進階搜尋


下載電子全文  
系統識別號 U0026-0308201018093400
論文名稱(中文) 運用格柵式高光譜分光輻照度計監測水庫水質
論文名稱(英文) Monitoring reservoir water quality with an irradiance grating spectroradiometer
校院名稱 成功大學
系所名稱(中) 衛星資訊暨地球環境研究所
系所名稱(英) Institute of Satellite Informatics and Earth Environment
學年度 98
學期 2
出版年 98
研究生(中文) 劉家成
研究生(英文) Chia-Cheng Liu
學號 L9697402
學位類別 碩士
語文別 中文
論文頁數 75頁
口試委員 指導教授-劉正千
口試委員-王驥魁
口試委員-張智華
中文關鍵字 輻照度反射率  水庫水質  暴雨事件  水質反算  連續監測 
英文關鍵字 spectral irradiance reflectance  storm events  water quality retrieval  continuous measurement 
學科別分類
中文摘要 以衛星遙測水色並反算水中物質含量已經成為近年來海洋遙測界最重要的技術之一,並且逐步延伸應用到與人類關係更為密切之湖泊與水庫。因內陸水體成份與水色變化關係更為複雜,再加上陸域上空大氣校正不易及雲覆率高,使得一般的水色遙測技術在內陸水體的應用上無法提高水質反算之準確度,且無法充分掌握水體關鍵時期(暴雨及颱風)水質之時間變化。為彌補衛星遙測的不足並提高大氣校正的準確度,本研究在台灣南北兩大水庫(曾文、石門)設置具有旋轉臂之格柵式高頻譜分光輻射度計(grating spectroradiometer, MS-700),用以直接量測陽光穿透大氣後抵達水面之下行輻照度(downwelling irradiance, Ed)及水面上行輻照度(upwelling irradiance, Eu),並計算可代表水色之水面輻照反射頻譜(spectral irradiance reflectance, R )。
在過去由於衛星波段數的限制,使以輻照度水質反算法大多侷限在經驗法,而MS-700為高光譜,在可見光到近紅外光範圍(400-1050 nm)一共有256個波段,因此本研究以輻射傳輸模式(HYDROLIGHT)建立一個半解析(semi-analytic, SA)模式並結合基因演算法(generic algorithm, GA),以多波段的水色資訊來反算水質,並討論暴雨前後水庫水質的變化。
本研究以MS-700於曾文水庫2008年夏季與石門水庫2009年莫拉克颱風期間獲取的資料反算水質,發現在一般的天候狀況,水質反算的結果較為理想,百分誤差大多能在50%以之內,但在暴雨期間,水質反算的結果相當不理想,推論在暴雨期間資料的變異性較大,可能受到雨水干擾或濁度過高的影響,使儀器接收到的反射值不能反應水質。本研究顯示,在暴雨期間,水面上的輻照度儀所接收到的資料不適合用來反算水質。然而,在一般的天候狀況下獲取的資料,配合本研究發展之水質演算法,能有效反算水質。
英文摘要 Deriving water constituents by the observations of water color was the most important application of remote sensing for oceanography studies and may be further used for inland waters if the temporal/spatial resolution of measuring devices can be improved to resolve the variance of water quality in rainy season, as well as a better atmospheric correction for top of the continental areas can be achieved. For these reasons, a new remote sensing platform equipped with a grating spectroradiometer (MS-700) and a rotation arm was developed and successively deployed in two reservoirs (Tsengwen reservoir and Shihmen reservoir) of Taiwan to continuously measure the above-water irradiances, including downward irradiance, upwelling irradiance and the irradiance reflectance (R). The measured R can not only be a ground reference to correct the atmospheric effects for satellite sensors but also shown the content of water qualities.
Due to the insufficiency of the wave bands in satellite sensor, the irradiance reflectance water quality algorithms were mostly developed by empirical way. The MS-700 sensor is a hyperspectral radiometer, it contain 256 bands in the range of 400-1050 nm. Therefore we developed a multi-spectral algorithm which connected generic algorithm (GA) with a semi-analytic model based on HYDROLIGHT simulations. With this algorithm and MS-700 continuous data, we were able to derive water quality of the reservoir during the storm.
