進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0308201212132900
論文名稱(中文) 利用電漿技術改質奈米碳纖維以製備超級電容複合材料之研究
論文名稱(英文) Studies on supercapacitors of carbon nanofiber composites using plasma modification
校院名稱 成功大學
系所名稱(中) 化學工程學系碩博士班
系所名稱(英) Department of Chemical Engineering
學年度 100
學期 2
出版年 101
研究生(中文) 吳孟岳
研究生(英文) Meng-Yueh Wu
學號 N36991281
學位類別 碩士
語文別 中文
論文頁數 72頁
口試委員 指導教授-陳炳宏
口試委員-陳志勇
口試委員-王振乾
口試委員-鄭世楷
口試委員-李中斌
中文關鍵字 電紡絲技術  碳纖維  電漿  苯胺 
英文關鍵字 electrospinning  carbon fiber  plasma  aniline 
學科別分類
中文摘要 本研究以電漿技術改質由電紡絲技術所製備的碳纖維,並將所製備之碳纖維應用在超級電容電極,以達成具有高功率密度、高能量密度與長壽命的超高電容器。
首先,本研究是利用本實驗室電紡絲技術將PAN高分子溶液製作PAN不織布,分別配製3wt%、4wt%、5wt%三種不同濃度的高分子溶液。接著,以電紡絲得到PAN不織布,在SEM圖中可以觀察到在高分子濃度為4wt%時,可得到粗細分佈均勻且直徑約在100nm的PAN纖維。
接著,將濃度4wt%的高分子溶液由電紡絲得到的不織布,分別以800℃、900℃、1000℃和1400℃這四種不同溫度進行鍛燒。由SEM圖結果發現鍛燒溫度800℃、900℃、1000℃和1400℃,所得到的纖維直徑均約在100 nm上下。但其電容量以800℃最高為178.46 F/g;而鍛燒至1400℃的電容量38.2 F/g為四者中最低。由ESCA分析得知,這四種不同鍛燒溫度會影響電極表面官能基的分佈,其中,以800℃的碳纖維官能基含量最高;而1400℃最低。另一方面,由交流阻抗分析可知這四種以1400℃的內電阻最低。
另一方面,本研究利用混摻多壁碳管( MWCNT )以及AgNO3減少800℃的內電阻,改善低溫鍛燒下內電阻較高的問題,添加0.5wt%AgNO3以及0.5wt%MWCNT即可使得內電阻下降至0;而鍛燒至1400℃的碳纖維則以本實驗室電漿系統分別通入氮氣以及氧氣改質碳纖維表面,藉此可以活化纖維表面以及接枝氮官能基以及氧官能基在碳纖維表面,經過氧氣改質後,電容量從38.2 F/g提升至92.2 F/g,而經過氮氣改質後,電容量從38.2 F/g提升至105.73 F/g,由兩種不同接枝氣體顯示,以氮氣較佳。另外接枝苯胺,可使得電容量由38.2 F/g提升至178.52 F/g。
英文摘要 This study is based on the laboratory plasma technology modification of carbon fibers prepared by electrospinning technology, and the preparation of carbon fiber used in the super capacitor electrode in order to achieve high power density, high energy density and long life super capacitors.
First of all, producing PAN non-woven by electrospinning in three different concentrations (3wt%, 4wt%, 5wt%) of polymer solution. When polymer concentration is 4wt%, we can observe the available thickness distribution uniform and a diameter of about 100nm of PAN fibers in SEM. The second part of this experiment is to investigate the effect of temperature on the PAN non-woven.
The second part is using this concentration of 4% polymer solution have a non-woven by electrospinning. And then calcine in 800°C, 900°C, 1000°C and 1400°C, the four different temperature. We can observed the diameter of fiber is about 100nm in the temperature of 800°C, 900°C, 1000°C and 1400°C. But the highest capacity is 178.46F/g in the temperature of 800°C. The capacity is only 38.2F/g when the fiber in calcination to 1400°C. Analyzed the four type of carbon fiber by ESCA, the data showed that these four different calcinations temperatures will affect the distribution of the electrode surface functional groups. Analyzed by the AC impedance, the data shows that the carbon fiber calcination to 1400°C has the lowest resistance. As a result, the next step we will be divided into two part, to decrease the internal resistance and to increase the surface functional groups.
The third part is incorporated multi-walled carbon nanotube (MWCNT) and AgNO3 into carbon fiber to reduce the internal resistance of 800°C, to decrease the resistance in the low-temperature calcination, and then enhance the speed of charging and discharging. Calcination to 1400°C of carbon fiber is modified by the plasma, which purge nitrogen and oxygen, to activate and the grafted nitrogen functional groups and oxygen functional groups the carbon fiber surface. After oxygen modified, the capacitance from 38.2 F/g increased to 92.2 F/g. After nitrogen modified, the capacitance from 38.2 F/g increased to 105.73 F/g. By two different gas shows that nitrogen is more effective. So further grafting aniline, making the electric capacity of 38.2 F/g to 178.52 F/g.
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1-1 前言 1
1-2 研究背景與目的 2
第二章 文獻回顧 3
2-1電紡絲技術及其原理 3
2-1.1電紡絲之發展歷程 3
2-1.2電紡絲技術的設備與原理 3
2-2電容器簡介 4
2-2.1電容器原理 5
2-2.2電雙層的觀念與結構 9
2-3 氧官能基對碳基材的電容影響 15
2-4何謂超級電容器 15
2-4 電漿原理 16
2-4.1電漿的定義 16
2-4.2電漿成份 16
2-4.3電漿的應用 17
2-5 聚苯胺 18
第三章 實驗方法 21
3-1實驗藥品 21
3-2實驗儀器設備 21
3-3 實驗步驟 23
3-3.1電紡絲實驗 23
3-3.2 PAN奈米纖維製備 23
3-3.3 複合電紡溶液製備 24
3-3.4以新穎電漿技術改質 25
3-3.5樣品分析 26
3-3.6電容器組裝 27
3-3.7電容器的電性分析 28
第四章 結果與討論 30
4-1 PAN奈米纖維製備及分析 30
4-1.1 PAN奈米纖維製備條件及鍛燒溫度 30
4-1.2 XPS分析 33
4-1.3氮氣物理吸脫附測試 39
4-1.4 Raman分析 41
4-1.5循環伏安法測試分析 42
4-1.6交流阻抗分析 45
4-2複合奈米纖維製備 47
4-2.1 Ag/PAN奈米纖維之製備 47
4-2.2 MWCNT/PAN奈米纖維製備 51
4-2.3循環伏安法測試之分析與討論 54
4-2.4充放電測試 55
4-2.5交流阻抗分析測試 56
4-3電漿改質技術 58
4-3.1電漿表面活化 58
4-3.2電漿表面接枝高分子 62
第五章 結論 68
參考文獻 70
自述 72
參考文獻 1. Becker, H.E., U.S. Patent 2 800 616, 1957.
2. http://www.chinesevacuum.com/ShowArticle.aspx?id=30320.
3. Cooley, U.S. Patent, 1902. NO. 692,631.
4. Formhals, A., U.S. Patent 1934. NO.1,975,504
5. Formhals, A., U.S. Patent 1939. No.2,158,416.
6. Formhals, A., U.S. Patent 1939. No.2,160,962.
7. Vonnegut B., N.R.L., Journal of Colloid and Interface Science, 1952. 7:616.
8. H.L., S., U.S. Patent 1966. 3280,229.
9. Baumgarten, P.K., Journal of Colloid and Interface Science, 1971. 36(1): p. 71-79.
10. Larrondo L., R.D.H., Jurnal of Electrostatics, 1981. 19: p. 921-932.
11. D.H, D.J.R., Journal of Electrostatics, 1995. 35: p. 151-160.
12. Srinivasan G., R.D.H., Polymer International, 1995. 36: p. 195-201.
13. Deitzel J.M., K.J., et al., Polymer, 2001. 42: p. 8163-8170.
14. R.Kessick, G.T., Applied Physics Letters, 2003. 83: p. 557-559.
15. K.Ohgo, C.Z., M.Kobayashi,T.Asakura., Polymer, 2003. 44: p. 841-846.
16. P.Gupta, G.L.W., Polymer, 2003: p. 6353-6359.
17. B.Ding, H.Y.K., C.L.Shao.J., Polymer Science, 2002. Part B 40: p. 1261-1268.
18. M.shin, G.R., M.P.Brenner., Physics of Fluids, 2001. 13: p. 2201-2220.
19. M.Bognitzki, W.C., T.Frese, A.Schaper, M.hellwig, M.Steinhart, A.Greiner, J.H.Wendorff., Advanced Materials, 2001. 13: p. 70-72.
20. G., R., Irwin Inc., Boston, Massachusetts, 1993.
21. H.D.Young, University Physics, Addison Wesley Publishing Company.New York, 1992.
22. Bard, A.J., Oxford University, Britain, 1996.
23. http://zh.wikipedia.org/wiki/%E5%9B%BA%E5%AE%9A%E5%B1%A4.
24. Hamann, C.H.H., A.; Vielstich, W. Electrochemistry Wiley-Vch: New York, 1998.
25. Mattson, J.S.J.M., H. B., Wiley-Vch: New York, 1971.
26. Lota, G., et al., Journal of Power Sources, 2010. 195(22): p. 7535-7539.
27. Nian, J.-N., 國立成功大學化學工程學系碩士論文, 2002.
28. Langmuir, Proceedings of the National Academy of Sciences of the United States of America, 1928. 14: p. 627.
29. 李孟儒, 國立東華大學電機工程研究所碩士論文, 2002. 6-22.
30. 劉有台, 國立台北科技大學有機高分子研究所碩士學位論文, 2001: p. 13.
31. 羅正忠,張鼎張, 2002: p. 221-253.
32. M., K., American Institute of Chemical Engineers Journal, 1992. 40( 11): p. 1924.
33. H., L., Journal of the Chemical Society, 1862. 15(16).
34. J. C. Chiang, a.A.G.M., Synthetic Metals, 1986. 13: p. 193.
35. A. J. Epstein, J.M.G., and R. W. Bigelow, Synthetic Metals, 1987. 18: p. 303.
36. A. G. MacDiarmid, a.A.J.E., Synthetic Metals, 1989. 29(E409).
37. Wang, H., et al., Electrochemistry Communications, 2009. 11(6): p. 1158-1161.
38. Lin, Y.-R. and H. Teng, Carbon, 2003. 41(14): p. 2865-2871.
39. Hsieh, C.-T.T., Hsisheng, Carbon, 2002. 40(5): p. 667-674.
40. Oda, H., et al., Journal of Power Sources, 2006. 158(2): p. 1510-1516.
41. Lota, G., et al., Chemical Physics Letters, 2005. 404(1–3): p. 53-58.
42. Seredych, M., et al., Carbon, 2008. 46(11): p. 1475-1488.
43. Frackowiak, E., et al., Electrochimica Acta, 2006. 51(11): p. 2209-2214.
44. McCreery, R.L., et al., Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1994. 93(0): p. 211-219.
45. Momma, T., et al., Journal of Power Sources, 1996. 60(2): p. 249-253.
46. Kim, N.D., et al., Journal of Power Sources, 2008. 180(1): p. 671-675.
47. Shao, D., et al., The Journal of Physical Chemistry C, 2010. 114(49): p. 21524-21530.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2022-12-31起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw