions”, Water Resources Reasearch, 1595-1603 (2000)
White, D. S. “Perspectives on defining and delineating hyporheic zones”, Journal of the North American Benthological Society, 12: 61 – 69 (1993)
Xu, M. Z., Wang, Z. Y., Pan, B. Z. and Zhao N., “Distribution and species composition of macroinvertebrates in the hyporheic zone of bed sediment “, International Journal of Sediment Research, 27: 129–140 (2012)
Zarnetske, J. P., Haggerty, R. and Wondzell, S. M., “Dynamics of nitrate production and removal as a function of residence time in the hyporheic zone”, Journal of Geophysical Research, 116:1025 - 1356 (2011)
Zweimuller, I., Microhabitat use by two small benthic stream fish in a 2nd order stream. Hydrobiologia, 333, 125-137 (1995)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2016-09-03起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2016-09-03起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw