進階搜尋


 
系統識別號 U0026-0308201010093900
論文名稱(中文) 正常肩關節終端感覺測試之生物力學特性
論文名稱(英文) Biomechanical Analysis of Normal Shoulder Joint End-Feel Tests
校院名稱 成功大學
系所名稱(中) 物理治療研究所
系所名稱(英) Department of Physical Therapy
學年度 98
學期 2
出版年 99
研究生(中文) 王昱超
研究生(英文) Yu-Chao Wang
學號 t6696101
學位類別 碩士
語文別 英文
論文頁數 112頁
口試委員 口試委員-陳文玲
口試委員-林呈鳳
指導教授-徐阿田
中文關鍵字 肩關節  終端感覺  角度-力矩關係圖  生物力學特性 
英文關鍵字 Shoulder joint  End-feel  Angle-moment curve  Biomechanical property 
學科別分類
中文摘要 實驗背景與目的:
物理治療師在臨床評估肩部問題的患者常測試其肩關節的終端感覺。雖然終端感覺測試被廣泛於臨床運用,但此評估手法受制於施測者的個人主觀感覺且缺乏客觀研究其生物力學特性之文獻;現有少數有關關節終端感覺之文獻也不能證明它擁有足夠的信效度。本實驗利用角度-力矩關係圖來客觀描述正常肩關節的終端感覺生物力學特性。我們試著比較正常肩部終端感覺測試之角度-力矩關係圖在不同測試動作、不同性別和不同關節柔軟程度間的差異。
實驗方法與器材:
本實驗對健康慣用右手成年男女性各15名實施肩關節終端感覺測試;藉由手持之單軸力量感測器記錄所施予之壓力大小,並且同時以三度空間電磁動作感應系統來記錄同步肩關節被動角度變化。本實驗共測試肩關節在屈曲、伸直、外展、外轉/內轉在額平面(ER/IR)和在肩胛平面(ERs/IRs)等七種常見的肩關節動作時的終端感覺並製成角度-力矩關係圖。在角度-力矩關係圖上的中立區、第一段趾區、第二段趾區和線性彈性區等四區域的斜率值(angular stiffness)、趾區和從趾區起始點到特定力矩定值的角度範圍(angular range)是我們的觀察重點。我們使用獨立樣本t測試來比較不同性別和不同關節柔軟程度的觀察值差異。我們利用混合型三因子變異數分析(mix design 3-way ANOVA)來探討觀察值在不同測試動作、關節柔軟度(分為柔軟度過高/正常兩組)和性別之間的差異。
實驗結果:
在第一段趾區以伸直和內轉有最大斜率值(angular stiffness)。在第二段趾區以伸直、外展、屈曲和內轉等動作有較高的斜率值,在外轉為最小。肩外展和屈曲在線性彈性區有最高的斜率值而外轉最小。肩外轉和屈曲的趾區和趾區起始點到特定關節力矩定值角度範圍最大,在內轉為最小。男性在第一、二段趾區和線性彈性區除了肩伸直和外展動作外有較高的斜率值。女性趾區和趾區起始點到特定關節力矩定值在肩屈曲(p<0.05),外轉(ER: p<0.05)和內轉(p<0.05)的角度範圍來比男性大。
討論:
肩外展有最軟、最大角度範圍和最低力矩上升程度(Loading rate)的終端感覺特性。肩外展有最硬的終端感覺特性,而肩內轉則有最小角度範圍且兩者具有最高的力矩上升程度。肩屈曲比起肩伸直有較大的角度範圍和較軟的早期終端感覺。
結論: 正常肩關節終端感覺由硬到軟依序為: 肩外展、肩內轉、肩伸直、肩屈曲和肩外轉。在同一肩關節終端感覺類型中女性比起男性表現出較軟(softer)的正常終端感覺型態。關節柔軟程度的差異對於正常肩關節的終端感覺沒有明顯的影響作用。
臨床應用性:
角度-力矩關係圖可以幫助客觀區分出正常肩關節的終端感覺特性。這些特性在臨床上可以用來辨別正常和不正常終端感覺的差別。
英文摘要 Background and Purpose:
Physical therapists often conduct the joint end-feel test on patient with shoulder problems. It’s part of the procedure of Selective Tissue Tension Test (STTT) developed by James Cyriax. Although the end-feel test is wildly used, there is no objective characterization of the end-feel in the existing literature. Our purpose was to investigate the biomechanical characteristics of normal shoulder joint end-feels by analyzing the “angle-moment” relationship curves.
Materials and Methods:
We conducted 7 shoulder end-feel tests including shoulder flexion, extension, ABD, external and internal rotation in both scapular plane (ERs/IRs) and frontal plane (ER/IR) on 30 healthy right handed subjects. The external applied load was measured through a load cell and the shoulder kinematics was recorded by a 3D electromagnetic motion analysis system. The “angle-moment curves” of each end-feel test was established and subdivide into four regions: neutral zone (NZ), first section of the toe-region (T1), second section of the toe-region (T2) and the linear elastic region (EL). The slops (angular stiffness) of each region were analyzed. The angular ranges in the toe-region (AT) and from the starting point of toe-region to certain joint moment (AN) were also discussed. We used the independent t-test for comparing the gender and flexibility level difference on anthropometric and kinematic data. A 3-way ANOVA was tested for effects of testing types, genders and flexibility levels on the main outcome measures.
Results:
The shoulder extension and internal rotation had the larger T1 angular stiffness. In the T2 region, the shoulder extension, ABD and internal rotation had greater angular stiffness but there was no difference between each other. Shoulder ABD and flexion had highest EL angular stiffness and external rotation was the smallest. The shoulder external rotation had the largest AT and AN angular range among all testing types. Males had greater T1, T2 and EL region angular stiffness in all testing movements except the extension and ABD. Females had larger AT and AN angular ranges in shoulder flexion (p<0.05), external rotation (ER, p=0.003) and internal rotation (IRs, p<0.05; IR, p<0.05).
Discussion:
The shoulder external rotation was the softest joint end-feel and characterized by having the softest angular stiffness, largest angular ranges, lowest peak joint moment and loading rate among all the testing movements. The shoulder ABD and internal rotation had the greatest loading rate and ABD characterized as greatest EL region angular stiffness, however, the shoulder internal rotation was characterized as having the smallest angular ranges. Both of them had harder end-feel among testing movements. Shoulder flexion was characterized as having larger angular range and harder at end range than shoulder extension.
Conclusions: In the present study, the normal shoulder joint end-feel listed from ‘hard to soft’ is in the following order: ABD, internal rotation, extension, flexion and external rotation. Females presented softer end-feels. The joint flexibility level appears to have no major effect on the normal shoulder joint end-feels.
Clinical Relevance:
The angle-moment curve is not the resistance felt by examiner but it helps us verifying the normal shoulder end-feel properties in an objective way. These normal shoulder end-feel characteristics are the references for indentifying the abnormal shoulder end-feels in clinical evaluation.
論文目次 口試合格證明書 I
中文摘要 III
ABSTRACT V
誌謝 VII
TABLE LIST XII
FIGURE LIST XV
CHAPTER 1 INTRODUCTION - 1 -
1.1 The Selective Tissue Tension Test (STTT) - 1 -
1.2 The End-Feel and End-feel Test - 3 -
1.2.1 The Description of Normal and Abnormal End-Feels - 6 -
1.2.2 Relationship between End-feel, Pain and Range - 9 -
1.2.3 Normal Shoulder Joint End-Feels - 10 -
1.2.4 The Procedure of End-Feel Test - 11 -
1.3 Purpose and Hypotheses - 13 -
CHAPTER 2 MATERIALS and METHODS - 14 -
2.1 Subjects and Instrumentation - 14 -
2.1.1 The Subjects - 14 -
2.1.2 Three-Dimensional Electromagnetic Motion Analysis System - 14 -
2.1.3 The Electromyographic System - 16 -
2.1.4 The Measurement of Applied Force - 17 -
2.1.5 Others - 17 -
2.2 Experimental Procedures - 21 -
2.3 Subject Preparation - 22 -
2.3.1 The EMG Electrodes Placements - 22 -
2.3.2 The Maximum Voluntary Isometric Contraction (MVIC) Test - 23 -
2.3.3 Placement of Electromagnetic Sensors - 24 -
2.3.4 The Definitions of Segment Coordinate Systems - 24 -
2.3.5 The End-Feel Testing Trials - 27 -
2.3.6 The Muscle Activities Monitoring Method and Criteria - 32 -
2.4 Data Processing - 34 -
2.4.1 The Angle-Moment Relationship - 34 -
2.4.2 Regional Definitions of the Angle-Moment Curves - 35 -
2.4.3 The Outcome Measures - 37 -
2.4.4 Statistical Analysis - 38 -
CHAPTER 3 RESULTS - 42 -
3.1 The Anthropometric Data and Gender Difference - 42 -
3.2 The Reliability of Selected Angle-Moment Curves - 43 -
3.3 The Electromyographic Activities - 44 -
3.4 The Angular Velocity and Loading Rate - 45 -
3.5 The Peak Range of Motion and Peak Moment Achieved During the End-Feel Tests - 48 -
3.6 The Main Effects of Testing Types, Gender and Flexibility on the Outcome Measures - 56 -
3.6.1 The Angular Stiffness of Neutral Zone (NZ) - 56 -
3.6.2 The Angular Stiffness of the T1 Region - 58 -
3.6.3 The Angular Stiffness of the T2 Region - 63 -
3.6.4 The Angular Stiffness of the EL Region - 68 -
3.6.5 The Angular Range of the Toe-Region, (AT) - 73 -
3.6.6 The Angular Range from Toe-Region to Certain joint Moment, (AN) - 82 -
CHAPTER 4 DISCUSSIONS - 88 -
4.1 The Shoulder Constraints - 88 -
4.2 The Angular Velocity - 91 -
4.3 The Loading Rate - 96 -
4.4 The Peak Angle and Peak Joint Moment Achieved - 97 -
4.5 The Gender and Flexibility Effect on the Outcome Measures - 98 -
4.5.1 The Gender Effects - 98 -
4.5.2 The Flexibility Effects - 99 -
4.6 The Shoulder End-Feels - 100 -
4.6.1 The Shoulder External Rotation End-feel - 100 -
4.6.2 The Shoulder Abduction End-feel - 101 -
4.6.3 The Shoulder Internal Rotation End-feel - 102 -
4.6.4 The Shoulder Flexion End-feel - 104 -
4.6.5 The Shoulder Extension End-feel - 105 -
4.7 Summary - 107 -
4.8 Limitations - 109 -
4.8.1 The Muscle Activation Effect - 109 -
4.8.2 The Skin Movement - 109 -
4.8.3 The Classification of Flexibility Levels - 110 -
4.8.4 Clinical Applications - 110 -
4.9 Clinical Relevance - 111 -
CHAPTER 5 CONCLUSIONS - 112 -
REFERENCE - 1 -
APPENDIX I - 5 -
APPENDIX II - 6 -
APPENDIX III - 7 -
APPENDIX IV - 14 -
自述 - 15 -
參考文獻 1. Bey, M. J., Hunter, S. A., Kilambi, N., Butler, D. L., & Lindenfeld, T. N. (2005). Structural and mechanical properties of the glenohumeral joint posterior capsule. J Shoulder Elbow Surg, 14(2), 201-206.
2. Bigliani, L. U., Pollock, R. G., Soslowsky, L. J., Flatow, E. L., Pawluk, R. J., & Mow, V. C. (1992). Tensile Properties of the Inferior Glenohumeral Ligament. Journal of Orthopaedic Research, 10:187-197.
3. Boardman, N. D., Debski, R. E., Warner, J. J., Taskiran, E., Maddox, L., Imhoff, A. B., et al. (1996). Tensile properties of the superior glenohumeral and coracohumeral ligaments. J Shoulder Elbow Surg, 5(4), 249-254.
4. Chesworth, B. M., MacDermid, J. C., Roth, J. H., & Patterson, S. D. (1998). Movement diagram and "end-feel" reliability when measuring passive lateral rotation of the shoulder in patients with shoulder pathology. Phys Ther, 78(6), 593-601.
5. Cram, J. R., & Kasman, G. S. (1998). Electrode Placement Introduction to Surface Electromyography (pp. 237-383). Gaithersburg, Maryland: Aspen Publisher, inc.
6. Cyriax, J. (1982). Diagnosis of Soft Tissue Lesions Textbook of Othopaedic Medicine (8th ed., pp. p43-69). London: Bailliere Tindall.
7. Dutton, M. (2008). The Examination and Evaluation Orthopaedic Examination, Evaluation & Intervention (pp. p151-210): The McGraw-Hill Companies, Inc.
8. Gagey, O. J., & Boisrenoult, P. (2004). Shoulder Capsule Shrinkage and Consequences on Shoulder Movements. Clin Orthop, 419, 218-222.
9. Gerber, C., Werner, C. M. L., Macy, J. C., Jacob, H. A. C., & Nyffeler, R. W. (2003). Effect of Selective Capsulorrhaphy on the Passive Range of Motion of the Glenohumeral Joint. J Bone Joint Surg Am, 85, 48-55.
10. Graichen, H., Bonel, H., Stammberger, T., Englmeier, K. H., Reiser, M., & Eckstein, F. (1999). Subacromial space width changes during abduction and rotation--a 3-D MR imaging study. Surg Radiol Anat, 21(1), 59-64.
11. Hayes, K. W., Petersen, C., & Falconer, J. (1994). An examination of Cyriax's passive motion tests with patients having osteoarthritis of the knee. Phys Ther, 74(8), 697-707; discussion 707-699.
12. Hayes, K. W., & Petersen, C. M. (2001). Reliability of assessing end-feel and pain and resistance sequence in subjects with painful shoulders and knees. J Orthop Sports Phys Ther, 31(8), 432-445.
13. Hengeveld, E., & Banks, K. (2005). Principls and Method of Mobilization/Manipulation techniques Maitland's Peripheral Manipulation: Elsevier, Butterworth Heinemann.
14. Hislop, H. J., & Montgomery, J. (2002). Testing the Muscle of the Upper Extremity Daniels and Worthingham's Muscle Testing Techniques of Manual Examination (7 ed.): Elsevier Science.
15. Huxel, K. C., Swanik, C. B., Swanik, K. A., Bartolozzi, A. R., Hillstrom, H. J., Sitler, M. R., et al. (2008). Stiffness regulation and muscle-recruitment strategies of the shoulder inresponse to external rotation perturbations. J Bone Joint Surg Am, 90(1), 154-162.
16. Itoi, E., Grabowski, J. J., Morrey, B. F., & An, K. N. (1993). Capsular properties of the shoulder. Tohoku J Exp Med, 171(3), 203-210.
17. Kaltenborn, F. M. (1989). Manual mobilization of the Extremity Joints (pp. p29-30). Oslo: Olaf Norlis Bokhandel.
18. Kuhn, J. E., Huston, L. J., Soslowsky, L. J., Shyr, Y., & Blasier, R. B. (2005). External rotation of the glenohumeral joint: ligament restraints and muscle effects in the neutral and abducted positions. J Shoulder Elbow Surg, 14(1 Suppl S), 39S-48S.
19. Lee, S. B., Kim, K. J., O'Driscoll, S. W., Morrey, B. F., & An, K. N. (2000). Dynamic glenohumeral stability provided by the rotator cuff muscles in the mid-range and end-range of motion. A study in cadavera. J Bone Joint Surg Am, 82(6), 849-857.
20. Louis U. Bigliani, Rajeev Kelkar, Evan L. Flatow, Roger G. Pollock, & Van C. Mow (1996). Glenohumeral Stability-Biornechanical Properties of Passive and Active Stabilizers. CLINICAL ORTHOPAEDICS AND RELATED RESEARCH, 13-30.
21. Magee, D. J. (2006). Principles and Concepts. In M. Waldman (Ed.), Orthopedic Physical Assessment (4th ed., pp. 1-65). St. Louis, Missouri 63146: Saunders Elsevier.
22. Makhsous, M., Lin, F., & Zhang, L.-Q. (2004). Multi-axis passive and active stiffnesses of the glenohumeral joint. Clinical Biomechanics, 19, 107-115.
23. McCully, S. P., Kumar, N., Lazarus, M. D., & Karduna, A. R. (2005). Internal and external rotation of the shoulder: effects of plane, end-range determination, and scapular motion. J Shoulder Elbow Surg, 14(6), 602-610.
24. Muraki, T., Aoki, M., Uchiyama, E., Takasaki, H., Murakami, G., & Miyamoto, S. (2007). A cadaveric study of strain on the subscapularis muscle. Arch Phys Med Rehabil, 88(7), 941-946.
25. Norkin, C. C., & White, D. J. (2003). The shoulder Measurement of Joint Motion A Guide to Goniometry (3 ed., Vol. 4, pp. p57-90): F.A. Davis Cmpany.
26. O'sullivan, S. B., & Schmitz, T. J. (2001). Musculoskeletal Assessment Physical Rehabilitation Assessment and Treatment (pp. p113-118): Jean-Francois Vilain.
27. Ombregt, L., Bisschop, P., Veer, H. J. t., & Velde, T. V. D. (1997a). Clinical Diagnosis of Soft Tissue Lesions A System of Orthopaedic Medicine (Vol. Chaper 4, pp. 45-71). London,UK: WB Saunders Company Ltd
28. Ombregt, L., Bisschop, P., Veer, H. J. t., & Velde, T. V. D. (1997b). The shoulder A System of Orthopaedic Medicine (pp. 279-374). London,UK: WB Saunders Company Ltd
29. Petersen, C. M., & Hayes, K. W. (2000). Construct validity of Cyriax's selective tension examination: association of end-feels with pain at the knee and shoulder. J Orthop Sports Phys Ther, 30(9), 512-521; discussion 522-517.
30. Richardson, J. K., & Iglarsh, Z. A. (1994). Shoulder Clinical orthopaedic physical therapy (pp. p180-183): W.B. Saunders Comoany.
31. Rockwood, C. A., Matsen, F. A., Wirth, M. A., & Lippitt, S. B. (2009a). Biomechanics of the Shoulder The Shoulder (Fourth ed., Vol. 2, pp. 230-265): Sounders Elsevier.
32. Rockwood, C. A., Matsen, F. A., Wirth, M. A., & Lippitt, S. B. (2009b). Developmental Anatomy of the Shoulder and Anatomy of the Glenohumeral Joint The shoulder (Fourth ed., Vol. 1, pp. 1-32): Sounders Elsevier.
33. Rockwood, C. A., Matsen, F. A., Wirth, M. A., & Lippitt, S. B. (2009c). Gross Anatomy of the Shoulder The shoulder (Fourth ed., Vol. 1, pp. 33-99): Sounders Elsevier.
34. Rockwood, C. A., Matsen, F. A., Wirth, M. A., & Lippitt, S. B. (2009d). The Stiff Shoulder The Shoulder (Fourth ed., Vol. 2, pp. 1405-1429): Sounders Elsevier.
35. Soslowsky, L. J., Malicky, D. M., & Blasier, R. B. (1997). Active and passive factors in inferior glenohumeral stabilization: a biomechanical model. J Shoulder Elbow Surg, 6(4), 371-379.
36. Wu, G., Helm, F. C. v. d., Veeger, H. E., Makhsous, M., Roy, P. V., Anglin, C., et al. (2005). ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion--Part II: shoulder, elbow, wrist and hand. J Biomech, 38(5), 981-992.
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2011-08-09起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2011-08-09起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw