系統識別號 U0026-0308201014480600 論文名稱(中文) 覆晶構裝體之可靠度分析 論文名稱(英文) Investigation of the reliability for the Flip-Chip Package 校院名稱 成功大學 系所名稱(中) 機械工程學系專班 系所名稱(英) Department of Mechanical Engineering (on the job class) 學年度 98 學期 2 出版年 99 研究生(中文) 吳子朋 研究生(英文) Zi-Peng Wu 學號 n1797103 學位類別 碩士 語文別 中文 論文頁數 96頁 口試委員 指導教授-吳俊煌口試委員-朱聖浩口試委員-顏義文 中文關鍵字 錫球  ANSYS  封膠  封裝  凸塊 英文關鍵字 Solder ball  ANSYS  EMC  Package  Bump 學科別分類 中文摘要 摘要 本文利用三維有限元素法來模擬覆晶陣列錫球構裝體之熱應力、熱應變及熱傳行為。構裝體含有九個組件，分別是散熱板、封膠、底膠、晶片、基板、熱通孔、錫球、凸塊、PCB。構裝體由不同的材料所構成，為了能夠描述不同材料的特性，在熱應力、熱應變的模擬分析時，錫球材料的黏塑特性以Anand模型模擬，成形樹脂材料的黏彈特性以Maxwell模型模擬，而其他部分則以彈性體模擬，模擬構裝體在125℃~-40℃ 熱循環附載下的變形行為。在熱傳分析方面，構裝體與外界初始溫度為 50℃，晶片每單位體積發熱量為0.03W/mm^3。 當構裝體達到穩態時，為了使封裝體達到最佳設計，我們同時考慮與改善兩個目標，一者為最佳熱傳性能，另一者則是探討改變封膠、基板BT核心層、底膠的彈性模數及熱膨脹係數和基板BT核心層高度、散熱板高度、散熱板寬度時，探討最大最小凸塊應變時的差值影響封裝體的壽命現象。再經由modified Coffin-Manson equation 求其疲勞壽命。 英文摘要 Abstract In this study, the finite element analysis using the commercial code ANSYS12.0 has been performed to study the thermal-mechanical and heat-transfer behavior in the FC-PBGA. FC-PBGA model consists of seven parts, including heat spreader, molding compound, underfill, chip, substrate, thermal via, solder ball, solder bump, and PCB board. The model is constructed by different materials and each material has its own function to demonstrate its characteristics. For analysis on thermal-mechanical behavior, the viscoeplastic behavior of solder ball is modeled using Anand model, the viscoeplastic behavior of molding compound is simulated by Maxwell model, and the other parts are using linear elastic model to simulate. As a result, analysis of transformation behavior of FC-PBGA can be carried out under a 125℃~-40℃ heat cycling environment. For heat spreading analysis, the beginning temperature of FC-PBGA and surrounding area is 50℃, and the heat dissipation per volume unit of chip is 0.03W/mm^3. When it reaches the stable condition, There are two design goals. One is to maximum the heat transfer performance, and the other is change the coefficient of variation(c.o.v) and Young’s Modulus of the molding compound, substrate,underfill and the other width and height of BT layers, both the maximal and minimal deviation of the solder bump equivalent strain affects the fatigue life of the package the most. The fatigue life of the package is determined base on a modified Coffin-Manson equation. 論文目次 中文摘要 II Abstract III 誌謝 IV 目錄 V 表目錄 VII 圖目錄 VIII 符號說明 XIII 第一章 緒論 1 1-1前言 1 1-2覆晶塑封球柵陣列構裝體(FC-PBGA)簡介 2 1-3研究動機與目的 8 1-4文獻回顧 9 1-5本文架構 10 第二章 理論分析 2-1彈性理論分析 11 2-2非線性收斂準則 15 2-2-1直接疊代法 15 2-2-2牛頓-瑞佛森法 16 2-3黏彈材料力學模型─Maxwell模型[1] 20 2-4黏塑材料力學模型─Anand模型[1] 25 2-5電子元件封裝之熱傳與散熱分析 30 2-5-1熱傳導與熱對流30 2-6低循環疲勞壽命33 第三章 模型建立與分析 36 3-1建立封裝體分析模型 37 3-2分析流程與材料設定 37 3-3設定邊界條件 64 第四章 結果與討論分析 66 4-1 熱傳分析66 4-2 熱應力分析71 第五章 結論 90 5-1結果90 5-2未來展望91 參考文獻 93 自述 96 參考文獻 參考文獻 1. 張勳承, ”田口方法應用與覆晶構錫球的熱應力分析”, 碩士論文, 國立成功大學, 2003。 2. Lau, J. H. Low Cost Flip Chip Technologies for DCA, WLCSP, and PBGA Assemblies New York: McGraw-Hill, 2000. 3. 徐梓青, ”FC-BGA構裝體的數值分析與最佳化研究”, 碩士論文，國立成功大學, 2004。 4. Lee, T. Y., "An Investigation of Thermal Enhancement on Flip Chip Plastic BGA Packages Using CFD Tool," IEEE Trans. Compon., Packag. Manuf. Technol., Part A, 23, p. 481-489, 2000, 5. Hwang, C. B. “Thermal design for flip chip on board in natural convection,” in Proc. 15th Semiconductor Thermal Meas. Manag. Symp. (Semi-Therm), p. 125-132, 1999. 6. Celik, Z. Z., Copeland, D., and Mertol, A., “Thermal Enhancement and Reliability of 40 mm EPBGA Packages With Interface Materials,”Proc. of 21st IEEE/CPMT Intl. Electronics Manufacturing TechnologySymp., Austin, TX, IEEE, Piscataway, NJ, p. 376–385, 1997 7. Bennett Joiner, Tony Montes de Oca, “Thermal Performance of Flip Chip Ball Grid Array Packages”, 18th IEEE SEMI-THERM Symposium, 2002. 8. Matsushima, H., Baba, S., “Thermally Enhanced Flip-Chip BGA with Organic Substrate”, IEEE, Electronic Components and Technology Conference, 1998. 9. Mertol, A., ”Thermal Performance Comparison of High Pin Count Cavity-Up Enhanced Plastic Ball Grid Array (EPBGA) Packages,” IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part B, Vol. 19, No. 2, p. 427-443, 1996. 10. ANSYS 9.0 Online Reference 11. Hao, X., Qin, L., Yan, D., and Liu, S., “Thermal-Mechanical Stress And Fatigue Failure Analysis Of A PBGA”, ICEPT2003, p438-442, 2003. 12. 羅家昇, ”PBGA構裝體的數值模擬與最佳化研究”, 碩士論文, 國立成功大學,2005。 13. Ellison, G.N., “Thermal Computations for Electronic Equipment,” Van Nostrand Reinhole Company, New York, 1989. 14. Msazumi. A, “Characterization of Chip Scale Packaging Materials”, Microelectronics Reliability, Vol.39 Issue 9, pp. 1365-1377, 1999. 15. Mertol, A., “Optimization of High Pin Count Cavity-Up Enhanced Plastic Ball Grid Array (EPBGA) Packages for Robust Design,” IEEE Trans. Compon., Packag. Manuf. Technol., Part B, 20(4), p. 376–388, 1997 16. Ramakrishna, K., Lee, T. y. T., “Prediction of Thermal Performance of Flip Chip Plastic Ball Grid Array (FC-PBGA) packages: effect of substrate physical design,” The Eighth Intersociety Conference on Thermal and Thermo Mechanical Phenomena in Electronic Systems, p. 528-537, 2002. 17. Zahn, B. A., “Optimizing Cost and Thermal Performance: Rapid Prototyping of a High Pin Count Cavity-Up Enhanced Plastic Ball Grid Array (EPBGA) Package, “Fifteenth IEEE SMEI-THERM Symposium, p. 133-141, 1999. 18. Narasimhan, S. and Majdalani, J., “Characterization of compact heat sink models in natural convection,” in Proc. InterPack Conf., IPACK2001-15 889, July. 2001. 19. 曾穗卿, ”利用有限元素與田口方法探討FCCSP構裝無鉛錫球之最佳化疲勞壽命”, 國立成功大學, 2006。 20. 莊詠程, ”覆晶球柵陣列構裝於構裝製程後之熱機械行為分析與可靠度研究”, 國立清華大學, 2007。 論文全文使用權限 同意授權校內瀏覽/列印電子全文服務，於2010-08-17起公開。同意授權校外瀏覽/列印電子全文服務，於2012-08-17起公開。

 如您有疑問，請聯絡圖書館 聯絡電話：(06)2757575#65773 聯絡E-mail：etds@email.ncku.edu.tw