With the spectral reflectance acquired in Tsengwen reservoir at the summer time of 2008 and in Shihmen reservoir during the Morakot typhoon in 2009, the accuracy of the retrieved water quality did not show good result for rainy period. This result may be attributed to the interference of the rain drop stuck on the operating sensor or the high turbidity in reservoir direct reflect the sky light into the sensor made the reflectance could not be used to retrieve the water quality. However, the result are quite accurate in normal weather condition, and the percentage error could be under about 50% most of the time. From this research we know the data acquired during the rainy period are not adequate for water quality retrieving, but can effectively derive water quality in normal weather condition.
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 viii
表目錄 x
第 1 章 序論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 論文架構 3
第 2 章 文獻回顧 5
2.1 水體中的光學性質 5
2.2 R與IOPS的關係 8
2.3 R與太陽入射角θS的關係 11
2.4 以R推估水質 14
2.5 小結 16
第 3 章 研究方法 17
3.1 研究區域 17
3.2 儀器介紹 20
3.2.1 MS-700的應用實例 21
3.2.2 MS-700現地架設情形 22
3.3 以生光模式合成IOPS 23
3.4 HYDROLIGHT輻射傳輸模式 29
3.4.1 Hydrolight參數設定 30
3.5 基因演算法結合半解析模式 (GA-SA) 32
第 4 章 結果與討論 35
4.1 R(0-)與NG的關係 35
4.2 R(0+)與R(0-)的關係 38
4.3 SA模式的表現 41
4.4 GA-SA反算結果 43
4.5 SA近似的誤差反應於反算結果 45
4.6 現地光譜反算 45
4.6.1 現地光譜資料後處理 45
4.6.2 現地光譜資料變化情形 46
4.6.3 莫拉克颱風期間水質推估 47
4.6.4 2008年夏季曾文水庫水質推估 53
第 5 章 結論與建議 55
5.1 結論 55
5.2 建議 56
參考文獻 57
附錄 61
參考文獻 Albert, A., and Mobley, C. D.: An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters, Optics Express, 11, 2873-2890, (2003).
Babin, M., Stramski, D., Ferrari, G. M., Claustre, H., Bricaud, A., Obolensky, G., and Hoepffner, N.: Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe, J. Geophys. Res.-Oceans, 108, 20, (2003).
Barale, V., and Folving, S.: Remote sensing of coastal interactions in the Mediterranean region, Ocean Coastal Manage., 30, 217-233, (1996).
Berk, A., Bernstein, L., Robertson, D., and MA, S. S. I. B.: MODTRAN: A moderate resolution model for LOWTRAN. Air Rorce Geophysics Laboratory, Air Force Systems Command, US Air Force, (1987).
Binding, C. E., Bowers, D. G., and Mitchelson-Jacob, E. G.: An algorithm for the retrieval of suspended sediment concentrations in the Irish Sea from SeaWiFS ocean colour satellite imagery, Int. J. Remote Sens., 24, 3791-3806, (2003).
Bricaud, A., Babin, M., Morel, A., and Claustre, H.: Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton: analysis and parameterization, J. Geophys. Res, 100, 321–313, (1995).
Bricaud, A., Morel, A., and Prieur, L.: ABSORPTION BY DISSOLVED ORGANIC-MATTER OF THE SEA (YELLOW SUBSTANCE) IN THE UV AND VISIBLE DOMAINS, Limnology and oceanography, 26, 43-53, (1981).
Bukata, R. P., Jerome, J. H., Kondratyev, K. Y., and Pozdnyakov, D. V.: Optical properties and remote sensing of inland and coastal waters, CRC, Boca Raton, (1995).
Chang, C., Liu, C., and Wen, C.: Integrating semianalytical and genetic algorithms to retrieve the constituents of water bodies from remote sensing of ocean color, Optics Express, 15, 252-265, (2007).
Chang, C. H., Liu, C. C., Wen, C. G., Cheng, I. F., Tam, C. K., and Huang, C. S.: Monitoring reservoir water quality with Formosat-2 high spatiotemporal imagery, J. Environ. Monit., 11, 1982-1992, (2009).
Chavez, P. S.: AN IMPROVED DARK-OBJECT SUBTRACTION TECHNIQUE FOR ATMOSPHERIC SCATTERING CORRECTION OF MULTISPECTRAL DATA, Remote Sensing of Environment, 24, 459-479, (1988).
Dall'Olmo, G., and Gitelson, A. A.: Effect of bio-optical parameter variability and uncertainties in reflectance measurements on the remote estimation of chlorophyll-a concentration in turbid productive waters: modeling results, Applied Optics, 45, 3577-3592, (2006).
Dekker, A., Malthus, T., and Hoogenboom, H.: THE REMOTE SENSING OF INLAND WATER QUALITY, John Wiley & Sons, New York, (1995).
Dekker, A. G.: Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing, Vrije Universiteit, PhD, Amsterdam , Netherland, (1993).
Dekker, A. G., Hoogenboom, H. J., Goddijn, L. M., and Malthus, T. J. M.: The relation between inherent optical properties and reflectance spectra in turbid inland waters, REMOTE SENSING REV 15, (1997).
Dekker, A. G., and Peters, S. W. M.: THE USE OF THE THEMATIC MAPPER FOR THE ANALYSIS OF EUTROPHIC LAKES - A CASE-STUDY IN THE NETHERLANDS, Int. J. Remote Sens., 14, 799-821, (1993).
EKO Instruments Co., L.: Grating Spectroradiometer VIS-NIR MS-700. (2006).
Fournier, G., and Forand, J.: Analytic phase function for ocean water. paper presented, (1994).
Gitelson, A. A., and Kondratyev, K. Y.: OPTICAL-MODELS OF MESOTROPHIC AND EUTROPHIC WATER BODIES, Int. J. Remote Sens., 12, 373-385, (1991).
Gordon, H., and McCluney, W.: Estimation of the depth of sunlight penetration in the sea for remote sensing, Applied Optics, 14, 413-416, (1975).
Gordon, H. R.: ABSORPTION AND SCATTERING ESTIMATES FROM IRRADIANCE MEASUREMENTS - MONTE-CARLO SIMULATIONS, Limnology and oceanography, 36, 769-777, (1991).
Gordon, H. R.: DEPENDENCE OF THE DIFFUSE REFLECTANCE OF NATURAL-WATERS ON THE SUN ANGLE, Limnology and oceanography, 34, 1484-1489, (1989).
Gordon, H. R., and Clark, D. K.: ATMOSPHERIC EFFECTS IN THE REMOTE-SENSING OF PHYTOPLANKTON PIGMENTS, Bound.-Layer Meteor., 18, 299-313, (1980).
Gregg, W. W., and Carder, K. L.: A SIMPLE SPECTRAL SOLAR IRRADIANCE MODEL FOR CLOUDLESS MARITIME ATMOSPHERES, Limnology and oceanography, 35, 1657-1675, (1990).
Hoogenboom, H. J., Dekker, A. G., and Althuis, I. A.: Simulation of AVIRIS sensitivity for detecting chlorophyll over coastal and inland waters, Remote Sensing of Environment, 65, 333-340, (1998).
IOCCG, O. C. A. W. G.: Models, parameters, and approaches that used to generate wide range of absorption and backscattering spectra (2003).
Jerome, J. H., Bukata, R. P., and Bruton, J. E.: UTILIZING THE COMPONENTS OF VECTOR IRRADIANCE TO ESTIMATE THE SCALAR IRRADIANCE IN NATURAL-WATERS, Applied Optics, 27, 4012-4018, (1988).
Kallio, K., Kutser, T., Hannonen, T., Koponen, S., Pulliainen, J., Vepsalainen, J., and Pyhalahti, T.: Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons, Sci. Total Environ., 268, 59-77, (2001).
Kirk, J.: Light and photosynthesis in aquatic ecosystems, Cambridge Univ Pr, (1994).
Kirk, J. T. O.: DEPENDENCE OF RELATIONSHIP BETWEEN INHERENT AND APPARENT OPTICAL-PROPERTIES OF WATER ON SOLAR ALTITUDE, Limnology and oceanography, 29, 350-356, (1984).
Kirk, J. T. O.: VOLUME SCATTERING FUNCTION, AVERAGE COSINES, AND THE UNDERWATER LIGHT-FIELD, Limnology and oceanography, 36, 455-467, (1991).
Lee, Z., Carder, K. L., and Arnone, R. A.: Deriving Inherent Optical Properties from Water Color: a Multiband Quasi-Analytical Algorithm for Optically Deep Waters, Appl. Opt., 41, 5755-5772, (2002).
Lee, Z. P., Carder, K. L., Mobley, C. D., Steward, R. G., and Patch, J. S.: Hyperspectral remote sensing for shallow waters. I. A semianalytical model, Applied Optics, 37, 6329-6338, (1998).
Liu, C. C., Carder, K. L., Miller, R. L., and Ivey, J. E.: Fast and accurate model of underwater scalar irradiance, Applied Optics, 41, 4962-4974, (2002).
Mertes, L. A. K., Smith, M. O., and Adams, J. B.: ESTIMATING SUSPENDED SEDIMENT CONCENTRATIONS IN SURFACE WATERS OF THE AMAZON RIVER WETLANDS FROM LANDSAT IMAGES, Remote Sensing of Environment, 43, 281-301, (1993).
Mishra, A. K., and Rao, D. P.: Relationship between sub-surface diffused reflectance and inherent optical properties in coastal waters, Int. J. Remote Sens., 23, 477-488, (2002).
Mobley, C. D.: Light and Water: radiative transfer in natural waters, Academic Press, (1994).
Morel, A.: Optical properties of pure water and pure sea water. In: Jerlove, N. G., and Nielsen, E. S., eds. Optical aspects of oceanography, New York, (1974).
Morel, A., and Gentili, B.: DIFFUSE-REFLECTANCE OF OCEANIC WATERS .2. BIDIRECTIONAL ASPECTS, Applied Optics, 32, 6864-6879, (1993).
Morel, A., and Gentili, B.: DIFFUSE REFLECTANCE OF OCEANIC WATERS - ITS DEPENDENCE ON SUN ANGLE AS INFLUENCED BY THE MOLECULAR-SCATTERING CONTRIBUTION, Applied Optics, 30, 4427-4438, (1991).
Morel, A., and Prieur, L.: ANALYSIS OF VARIATIONS IN OCEAN COLOR, Limnology and oceanography, 22, 709-722, (1977).
Nakaji, T., Ide, R., Oguma, H., Saigusa, N., and Fujinuma, Y.: Utility of spectral vegetation index for estimation of gross CO2 flux under varied sky conditions, Remote Sensing of Environment, 109, 274-284, (2007).
Oki, K., and Yasuoka, Y.: Estimation of chlorophyll concentration in lakes and inland seas with a field spectroradiometer above the water surface, Applied Optics, 41, 6463-6469, (2002).
Petzold, T.: Volume scattering functions for selected ocean waters. Scripps Institution of Oceanography, La Jolla, (1972).
Pope, R. M., and Fry, E. S.: Absorption spectrum (380-700 nm) of pure water .2. Integrating cavity measurements, Applied Optics, 36, 8710-8723, (1997).
Reda, I., and Andreas, A.: Solar position algorithm for solar radiation application. National Renewable Energy Laboratory (NREL) Technical report NREL. TP-560-34302, 2003, (2003).
Robinson, M. C., Morris, K. P., and Dyer, K. R.: Deriving fluxes of suspended particulate matter in the Humber Estuary, UK, using airborne remote sensing, Marine Pollution Bulletin, 37, 155-163, (1999).
Roesler, C. S., and Boss, E.: Spectral beam attenuation coefficient retrieved from ocean color inversion, Geophys. Res. Lett., 30, 4, (2003).
Roesler, C. S., Perry, M. J., and Carder, K. L.: MODELING INSITU PHYTOPLANKTON ABSORPTION FROM TOTAL ABSORPTION-SPECTRA IN PRODUCTIVE INLAND MARINE WATERS, Limnology and oceanography, 34, 1510-1523, (1989).
Santini, F., Alberotanza, L., Cavalli, R. M., and Pignatti, S.: A two-step optimization procedure for assessing water constituent concentrations by hyperspectral remote sensing techniques: An application to the highly turbid Venice lagoon waters, Remote Sensing of Environment, 114, 887-898, (2009).
Sathyendranath, S., Lazzara, L., and Prieur, L.: VARIATIONS IN THE SPECTRAL VALUES OF SPECIFIC ABSORPTION OF PHYTOPLANKTON, Limnology and oceanography, 32, 403-415, (1987).
Sathyendranath, S., Prieur, L., and Morel, A.: A 3-COMPONENT MODEL OF OCEAN COLOR AND ITS APPLICATION TO REMOTE-SENSING OF PHYTOPLANKTON PIGMENTS IN COASTAL WATERS, Int. J. Remote Sens., 10, 1373-1394, (1989).
Stramski, D., Bricaud, A., and Morel, A.: Modeling the inherent optical properties of the ocean based on the detailed composition of the planktonic community, Applied Optics, 40, 2929-2945, (2001).
Thiemann, S., and Kaufmann, H.: Lake water quality monitoring using hyperspectral airborne data - a semlempirical multisensor and multitemporal approach for the Mecklenburg Lake District, Germany, Remote Sensing of Environment, 81, 228-237, (2002).
Topliss, B. J.: SPECTRAL VARIATIONS IN UPWELLING RADIANT INTENSITY IN TURBID COASTAL WATERS, Estuar. Coast. Shelf Sci., 22, 395-414, (1986).
Vermote, E. F., Tanre, D., Deuze, J. L., Herman, M., and Morcrette, J. J.: Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: An overview, IEEE Trans. Geosci. Remote Sensing, 35, 675-686, (1997).
Voss, K. J.: A SPECTRAL MODEL OF THE BEAM ATTENUATION COEFFICIENT IN THE OCEAN AND COASTAL AREAS, Limnology and oceanography, 37, 501-509, (1992).
Whitlock, C. H., Poole, L. R., Usry, J. W., Houghton, W. M., Witte, W. G., Morris, W. D., and Gurganus, E. A.: COMPARISON OF REFLECTANCE WITH BACKSCATTER AND ABSORPTION PARAMETERS FOR TURBID WATERS, Applied Optics, 20, 517-522, (1981).
Xu, J. F., and Huang, J. F.: Empirical line method using spectrally stable targets to calibrate IKONOS imagery, Pedosphere, 18, 124-130, (2008).
Yang, M. D., Merry, C. J., and Sykes, R. M.: Integration of water quality modeling, remote sensing, and GIS, J. Am. Water Resour. Assoc., 35, 253-263, (1999).
行政院農委會水土保持局, http://smr.swcb.gov.tw, edited (2010).
李三畏: 集水區的經營治理. 中興工程基金會, (2005).
張智華: 非點源污染負荷模式及水質生光模式之結合與應用, 國立成功大學 環境工程學系, 博士論文, 台南, (2008 ).
許華宇: 應用船載水面高光譜擷取系統遙測近岸及內陸水體水質, 國立成功大學: 衛星資訊暨地球環境研究所, 碩士論文, 台南, (2009).
經濟部水利署北區水資源局, http://www.wranb.gov.tw/, edited (2010).
經濟部水利署南區水資源局, http://www.wrasb.gov.tw, edited (2010).
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2010-08-05起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2011-08-05起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw