進階搜尋


   電子論文尚未授權公開,紙本請查館藏目錄
(※如查詢不到或館藏狀況顯示「閉架不公開」,表示該本論文不在書庫,無法取用。)
系統識別號 U0026-0307202015394300
論文名稱(中文) 兩相紊態尾流場之數值研究
論文名稱(英文) Numerical Simulation of Particle-Laden Turbulence in Wake Flow
校院名稱 成功大學
系所名稱(中) 航空太空工程學系
系所名稱(英) Department of Aeronautics & Astronautics
學年度 108
學期 2
出版年 109
研究生(中文) 黃彥博
研究生(英文) Yen-Po Huang
學號 P46074480
學位類別 碩士
語文別 中文
論文頁數 162頁
口試委員 口試委員-徐子圭
口試委員-闕志哲
指導教授-張克勤
中文關鍵字 氣固兩相紊流  拉格朗日顆粒追蹤法  圓柱尾流  硬球碰撞模式  隨機離散顆粒模型  質點影像測速儀  紊流調制效應  顆粒分散效應 
英文關鍵字 Particle-laden flow  Lagrangian particle tracking method  Inter-particle collision  Hard-sphere model  Cylinder wake  Turbulent modulation  Particle dispersion 
學科別分類
中文摘要 兩相紊流場不論在計算模擬或實驗量測上之研究在文獻上甚為少見,本文旨在模擬兩相紊態圓柱後尾流場現象,考慮離散顆粒的交互作用以及連續相和離散相之間的耦合,包括顆粒的碰撞以及氣固兩相間的能量傳遞等,最後和質點影像測速儀之兩相實驗值進行比對,除了探求離散相存在是否會對連續相的紊流統計結果和尾流結構產生影響外,也對離散顆粒的碰撞行為和其在流場中的流動情形進行探討。最後,由比對結果以及顆粒之間的碰撞頻率和相關無因次化參數,如 τ_p/τ_c 、St 等來對氣固兩相紊流場中調制(Modulation)和分散效應(Dispersion)以及其他物理現象進行說明。
數值上,使非穩態之雷諾平均納威爾-史托克法(RANS),搭配 k-ω SST 紊流模型求解連續相流場,植入熱線測速儀量測之風洞入口結果作為計算進口條件,以取代一般無擾動之均質入口,將單相計算之結果分別和熱線測速儀(HWA)和質點影像測速儀(PIV)在兩種雷諾數Re = 3856和Re = 9959下所量測的數據進行基本的驗證工作。
再者,加入離散相模型並外掛顆粒碰撞機制,由於本文欲探討之兩相流場在以往文獻使用顆粒體積占比(Particle Volume Fraction)的歸納下為稀疏流(Dilute Flow),代表在數值上使用雙向耦合(Two-way Coupling)即可,意即可以忽略顆粒之間的交互機制,但本研究欲針對此進行重新檢視,故在離散相之數值處理上,使用拉格朗日顆粒追蹤法、硬球雙體碰撞模式和隨機碰撞法,分別求解稀疏粒子流在不同的顆粒質量負載比(0%、1%、3%、5% )下,離散大顆粒(54.9微米)之運動方程和連續相之納威爾-史托克方程(Navier-Stokes Equation),並進行四向耦合運算(Four-way Coupling),使用決定論法追蹤顆粒在流場中之運動情形,最後和兩相PIV和PTV實驗結果進行比對。發現計算之結果與實驗趨勢相符但不吻合,特別是在上游處之近尾流區。在連續相方面,以往在探討紊流調制效應時,大多以紊流強度之大小為比較對象,雖然在本研究中方均根擾動速度的確會隨著近尾流區顆粒的加載而大致有所提升,但在非常上游處依然有紊流增強和減弱效應的情形同時發生,相對而言,雷諾應力在各截面因減弱效應的增加而呈現單調(Monotonic)遞減的趨勢反而更為顯著且較為單一;圓柱尾流中的大尺度相干性結構(Coherent Structure)會隨主流向之距離增加而下降,到遠尾流區其影響逐漸減弱,不同雷諾數下,其大尺度相干性結構會有所不同,故顆粒負載對紊流調制效應的影響也會因此而有所改變;離散相則因缺少實驗進口條件、顆粒為單一粒徑分布以及剪力層中顆粒間相互碰撞影響,導致與實驗數據有些許差異,但在不同顆粒質量比下的趨勢和實驗一致,顆粒的分散效應隨雷諾數、史托克斯數(Stokes Number)以及顆粒質量負載的上升而增強,由近尾流區(Near Wake Region)中,顆粒間的碰撞頻率以及 τ_p/τ_c (顆粒鬆弛時間(Particle Relaxation Time) / 顆粒自由平均時間(Particle Mean Free Time))的比值在不同截面 (2~10 D) 之分布情形的結果,除了可以清楚得知顆粒碰撞率隨雷諾數變大而提高以及越下游的碰撞行為越趨於減弱外,在兩相紊流場中,使用顆粒體積占比作為數值上考慮顆粒交互行為與否的條件並不完全也不夠周詳,傳統認為 τ_p/τ_c 比值在 O(10^0 ) 以上就必須將顆粒間的碰撞納入計算考慮,在此研究成果上進一步進行驗證發現,本研究在兩個雷諾數的兩相尾流場中,即便皆為稀疏流場,但 τ_p/τ_c 比值在 O(10^(-1) ) 以上就必須考慮顆粒間的碰撞效應。
英文摘要 Although many natural and industrial processes involve turbulent flow with solid particles, experiments and simulations for particle-laden wake flows are relatively infrequent. A modeling study of turbulent particle-laden flow considering inter-particle collision is performed in the current study. The test problem is particle-laden flow in the near wake region behind a long circular cylinder, which is experimentally studied using particle image velocimetry (PIV) and particle tracking velocimetry (PTV). The Eulerian-Lagrangian framework is employed for the purpose of modeling the carrier fluid (continuous phase) and particles (dispersed phase), respectively. The Reynolds-averaged Navier-Stokes equations associated with the available k-w SST turbulence model are applied to obtain the carrier-fluid flow field solution, while the deterministic Lagrangian method is combined with the extended binary-collision hard-sphere model and Discrete Phase Model and applied to obtain the dispersed-phase flow field solution. The particle volume fraction ratios in current cases are classified as dilute flow fields that only consider two-way coupling, which is considered acceptable, according to the conventional justifications in some studies. However, this study is aimed toward determining the influence of particle interactions on the turbulence statistics of cylindrical wake flow, such as the particle dispersion effects and turbulent modulations with various particle mass loading ratio increments (0%, 1%, 3%, 5%) through the use of four-way coupling approaches. First, the numerical results for the gas of the single-phase flow (0% mass loading ratio) was compared with HWA and PIV experiments for two cases, Re = 3856 and Re = 9959, in order to validate the numerical method. Second, the predicted results of the two-phase flow properties were compared with the two-phase PIV and PTV measurements. The results from the simulation did not agree well with the experimental data, especially in the very upstream region due to the presence of a coherent structure. However, the distribution trends along with various mass loading ratios were similar for both the dispersed particles and the carrier phase. It was found that turbulence modulation for the Reynolds stress decreased monotonically when the mass loading ratio increased. By contrast, in term of turbulence intensity, both turbulence enhancement and attenuation in the upstream region were observed and they were increased with increases in the mass loading ratio. Turbulence modulation was relatively mild for the cases with larger Reynolds numbers. The dispersion of particles was enhanced incrementally with the Reynolds number, Stokes number, and particle mass loading ratio. There were two main reasons for poor comparison results between the dispersed phase simulation and PTV experiment: a lack of experimental particle inlet conditions and only considering the mono-size particle distribution in the modeling. Calculation of the inter-particle collision ratio τ_p⁄τ_c (Particle Relaxation Time / Particle Mean Free Time) and particle collision rates are the core focal points of this thesis. The results show that for larger Reynolds numbers (and x⁄D), the inter-particle collision is increased (decreased). The simulation results also found that the volume fraction ratio is not a comprehensive consideration of dilute and non-dilute flows. Further examinations should redefine τ_p⁄τ_c since inter-particle collision should be considered under a criterion of τ_p⁄τ_c >O(10^(-1) ) in the simulation of particle-laden wake flow.
論文目次 目錄
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 2
1-2-1氣固兩相負載流 2
1-2-2圓柱尾流之現象 8
1-2-3顆粒相分散與調制效應 11
1-2-4顆粒相之碰撞方式 13
1-2-5兩相之紊態圓柱尾流 15
1-3 研究背景與目標 18
第二章 物理問題描述與數學模型 20
2-1 連續相模型 20
2-1-1 雷諾平均納威爾-史托克法(RANS) 20
2-1-2 k-ω 紊流模型 22
2-3 離散相模型 25
2-3-1顆粒運動機制 26
2-3-2顆粒分散方法和紊流調制方法 29
2-3-3顆粒碰撞模式 34
第三章 數值方法 39
3-1 連續相數值方法 39
3-1-1計算域及邊界條件設定 39
3-1-2入口條件設定 40
3-1-3網格設置 41
3-1-4 收斂條件 44
3-1-5網格與獨立性驗證 45
3-2 離散相數值方法 46
3-2-1顆粒相模型 46
3-2-2 Parcel顆粒法 48
3-2-3 離散相條件設定 48
3-2-3 顆粒疊代條件 50
3-2-4 顆粒碰撞機制 50
3-3 兩相計算之成本 52
第四章 結果與討論 53
4-1 連續相模擬與實驗結果比較 53
4-1-1 連續相之統計紊流量 53
4-1-2 熱線測速儀比較 55
4-1-3 質點影像測速儀比較 58
4-2 兩相模擬與實驗結果比較 59
4-2-1連續相(氣相)之兩相計算結果 60
4-2-2離散相(固相)之兩相計算結果 64
4-3 綜合討論 66
4-3-1紊流調制效應 66
4-3-2紊流分散效應 68
第五章 結論與未來建議 75
5-1 結論 75
5-2 未來研究建議 78
參考文獻 79
參考文獻 Abrahamsen Prsic, M., Ong, M. C., Pettersen, B., & Myrhaug, D. (2014). Large Eddy Simulations of flow around a smooth circular cylinder in a uniform current in the subcritical flow regime. Ocean Engineering, 77, 61-73.

Afkhami, M., Hassanpour, A., & Fairweather, M. (2019). Effect of Reynolds number on particle interaction and agglomeration in turbulent channel flow. Powder Technology, 343, 908-920.

Balachandar, S., & Eaton, J. K. (2010). Turbulent dispersed multiphase flow. Annual review of fluid mechanics, 42, 111-133.

Borgnakke, C., & Larsen, P. S. (1975). Statistical collision model for Monte Carlo simulation of polyatomic gas mixture. Journal of Computational Physics, 18(4), 405-420.

Brennen, C. E. (2005). Fundamentals of Multiphase Flow. Cambridge: Cambridge University Press.

Breuer, M., & Almohammed, N. (2015). Modeling and simulation of particle agglomeration in turbulent flows using a hard-sphere model with deterministic collision detection and enhanced structure models. International Journal of Multiphase Flow, 73, 171-206.

Chang, K.-C., & Wu, W.-J. (1994). Sensitivity study on Monte Carlo solution procedure of two-phase turbulent flow. Numerical Heat Transfer, Part B Fundamentals, 25(2), 223-244.

Chen, Y., Fan, J.-r., Ren, A.-l., & CEN, K.-f. (2007). Numerical simulation of particle dispersion in three dimensional gas-particle circular cylinder wake. JOURNAL-ZHEJIANG UNIVERSITY ENGINEERING SCIENCE, 41(3), 484.

Cox, J. S., Rumsey, C. L., Brentner, K. S., & Younis, B. A. (1997). Computation of sound generated by viscous flow over a circular cylinder.

Crowe, C. (1982). Numerical models for dilute gas-particle flows.

Crowe, C. T. (2000). On models for turbulence modulation in fluid–particle flows. International Journal of Multiphase Flow, 26(5), 719-727.

Crowe, C. T., Schwarzkopf, J. D., Sommerfeld, M., & Tsuji, Y. (1997). Multiphase Flows with Droplets and Particles: CRC Press.

Cundall, P. A., & Strack, O. D. (1979). A discrete numerical model for granular assemblies. geotechnique, 29(1), 47-65.

Dehbi, A. (2006). Assessment of a New Fluent Model for Particle Dispersion in Turbulent Flows.

Deng, G., Piquet, J., Queutey, P., & Visonneau, M. (1993). Vortex-shedding flow predictions with eddy-viscosity models. In Engineering Turbulence Modelling and Experiments (pp. 143-152): Elsevier.

Dennis, S. C. R., Singh, S. N., & Ingham, D. B. (1980). The steady flow due to a rotating sphere at low and moderate Reynolds numbers. Journal of Fluid Mechanics, 101, 257.

Elgobashi, S. (2006). An updated classification map of particle-laden turbulent flows. Paper presented at the IUTAM Symposium on Computational Approaches to Multiphase Flow.

Ferrante, A., & Elghobashi, S. (2003). On the physical mechanisms of two-way coupling in particle-laden isotropic turbulence. Physics of Fluids, 15(2), 315-329.

Fluent, A. (2019a). Ansys fluent theory guide. ANSYS Inc., USA, 15317, 724-746.

Fluent, A. (2019b). Ansys fluent user's guide. ANSYS Inc., USA, 15317, 724-746.

Fukada, T., Takeuchi, S., & Kajishima, T. (2014). Effects of curvature and vorticity in rotating flows on hydrodynamic forces acting on a sphere. International Journal of Multiphase Flow, 58, 292-300.
Gore, R. A., & Crowe, C. T. (1989). Effect of particle size on modulating turbulent intensity. International Journal of Multiphase Flow, 15(2), 279-285.

Gosman, A. D., & loannides, E. (1983). Aspects of Computer Simulation of Liquid-Fueled Combustors. Journal of Energy, 7(6), 482-490.

Greifzu, F., Kratzsch, C., Forgber, T., Lindner, F., & Schwarze, R. (2016). Assessment of particle-tracking models for dispersed particle-laden flows implemented in OpenFOAM and ANSYS FLUENT. Engineering Applications of Computational Fluid Mechanics, 10(1), 30-43.

Hetsroni, G. (1989). Particles-turbulence interaction. International Journal of Multiphase Flow, 15(5), 735-746.

Hjelmfelt, A., & Mockros, L. (1966). Motion of discrete particles in a turbulent fluid. Applied Scientific Research, 16(1), 149-161.

Illner, R., & Neunzert, H. (1987). On simulation methods for the Boltzmann equation. Transport Theory and Statistical Physics, 16(2-3), 141-154.

Keane, R., & Adrian, R. (1999). Optimization of particle image velocimeters. I. Double pulsed systems. Measurement Science and Technology, 1, 1202.

Kruggel-Emden, H., Sturm, M., Wirtz, S., & Scherer, V. (2008). Selection of an appropriate time integration scheme for the discrete element method (DEM). Computers & Chemical Engineering, 32(10), 2263-2279.

Lain, S., & Sommerfeld, M. (2003). Turbulence modulation in dispersed two-phase flow laden with solid from a Lagrangian perspective. International Journal of Heat and Fluid Flow, 24(4), 616-625.

Li, A., & Ahmadi, G. (1992). Dispersion and Deposition of Spherical Particles from Point Sources in a Turbulent Channel Flow. Aerosol Science and Technology - AEROSOL SCI TECH, 16, 209-226.

Liu, X., Wei, A., Luo, K., & Fan, J. (2015). Numerical study of the effects of particles on the near wake around a circular cylinder. International Journal of Computational Fluid Dynamics, 29(2), 150-160.

Li, Z., Wei, J., & Yu, B. (2016). Direct numerical study on effect of interparticle collision in particle-laden turbulence. AIAA Journal, 3212-3222.

Luo, K., Fan, J., Li, W., & Cen, K. (2009). Transient, three-dimensional simulation of particle dispersion in flows around a circular cylinder Re= 140–260. Fuel, 88(7), 1294-1301.

Mando, M., Lightstone, M., Rosendahl, L., Yin, C., & Sorensen, H. (2009). Turbulence modulation in dilute particle-laden flow. International Journal of Heat and Fluid Flow, 30(2), 331-338.

Menter, F. R. (1994). Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 32(8), 1598-1605.

Norberg, C. (1987). Effects of Reynolds number and a low-intensity freestream turbulence on the flow around a circular cylinder. Chalmers University, Goteborg, Sweden, Technological Publications, 87(2), 1-55.

Pandya, R., & Mashayek, F. (2002). Two-fluid large-eddy simulation approach for particle-laden turbulent flows. International Journal of Heat and Mass Transfer, 45(24), 4753-4759.

Pereira, F. S., Vaz, G., & Eca, L. (2015). Flow past a circular cylinder: a comparison between RANS and hybrid turbulence models for a low Reynolds number. Paper presented at the ASME 2015 34th International Conference on Ocean, Offshore and Arctic Engineering.

Przulj, V. (1998). Computational modelling of vortex shedding flows. Doctoral dissertation, City University London.

Richmond-Bryant, J., Eisner, A., & Flynn, M. (2006). Considerations for modeling particle entrainment into the wake of a circular cylinder. Aerosol Science and Technology, 40(1), 17-26.

Saber, A., Lundström, T. S., & Hellström, J. G. I. (2015). Turbulent modulation in particulate flow: A review of critical variables. Engineering, 7(10), 597.

Schiller, L., & Naumann, A. (1993). A Drag Coefficient Correlation. Z. Vereines Ingenieure, 77, 318–320
Sommerfeld, M. (2001). Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence. International Journal of Multiphase Flow, 27(10), 1829-1858.

Sundaram, S., & Collins, L. R. (1999). A numerical study of the modulation of isotropic turbulence by suspended particles. Journal of Fluid Mechanics, 379, 105-143.

Thompson, M., Hourigan, K., & Sheridan, J. (1996). Three-dimensional instabilities in the wake of a circular cylinder. Experimental Thermal and Fluid Science, 12(2), 190-196.

Tsuji, Y. (2000). Activities in discrete particle simulation in Japan. Powder Technology, 113(3), 278-286. Williamson, C. H. (1996). Vortex dynamics in the cylinder wake. Annual review of fluid mechanics, 28(1), 477-539.

Yakhot, A., Orszag, S. A., Yakhot, V., & Israeli, M. (1989). Renormalization group formulation of large-eddy simulations. Journal of Scientific computing, 4(2), 139-158.

Yang, J.-C., & Chang, K.-C. (2001). Inflow conditions in stochastic Eulerian-Lagrangian calculations of two-phase turbulent flow. AIAA Journal, 39(11), 2100-2110.

Yao, J., Zhao, Y., Hu, G., Fan, J., & Cen, K. (2009). Numerical simulation of particle dispersion in the wake of a circular cylinder. Aerosol Science and Technology, 43(2), 174-187.

Young, M., & Ooi, A. (2004). Turbulence models and boundary conditions for bluff body flow. Paper presented at the Proceedings of the 15th Australasian Fluid Mechanics Conference, Sydney, Australia.

Zdravkovich, M. M. (1997). Flow around circular cylinders: Volume 2: Applications (Vol. 2): Oxford university press.

Zhou, H., Mo, G., & Cen, K. (2011). Numerical investigation of dispersed gas–solid two-phase flow around a circular cylinder using lattice Boltzmann method. Computers & Fluids, 52, 130-138.

Zhu, Y., Chen, Y., Xu, Z., Jin, H., & Fan, J. (2019). Numerical simulation of gas-particle dense flow with LES/VFDF/SC model. Computers & Fluids, 183, 43-52.

巫泳葳(2019)。以大尺度渦流法研究測量儀器對圓柱尾流的測量結果影響。國立成功大學航空太空工程學系碩士論文,台南市。(取自https://hdl.handle.net/11296/6b
nd5h)

林建宏(2015)。紊流場中顆粒分散現象之數值研究。國立成功大學航空太空工程學系博士論文,台南市。(取自https://hdl.handle.net/11296/cxfge4)

許志宏(2005)。含顆粒碰撞機制之氣體–顆粒兩相流場模擬。國立成功大學航空太空工程學系博士論文,台南市。(取自https://hdl.handle.net/11296/9uf6p7)

陳威呈(2018)。發展以PIV量測兩相流場之速度分佈技術。國立成功大學航空太空工程學系博士論文,台南市。(取自https://hdl.handle.net/11296/5y4hrf)
論文全文使用權限
  • 同意授權校內瀏覽/列印電子全文服務,於2025-06-17起公開。
  • 同意授權校外瀏覽/列印電子全文服務,於2025-06-17起公開。


  • 如您有疑問,請聯絡圖書館
    聯絡電話:(06)2757575#65773
    聯絡E-mail:etds@email.ncku.edu.tw